1
|
Renders S, Ngoya M, Finel H, Rubio MT, Townsend W, Schroers R, Novak U, Schaap N, Aljurf M, Helbig G, Collin M, Kobbe G, Huynh A, Pérez-Simón JA, Bloor A, Ghesquieres H, Sureda A, Schmitz N, Glass B, Dreger P. Autologous stem cell transplantation in T-cell/histiocyte-rich large B-cell lymphoma: EBMT Lymphoma Working Party study. Blood Adv 2024; 8:5571-5578. [PMID: 39213423 PMCID: PMC11541691 DOI: 10.1182/bloodadvances.2024013152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
ABSTRACT Although broadly used, consolidative autologous hematopoietic stem cell transplantation (auto-HCT) for relapsed/refractory (R/R) T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) has never been specifically investigated. Here, we have analyzed outcomes of auto-HCT for THRLBCL compared with diffuse large cell B-cell lymphoma not otherwise specified (DLBCL). Eligible for this retrospective registry study were adult patients with R/R THRLBCL and DLBCL, respectively, who underwent a first auto-HCT in a salvage-sensitive disease status as assessed by positron emission tomography-computed tomography between 2016 and 2021 and were registered with the European Society for Blood and Marrow Transplantation database. The primary end point was progression-free survival (PFS) 2 years after transplantation. A total of 201 patients with THRLBCL and 5543 with DLBCL were included. There were no significant differences in terms of disease status at HCT, pretreatment lines, and interval from diagnosis to transplant between the cohorts, but patients with THRLBCL were significantly younger, contained a higher proportion of men, and had a better performance status. Compared with DLBCL, THRLBCL was associated with significantly better 2-year PFS (78% vs 59%; P < .001) and overall survival (OS, 81% vs 74%; P = .02) because of a significantly lower 2-year relapse incidence (16% vs 35%; P < .001). On multivariate analysis, favorable relapse risk (hazard ratio [HR], 0.46; 95% confidence interval [CI], 0.31-0.7) and PFS (HR, 0.58; 95% CI, 0.41-0.82) of patients with THRLBCL remained significant, whereas OS benefits (HR, 0.78; 95% CI, 0.54-1.12) did not. These results were validated in a propensity score-matched analysis. These data prove auto-HCT as an effective treatment option for salvage-sensitive R/R THRLBCL.
Collapse
Affiliation(s)
- Simon Renders
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Maud Ngoya
- Lymphoma Working Party, European Society for Blood and Marrow Transplantation Central Registry Office, Paris, France
| | - Herve Finel
- Lymphoma Working Party, European Society for Blood and Marrow Transplantation Central Registry Office, Paris, France
| | - Marie-Thérèse Rubio
- Hematology Unite, Centre Hospitalier Régional Universitaire de Nancy, Vandoeuvre Nancy, France
| | - William Townsend
- Department of Hematology, University College London Hospitals, London, United Kingdom
| | - Roland Schroers
- Department of Hematology, Oncology, Stem Cell Transplantation and Cell Therapy, Ruhr-University Bochum, Knappschaftskrankenhaus, Bochum, Germany
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicolaas Schaap
- Department of Hematology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mahmoud Aljurf
- Oncology Center, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Grzegorz Helbig
- Department of Hematology, Medical University of Silesia, Katowice, Poland
| | - Matthew Collin
- Department of Hematology, Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Guido Kobbe
- Department of Hematology Oncology and Clinical Immunology, Heinrich-Heine-Universitaet, Duesseldorf, Germany
| | - Anne Huynh
- Department of Hematology, Institut Universitaire du Cancer, Toulouse, France
| | - José Antonio Pérez-Simón
- Department of Hematology, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Sevilla, Spain
| | - Adrian Bloor
- Department of Hematology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | - Anna Sureda
- Department of clinical hematology, Catalan Institute of Oncology-Hospitalet, Barcelona, Spain
| | - Norbert Schmitz
- Department of Medicine A, University Hospital Muenster, Muenster, Germany
| | - Bertram Glass
- Klinik für Hümatologie und Stammzelltransplantation, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Malpica L, Marques-Piubelli ML, Beltran BE, Chavez JC, Miranda RN, Castillo JJ. EBV-positive diffuse large B-cell lymphoma, not otherwise specified: 2024 update on the diagnosis, risk-stratification, and management. Am J Hematol 2024; 99:2002-2015. [PMID: 38957951 DOI: 10.1002/ajh.27430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
DISEASE OVERVIEW Epstein Barr virus-positive (EBV+) diffuse large B-cell lymphoma (DLBCL), not otherwise specified (NOS) is an aggressive B-cell lymphoma associated with EBV infection included in the WHO classification of lymphoid neoplasms since 2016. Although historically associated to poor prognosis, outcomes seem to have improved in the era of chemoimmunotherapy. DIAGNOSIS The diagnosis is established through meticulous pathological evaluation. Detection of EBV-encoded RNA (EBER) is the standard diagnostic method. The ICC 2022 specifies EBV+ DLBCL, NOS as occurring when >80% of malignant cells express EBER, whereas the WHO-HAEM5 emphasizes that the majority of tumor cells should be EBER positive without setting a defined threshold. The differential diagnosis includes plasmablastic lymphoma, DLBCL associated with chronic inflammation, primary effusion lymphoma, among others. RISK-STRATIFICATION The International Prognostic Index (IPI) and the Oyama score can be used for risk-stratification. The Oyama score includes age >70 years and presence of B symptoms. The expression of CD30 and PD-1/PD-L1 are emerging as potential adverse but targetable biomarkers. MANAGEMENT Patients with EBV+ DLBCL, NOS, should be staged and managed following similar guidelines than patients with EBV-negative DLBCL. EBV+ DLBCL, NOS, however, might have a worse prognosis than EBV-negative DLBCL in the era of chemoimmunotherapy. Therefore, inclusion of patients in clinical trials when available is recommended. There is an opportunity to study and develop targeted therapy in the management of patients with EBV+ DLBCL, NOS.
Collapse
Affiliation(s)
- Luis Malpica
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brady E Beltran
- Department of Oncology and Radiotherapy, Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru, Instituto de Ciencias Biomédicas, Universidad Ricardo Palma, Lima, Peru
| | - Julio C Chavez
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jorge J Castillo
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Fox CP, Townsend W, Gribben JG, Menne T, Kalakonda N, Williams P, Toron F, Tyas E, Cooper M, Rickards J, Radford J. Real-world outcomes of patients with relapsed/refractory large B-cell lymphoma receiving second-line therapy in England. EJHAEM 2024; 5:992-997. [PMID: 39415902 PMCID: PMC11474359 DOI: 10.1002/jha2.970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 10/19/2024]
Abstract
Autologous stem-cell transplantation (ASCT) is standard therapy for relapsed/refractory large B-cell lymphoma (R/R LBCL), but many patients are either ineligible or unable to receive it. This retrospective study characterized outcomes in R/R LBCL, delineated by eligibility for, and receipt of, ASCT. Median progression-free survival (PFS) and event-free survival (EFS) for patients undergoing ASCT were 35.2 and 31.6 months (overall survival [OS] not reached). Median PFS, EFS, and OS were 4.3, 4.3, and 6.9 months for ineligible patients, and 2.7, 2.6, and 9.4 months for those eligible for but unable to receive ASCT. This highlights an unmet need for alternative therapies in patients unable to receive ASCT.
Collapse
Affiliation(s)
| | | | | | - Tobias Menne
- Newcastle upon Tyne HospitalsNHS Foundation TrustNewcastle upon TyneUK
| | - Nagesh Kalakonda
- Molecular & Clinical Cancer MedicineUniversity of LiverpoolLiverpoolUK
| | | | | | | | | | | | - John Radford
- Manchester Academic Health Science CentreThe Christie NHS Foundation Trust and University of ManchesterManchesterUK
| |
Collapse
|
4
|
Merle NS, Roumenina LT. The complement system as a target in cancer immunotherapy. Eur J Immunol 2024; 54:e2350820. [PMID: 38996361 DOI: 10.1002/eji.202350820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Malignant cells are part of a complex network within the tumor microenvironment, where their interaction with host cells and soluble mediators, including complement components, is pivotal. The complement system, known for its role in immune defense and homeostasis, exhibits a dual effect on cancer progression. This dichotomy arises from its antitumoral opsonophagocytosis and cytotoxicity versus its protumoral chronic inflammation mediated by the C5a/C5aR1 axis, influencing antitumor T-cell responses. Recent studies have revealed distinct co-expression patterns of complement genes in various cancer types, correlating with prognosis. Notably, some cancers exhibit co-regulated overexpression of complement genes associated with poor prognosis, while others show favorable outcomes. However, significant intra-patient heterogeneity further complicates this classification. Moreover, the involvement of locally produced and intracellular complement proteins adds complexity to the tumor microenvironment dynamics. This review highlights the unique interplay of complement components within different cancers and patient cohorts, showing that "one size does not fit all", for complement in cancer. It summarizes the clinical trials for complement targeting in cancer, emphasizing the need for tailored therapeutic approaches. By elucidating the mechanistic basis of complement's context-dependent role, this review aims to facilitate the development of personalized cancer therapies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Nicolas S Merle
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| | - Lubka T Roumenina
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, Inflammation, Complement and Cancer team, Paris, France
| |
Collapse
|
5
|
Balzarotti M, Bagnoli F. Rolling the DICEP on lymphoma salvage treatments? Choose wisely. Br J Haematol 2024; 205:761-763. [PMID: 39072700 DOI: 10.1111/bjh.19655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Although immunotherapy is rapidly changing the treatment approach to r/r diffuse large B cell lymphoma, there is still a place for autologous stem cell transplantation in some patients. The report by Stewart et al. focuses on induction therapy and the importance of the pretransplantation phase. Commentary on: Stewart et al. Canadian cancer trials group LY.17: A randomized phase II study evaluating novel salvage therapy pre-autologous stem cell transplant in relapsed/refractory diffuse large B-cell lymphoma-Outcome of rituximab-dose-intensive cyclophosphamide, etoposide, cisplatin (R-DICEP) versus R-GDP. Br J Haematol 2024; 205:881-890.
Collapse
Affiliation(s)
- Monica Balzarotti
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Filippo Bagnoli
- Department of Oncology and Hematology, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
6
|
Moyo TK, Vaidya R. Re-examining the role of hematopoietic stem cell transplantation in relapsed large B-cell lymphoma in the era of chimeric antigen receptor (CAR) T-cell therapy. Front Oncol 2024; 14:1397186. [PMID: 39211553 PMCID: PMC11357917 DOI: 10.3389/fonc.2024.1397186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Historically, salvage chemoimmunotherapy with consolidative autologous hematopoietic stem cell transplantation (ASCT) was the only potentially curative therapeutic option for patients with relapsed/refractory large B-cell lymphoma (LBCL). Treatment options were few and outcomes poor for patients whose lymphoma failed to respond to salvage chemotherapy/ASCT and for patients not eligible for ASCT. The approval of chimeric antigen receptor (CAR) T-cell therapy for relapsed/refractory LBCL revolutionized the treatment landscape with unprecedented response rates and durability of responses. As a result, earlier intervention with CAR T-cell therapy has been explored, and the enthusiasm for CAR T-cell therapy has overshadowed ASCT. In this article, we will review the data available for ASCT and CAR T-cell therapy in relapsed LBCL and will examine the role for ASCT in relapsed/refractory LBCL in the era of CAR T-cell therapy.
Collapse
Affiliation(s)
- Tamara K. Moyo
- Department of Hematologic Oncology and Blood Disorders, Atrium Health Levine Cancer Institute, Charlotte, NC, United States
| | - Rakhee Vaidya
- Department of Hematology and Oncology, Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston Salem, NC, United States
| |
Collapse
|
7
|
Goel U, Mian A, Sauter CS. SOHO State of the Art Updates and Next Questions | Contemporary Role of Autologous Stem Cell Transplantation for the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma in the Era of Cellular Therapies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00289-1. [PMID: 39214752 DOI: 10.1016/j.clml.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Since the 1990s, the standard of care for the treatment of relapsed/refractory diffuse large B-cell lymphoma (DLBCL) had been salvage chemotherapy followed by high-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT) in patients with a chemotherapy-sensitive remission. However, promising results from the recent TRANSFORM and ZUMA-7 trials evaluating the efficacy of CAR T-cell therapy versus HDT-ASCT for second line relapsed/refractory DLBCL have sought to challenge this standard of care. While these studies have established a new standard for the treatment of early relapsed and primary refractory DLBCL, significant differences in the trial design between these studies and limitations with the timing of randomization during the disease course warrant a thoughtful interpretation of the results. Additionally, the financial burden and logistic challenges of CAR T-cell administration and limited access to these therapies continue to be ongoing issues. Despite the encouraging results from these trials, HDT-ASCT continues to have a role in the treatment of DLBCL, especially in disease relapsing ≥12 months after initial therapy, and in chemo sensitive disease with a good response to salvage chemotherapy. Ongoing studies evaluating novel salvage regimens for use prior to HDT-ASCT, and future studies evaluating the role of CAR T-cell therapy in chemo sensitive disease will help determine the continued role of HDT-ASCT for relapsed/refractory DLBCL.
Collapse
Affiliation(s)
- Utkarsh Goel
- Department of Internal Medicine, Cleveland Clinic, Cleveland, OH
| | - Agrima Mian
- Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH
| | - Craig S Sauter
- Department of Hematology and Medical Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH.
| |
Collapse
|
8
|
Ahmed G, Furqan F, Nasrollahi E, Hamadani M. Bispecific antibodies in the treatment of relapsed/refractory large B-cell lymphoma. Expert Rev Anticancer Ther 2024; 24:705-715. [PMID: 38809821 DOI: 10.1080/14737140.2024.2362186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION The management of relapsed and/or refractory (R/R) large B-cell lymphoma (LBCL) has witnessed dramatic changes in the recent past. Despite the availability of multiple novel immunotherapies in R/R setting, there remains an unmet need for off-the-shelf therapies, particularly in patients with primary refractory, multiply relapsed disease or those experiencing cellular immunotherapy failure. To harness the power of the T-cell mediated immunity, a novel class of drugs called bispecific antibodies (BsAbs) have been developed. These BsAbs are currently under investigation both in frontline and R/R setting and hold the potential to revolutionize the management of LBCL. AREAS COVERED This review article summarizes the currently available BsAbs, their mode of action, efficacy, and safety data for untreated and R/R LBCL. In addition, the role of these BsAbs in combination with currently available chemoimmunotherapy regimens is also discussed. EXPERT OPINION Two BsAbs have secured FDA approval for R/R LBCL, with expected approval of more BsAbs (including in earlier treatment lines). These drugs provide a highly efficacious and relatively safe treatment option for patients with highly pretreated disease including relapse after cellular immunotherapies. In addition, these BsAbs provide a platform for chemotherapy-free regimen for older/frail patients.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/administration & dosage
- Antibodies, Bispecific/pharmacology
- Immunotherapy/methods
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/therapy
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/pathology
- Animals
- Neoplasm Recurrence, Local
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/adverse effects
Collapse
Affiliation(s)
- Gulrayz Ahmed
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fateeha Furqan
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Elham Nasrollahi
- Department of Medicine, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mehdi Hamadani
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
9
|
Maerevoet M, Casasnovas O, Cartron G, Morschhauser F, Thieblemont C, Bouabdallah K, Feugier P, Szablewski V, Becker S, Tilly H. Phase IB Study of Oral Selinexor in Combination with Rituximab and Platinum Chemotherapy in Patients with Relapsed/Refractory B-Cell Lymphoma-Final Analysis. Cancers (Basel) 2024; 16:2672. [PMID: 39123400 PMCID: PMC11311764 DOI: 10.3390/cancers16152672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
PURPOSE Selinexor is an oral selective inhibitor of exportine-1 (XPO1) with efficacy as a single agent in heavily pretreated diffuse large B-cell lymphoma (DLBCL). We conducted a study investigating the combination of selinexor with rituximab and platinum-based chemotherapy in B-cell lymphoma. PATIENTS AND METHODS We conducted a phase 1b, dose-escalation, and expansion trial, which enrolled patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Patients received oral selinexor according to a 3 + 3 design in combination with rituximab and dexamethasone, high-dose cytarabine, oxaliplatine (DHAOX) or gemcitabine, dexamethasone, and cisplatin (GDP) chemotherapy. RESULTS A total of 39 patients were enrolled, 27 during the escalation phase and 12 during the expansion phase. Most patients had diffuse large B-cell lymphoma (DLBCL; 77%). Group R-DHAOX was prematurely closed to inclusion due to a recommendation from the French drug agency, independent of this trial. A recommended phase 2 dose (RP2D) of selinexor in association with R-GPD was established at 40 mg on days 1, 8, and 15 of each 21-day cycle. In a population of 18 patients treated at this dose of selinexor, the most frequent grade 3-4 adverse events were hematological. With this regimen, seven obtained a complete metabolic response and five a partial response. The median PFS was 5.8 months. CONCLUSIONS Among the patients with R/R B-cell lymphoma, selinexor at a weekly dose of 40 mg with R-GDP is feasible for outpatients, with a generally acceptable safety profile.
Collapse
Affiliation(s)
- Marie Maerevoet
- Hopital Universitaire de Bruxelles, Institut Jules Bordet, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | | - Guillaume Cartron
- Central Hospital University (CHU) Montpellier, Hôpital Saint Eloi, 34295 Montpellier, France;
| | - Franck Morschhauser
- Centre Hospitalier Régional University (CHRU) de Lille, Hôpital Claude Huriez, 59000 Lille, France; (F.M.); (V.S.)
| | | | - Kamal Bouabdallah
- Hematology and Cell Therapy Department, University Hospital of Bordeaux, 33000 Bordeaux, France;
| | - Pierre Feugier
- Centre Hospitalier Régional University (CHRU) Nancy, 54511 Vandœuvre-lès-Nancy, France;
| | - Vanessa Szablewski
- Centre Hospitalier Régional University (CHRU) de Lille, Hôpital Claude Huriez, 59000 Lille, France; (F.M.); (V.S.)
| | - Stephanie Becker
- Nuclear Medicine Department and QuantiF-LITIS Laboratory (EA 4108-FR CNRS 3638), Centre Henri Becquerel, 76038 Rouen, France;
| | - Herve Tilly
- Hematology Department and U1245, Centre Henri Becquerel, 76038 Rouen, France;
| |
Collapse
|
10
|
D’Alò F, Bellesi S, Maiolo E, Alma E, Bellisario F, Malafronte R, Viscovo M, Campana F, Hohaus S. Novel Targets and Advanced Therapies in Diffuse Large B Cell Lymphomas. Cancers (Basel) 2024; 16:2243. [PMID: 38927948 PMCID: PMC11201587 DOI: 10.3390/cancers16122243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Since the introduction of rituximab in the late 1990s, significant progress has been made in advancing targeted therapies for B cell lymphomas, improving patients' chance of being cured and clinicians' therapeutic armamentarium. A better understanding of disease biology and pathogenic pathways, coupled with refinements in immunophenotypic and molecular diagnostics, have been instrumental in these achievements. While traditional chemotherapy remains fundamental in most cases, concerns surrounding chemorefractoriness and cumulative toxicities, particularly the depletion of the hemopoietic reserve, underscore the imperative for personalized treatment approaches. Integrating targeted agents, notably monoclonal antibodies, alongside chemotherapy has yielded heightened response rates and prolonged survival. A notable paradigm shift is underway with innovative-targeted therapies replacing cytotoxic drugs, challenging conventional salvage strategies like stem cell transplantation. This review examines the landscape of emerging targets for lymphoma cells and explores innovative therapies for diffuse large B cell lymphoma (DLBCL). From Chimeric Antigen Receptor-T cells to more potent monoclonal antibodies, antibody-drug conjugates, bispecific antibodies, checkpoint inhibitors, and small molecules targeting intracellular pathways, each modality offers promising avenues for therapeutic advancement. This review aims to furnish insights into their potential implications for the future of DLBCL treatment strategies.
Collapse
Affiliation(s)
- Francesco D’Alò
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Silvia Bellesi
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Elena Maiolo
- UOC Servizio e DH di Ematologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (S.B.); (E.M.)
| | - Eleonora Alma
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Flaminia Bellisario
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Rosalia Malafronte
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Marcello Viscovo
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Fabrizia Campana
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Stefan Hohaus
- Dipartimento di Scienze Radiologiche ed Ematologiche, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (R.M.); (M.V.); (F.C.); (S.H.)
- UOSD Malattie Linfoproliferative Extramidollari, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| |
Collapse
|
11
|
Elmacken M, Peredo-Pinto H, Wang C, Xu Z, Tegenge M, Jaigirdar AA, Theoret MR, Purohit-Sheth T, Kasamon YL. FDA Approval Summary: Lisocabtagene Maraleucel for Second-Line Treatment of Large B-Cell Lymphoma. Clin Cancer Res 2024; 30:2309-2316. [PMID: 38324398 DOI: 10.1158/1078-0432.ccr-23-2967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
In June 2022, the FDA extended the indication for lisocabtagene maraleucel (liso-cel) to include adults with large B-cell lymphoma (LBCL) who have refractory disease or relapse within 12 months of first-line chemoimmunotherapy (CIT), as well as transplant-ineligible adults with refractory disease or relapse after first-line CIT. Two clinical trials evaluating a single infusion of liso-cel preceded by lymphodepleting chemotherapy supported the second-line indications. TRANSFORM is a randomized, phase 3, open-label trial comparing liso-cel with standard second-line therapy, including planned autologous hematopoietic stem cell transplantation (HSCT), in 184 transplant-eligible patients. On interim analysis, event-free survival (EFS) by independent review committee (IRC) assessment was statistically significantly improved for the liso-cel arm, with a stratified hazard ratio of 0.34 [95% confidence interval (CI), 0.22-0.51; P < 0.0001]; the estimated median EFS was 10.1 months in the liso-cel arm versus 2.3 months in the control arm. PILOT is a single-arm phase 2 trial of second-line liso-cel in patients who were transplant-ineligible due to age or comorbidities but had adequate organ function for chimeric antigen receptor (CAR) T-cell therapy. Among 61 patients who received liso-cel (median age, 74 years), the IRC-assessed complete response rate was 54% (95% CI, 41-67). Among patients achieving complete response, the estimated 1-year rate of continued response was 68% (95% CI, 45-83). Of the 268 patients combined who received liso-cel as second-line therapy for LBCL, cytokine release syndrome occurred in 45% (Grade 3, 1.3%) and CAR T-cell-associated neurologic toxicities occurred in 27% (Grade 3, 7%), warranting a continued risk evaluation and mitigation strategy.
Collapse
Affiliation(s)
- Mona Elmacken
- Center for Biologics Evaluation and Research, Silver Spring, Maryland
| | | | - Cong Wang
- Center for Biologics Evaluation and Research, Silver Spring, Maryland
| | - Zhenzhen Xu
- Center for Biologics Evaluation and Research, Silver Spring, Maryland
| | - Million Tegenge
- Center for Biologics Evaluation and Research, Silver Spring, Maryland
| | - Adnan A Jaigirdar
- Center for Biologics Evaluation and Research, Silver Spring, Maryland
| | - Marc R Theoret
- Center for Drug Evaluation and Research, Silver Spring, Maryland
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland
| | | | - Yvette L Kasamon
- Center for Drug Evaluation and Research, Silver Spring, Maryland
| |
Collapse
|
12
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Bennett R, Dickinson M. SOHO State of the Art Updates and Next Questions | Current Evidence and Future Directions for Bispecific Antibodies in Large B-Cell Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)00181-2. [PMID: 38871556 DOI: 10.1016/j.clml.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
The CD20xCD3 bispecific antibodies (bsAb) are "off-the-shelf" T-cell re-directing therapies that demonstrate remarkable single-agent clinical activity in B-cell lymphomas. Two agents, epcoritamab (epcor) and glofitamab (glofit) have recent global approvals for patients with relapsed/refractory DLBCL (RR DLBCL) following 2 prior treatment lines. Both agents demonstrate activity in patients with prior exposure to chimeric antigen receptor T-cell (CAR-T) treatment. As multiyear follow-up data become available, it is clear that the majority of patients achieving complete remissions do not relapse and that outcomes are similar between epcor and glofit. CD20xCD3 bsAb have a safety profile that reflect their mechanism of action, with cytokine release syndrome (CRS) the key management issue. Neurotoxicity is far less common than observed with CD19-directed CAR-T. BsAbs are attractive, rapidly available, treatment options for patients with RR DLBCL, without the practical and financial challenges seen with autologous CAR-T therapies. Recent data also demonstrate the feasibility and potential efficacy of bsAb in combination with chemoimmunotherapy with large randomized trials evaluating bsAb-chemotherapy combinations underway. There are open questions about the future role of bsAB for LBCL, the optimal duration of therapy, optimal CRS risk mitigation strategies, and potential resistance mechanisms. In this review we seek to describe the current evidence for bsAb in LBCL, and offer opinion regarding these open questions.
Collapse
Affiliation(s)
- Rory Bennett
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Victoria, Australia
| | - Michael Dickinson
- Department of Clinical Haematology, Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Victoria, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Dabkowska A, Domka K, Firczuk M. Advancements in cancer immunotherapies targeting CD20: from pioneering monoclonal antibodies to chimeric antigen receptor-modified T cells. Front Immunol 2024; 15:1363102. [PMID: 38638442 PMCID: PMC11024268 DOI: 10.3389/fimmu.2024.1363102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
CD20 located predominantly on the B cells plays a crucial role in their development, differentiation, and activation, and serves as a key therapeutic target for the treatment of B-cell malignancies. The breakthrough of monoclonal antibodies directed against CD20, notably exemplified by rituximab, revolutionized the prognosis of B-cell malignancies. Rituximab, approved across various hematological malignancies, marked a paradigm shift in cancer treatment. In the current landscape, immunotherapies targeting CD20 continue to evolve rapidly. Beyond traditional mAbs, advancements include antibody-drug conjugates (ADCs), bispecific antibodies (BsAbs), and chimeric antigen receptor-modified (CAR) T cells. ADCs combine the precision of antibodies with the cytotoxic potential of drugs, presenting a promising avenue for enhanced therapeutic efficacy. BsAbs, particularly CD20xCD3 constructs, redirect cytotoxic T cells to eliminate cancer cells, thereby enhancing both precision and potency in their therapeutic action. CAR-T cells stand as a promising strategy for combatting hematological malignancies, representing one of the truly personalized therapeutic interventions. Many new therapies are currently being evaluated in clinical trials. This review serves as a comprehensive summary of CD20-targeted therapies, highlighting the progress and challenges that persist. Despite significant advancements, adverse events associated with these therapies and the development of resistance remain critical issues. Understanding and mitigating these challenges is paramount for the continued success of CD20-targeted immunotherapies.
Collapse
Affiliation(s)
- Agnieszka Dabkowska
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Krzysztof Domka
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Firczuk
- Laboratory of Immunology, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Bastos‐Oreiro M, Abrisqueta P, Gutierrez A, Jiménez Ubieto A, Poza M, Fernanez‐Caldas P, LLacer MJ, Gonzalez de Villambrosia S, Córdoba R, López A, Ceballos E, Navarro B, Muntañola A, Donato E, Diez‐Baeza E, Escoda L, Luzardo H, Peñarrubia MJ, García Belmonte D, Pardal E, Lozada C, Martín García‐Sancho A. New therapies for relapsed or refractory aggressive B-cell lymphoma increase survival: Analysis from the RELINF registry of the GELTAMO group. Hemasphere 2024; 8:e70. [PMID: 38650598 PMCID: PMC11033920 DOI: 10.1002/hem3.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Mariana Bastos‐Oreiro
- Hospital Universitario Gregorio Marañon. Instituto de investigación Sanitaria Gregorio Marañon (IiSGM)MadridSpain
| | | | | | | | - Maria Poza
- Hospital Universitario 12 de OctubreMadridSpain
| | - Paula Fernanez‐Caldas
- Hospital Universitario Gregorio Marañon. Instituto de investigación Sanitaria Gregorio Marañon (IiSGM)MadridSpain
| | - María José LLacer
- Hospital Universitario Gregorio Marañon. Instituto de investigación Sanitaria Gregorio Marañon (IiSGM)MadridSpain
| | | | | | | | | | | | | | | | - Eva Diez‐Baeza
- Hospital Universitario de Salamanca, IBSAL, CIBERONCUniversidad de SalamancaSalamancaSpain
| | | | - Hugo Luzardo
- Hospital Universitario Dr NegrinGran CanariaSpain
| | | | | | | | | | | |
Collapse
|
16
|
Daddacha W, Monroe D, Schlafstein A, Withers A, Thompson E, Danelia D, Luong N, Sesay F, Rath S, Usoro E, Essien M, Jung A, Jiang J, Hu J, Mahboubi B, Williams A, Steinbeck J, Yang X, Buchwald Z, Dynan W, Switchenko J, Kim B, Khan M, Jaye D, Yu D. SAMHD1 expression contributes to doxorubicin resistance and predicts survival outcomes in diffuse large B-cell lymphoma patients. NAR Cancer 2024; 6:zcae007. [PMID: 38406263 PMCID: PMC10894040 DOI: 10.1093/narcan/zcae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 01/31/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a commonly diagnosed, aggressive non-Hodgkin's lymphoma. While R-CHOP chemoimmunotherapy is potentially curative, about 40% of DLBCL patients will fail, highlighting the need to identify biomarkers to optimize management. SAMHD1 has a dNTPase-independent role in promoting resection to facilitate DNA double-strand break (DSB) repair by homologous recombination. We evaluated the relationship of SAMHD1 levels with sensitivity to DSB-sensitizing agents in DLBCL cells and the association of SAMHD1 expression with clinical outcomes in 79 DLBCL patients treated with definitive therapy and an independent cohort dataset of 234 DLBCL patients. Low SAMHD1 expression, Vpx-mediated, or siRNA-mediated degradation/depletion in DLBCL cells was associated with greater sensitivity to doxorubicin and PARP inhibitors. On Kaplan-Meier log-rank survival analysis, low SAMHD1 expression was associated with improved overall survival (OS), which on subset analysis remained significant only in patients with advanced stage (III-IV) and moderate to high risk (2-5 International Prognostic Index (IPI)). The association of low SAMHD1 expression with improved OS remained significant on multivariate analysis independent of other adverse factors, including IPI, and was validated in an independent cohort. Our findings suggest that SAMHD1 expression mediates doxorubicin resistance and may be an important prognostic biomarker in advanced, higher-risk DLBCL patients.
Collapse
Affiliation(s)
- Waaqo Daddacha
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dominique Monroe
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashley J Schlafstein
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Allison E Withers
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elizabeth B Thompson
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Diana Danelia
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nho C Luong
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Fatmata Sesay
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sandip K Rath
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Edidiong R Usoro
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mark E Essien
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Andrew T Jung
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmeng G Jiang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jiaxuan Hu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bijan Mahboubi
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Arilyn Williams
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Julia E Steinbeck
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zachary S Buchwald
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William S Dynan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jeffrey M Switchenko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mohammad K Khan
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David L Jaye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David S Yu
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
17
|
Ho M, Zanwar S, Paludo J. Chimeric antigen receptor T-cell therapy in hematologic malignancies: Successes, challenges, and opportunities. Eur J Haematol 2024; 112:197-210. [PMID: 37545132 DOI: 10.1111/ejh.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/08/2023]
Abstract
The success of chimeric antigen receptor T-cell (CAR-T) therapy in hematologic malignancies has realized a longstanding effort toward harnessing the immune system to fight cancer in a truly personalized fashion. Second generation chimeric antigen receptors (CAR) incorporating co-stimulatory molecules like 4-1BB or CD28 were able to overcome some of the hindrances with initial CAR constructs resulting in efficacious products. Many second-generation CAR-T products have been approved in the treatment of relapsed/refractory hematologic malignancies including multiple myeloma (MM), non-Hodgkin lymphoma (NHL), and acute lymphoblastic leukemia. However, challenges remain in optimizing the manufacturing, timely access, limiting the toxicity from CAR-T infusions and improving sustainability of responses derived with CAR-T therapy. Here, we summarize the clinical trial data leading to approval CAR-T therapies in MM and NHL, discuss the limitations with current CAR-T therapy strategies and review emerging strategies for overcoming these limitations.
Collapse
Affiliation(s)
- Matthew Ho
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonas Paludo
- Division of General Internal Medicine, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Brooks TR, Caimi PF. A paradox of choice: Sequencing therapy in relapsed/refractory diffuse large B-cell lymphoma. Blood Rev 2024; 63:101140. [PMID: 37949705 DOI: 10.1016/j.blre.2023.101140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The available treatments for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) have experienced a dramatic change since 2017. Incremental advances in basic and translational science over several decades have led to innovations in immune-oncology. These innovations have culminated in eight separate approvals by the US Food and Drug Administration for the treatment of patients with R/R DLBCL over the last 10 years. High-dose therapy and autologous stem cell transplant (HDT-ASCT) remains the standard of care for transplant-eligible patients who relapse after an initial remission. For transplant-ineligible patients or for those who relapse following HDT-ASCT, multiple options exist. Monoclonal antibodies targeting CD19, antibody-drug conjugates, bispecific antibodies, immune effector cell products, and other agents with novel mechanisms of action are now available for patients with R/R DLBCL. There is increasing use of chimeric antigen receptor (CAR) T-cells as second-line therapy for patients with early relapse of DLBCL or those who are refractory to initial chemoimmunotherapy. The clinical benefits of these strategies vary and are influenced by patient and disease characteristics, as well as the type of prior therapy administered. Therefore, there are multiple clinical scenarios that clinicians might encounter when treating R/R DLBCL. An optimal sequence of drugs has not been established, and there is no evidence-based consensus on how to best order these agents. This abundance of choices introduces a paradox: proliferating treatment options are initially a boon to patients and providers, but as choices grow further they no longer liberate. Rather, more choices make the management of R/R DLBCL more challenging due to lack of direct comparisons among agents and a desire to maximize patient outcomes. Here, we provide a review of recently-approved second- and subsequent-line agents, summarize real-world data detailing the use of these medicines, and provide a framework for sequencing therapy in R/R DLBCL.
Collapse
Affiliation(s)
- Taylor R Brooks
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Center, Cleveland, OH, United States of America; Case Comprehensive Cancer Center, Cleveland, OH, United States of America.
| |
Collapse
|
19
|
Yagi Y, Kanemasa Y, Sasaki Y, Goto S, Yamamura Y, Masuda Y, Fujita K, Ishimine K, Hayashi Y, Mino M, Ohigashi A, Morita Y, Tamura T, Nakamura S, Okuya T, Matsuda S, Shimizuguchi T, Shingai N, Toya T, Shimizu H, Najima Y, Kobayashi T, Haraguchi K, Doki N, Okuyama Y, Shimoyama T. Early failure is still a poor prognostic factor in patients with relapsed or refractory large B-cell lymphoma in the era of CAR T-cell therapy. J Clin Exp Hematop 2024; 64:107-118. [PMID: 38925972 PMCID: PMC11303961 DOI: 10.3960/jslrt.24009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/28/2024] Open
Abstract
Patients with refractory or relapsed (R/R) large B-cell lymphoma (LBCL) refractory to first-line chemotherapy or with early relapse have poor outcomes. While chimeric antigen receptor (CAR) T-cell therapy has impressive efficacy after two or more lines of chemotherapy, it's still uncertain if these outcomes remain consistent in the context of third-line CAR T-cell therapy. We conducted a retrospective study of 107 R/R LBCL patients. Patients with relapse 12 months or more after their first-line chemoimmunotherapy (late failure: n = 25) had significantly longer overall survival (OS) than patients with refractory disease or relapse within 12 months (early failure: n = 82) (median OS: not achieved vs. 18.4 months; P < 0.001). Among patients who proceeded to autologous hematopoietic stem-cell transplantation (auto-HSCT), those with late failure had significantly longer event-free survival (EFS) than those with early failure (median EFS: 26.9 vs. 3.1 months; P = 0.012). However, no significant difference in EFS was detected among patients who underwent CAR T-cell therapy (median EFS: not reached vs. 11.8; P = 0.091). Cox regression with restricted cubic spline demonstrated that timing of relapse had significant impact on EFS in patients with auto-HSCT but not in patients with CAR T-cell therapy. Of patients who were scheduled for CAR T-cell therapy, those with late failure were significantly more likely to receive CAR T-cell therapy than those with early failure (90% vs. 57%; P = 0.008). In conclusion, patients with early failure still experienced poor outcomes after the approval of third-line CAR T-cell therapy.
Collapse
|
20
|
García-Sancho AM, Cabero A, Gutiérrez NC. Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma: New Approved Options. J Clin Med 2023; 13:70. [PMID: 38202077 PMCID: PMC10779497 DOI: 10.3390/jcm13010070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024] Open
Abstract
Overall, around 40% of patients with diffuse large B-cell lymphoma (DLBCL) have refractory disease or relapse after the first line of treatment. Until relatively recently, the prognosis of patients with relapsed or refractory DLBCL was very poor and treatment options were very limited. In recent years, several novel therapies have been approved that provide more effective options than conventional chemotherapy and that have manageable toxicity profiles. CAR-T cell therapy has become the new standard treatment for patients with refractory or early relapsed DLBCL, based on the positive results of the phase 3 ZUMA-7 and TRANSFORM clinical trials. This review addresses the role of CAR-T therapy and autologous stem cell transplantation in the treatment of these patients and other approved options for patients who are not candidates for transplant, such as the combinations of polatuzumab vedotin with bendamustine and rituximab, and tafasitamab with lenalidomide.
Collapse
Affiliation(s)
- Alejandro Martín García-Sancho
- Hematology Department, University Hospital of Salamanca, IBSAL (Instituto de Investigación Biomédica de Salamanca), CIBERONC (Centro de Investigación Biomédica en Red en Cáncer ), University of Salamanca, 37007 Salamanca, Spain; (A.C.); (N.C.G.)
| | | | | |
Collapse
|
21
|
Major A, Kamdar M. Selection of bispecific antibody therapies or CAR-T cell therapy in relapsed lymphomas. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:370-381. [PMID: 38066907 PMCID: PMC10727048 DOI: 10.1182/hematology.2023000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Patients with relapsed and refractory (R/R) aggressive B-cell non-Hodgkin lymphomas have historically poor survival outcomes, with chimeric antigen receptor T-cell (CAR-T) therapy now presenting a curative option for a subset of those patients. However, with the approval of several novel bispecific monoclonal antibody (BsAb) therapies with considerable activity in R/R aggressive large B-cell lymphomas (LBCL), patients and oncologists will be faced with decisions regarding how to sequence CAR-T and BsAb therapies based on patient- and disease-related factors. In this review, we compare CAR-T and BsAb therapies for R/R LBCL, highlighting data on the efficacy and toxicity of each treatment paradigm, and provide a roadmap for sequencing these highly effective therapies.
Collapse
Affiliation(s)
- Ajay Major
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Manali Kamdar
- Division of Hematology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
22
|
Dreger P, Corradini P, Gribben JG, Glass B, Jerkeman M, Kersten MJ, Morschhauser F, Mussetti A, Viardot A, Zinzani PL, Sureda A. CD19-directed CAR T cells as first salvage therapy for large B-cell lymphoma: towards a rational approach. Lancet Haematol 2023; 10:e1006-e1015. [PMID: 38030311 DOI: 10.1016/s2352-3026(23)00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/09/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
The approval of CD19-directed chimeric antigen receptor (CAR) T-cell therapies for the second-line treatment of high-risk large B-cell lymphoma (LBCL) has greatly affected salvage algorithms for this condition, and such therapies could have the potential to improve the course of relapsed or refractory LBCL. In this Review, we provide guidance for a rational management approach to the use of commercial CD19-directed CAR T cells in the second-line treatment of LBCL, addressing crucial questions regarding eligible histologies; age, comorbidity, and tumour biology restrictions; the handling of very aggressive tumour behaviour; and holding and bridging therapies. The guidance was developed in a structured manner and, for each question, consists of a description of the clinical issue, a summary of the evidence, the rationale for a practical management approach, and recommendations. These recommendations could help to decide on the optimal management of patients with relapsed or refractory LBCL who are considered for second-line CAR T-cell treatment.
Collapse
Affiliation(s)
- Peter Dreger
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.
| | - Paolo Corradini
- Division of Hematology, IRCCS Istituto Nazionale dei Tumori Milano, University of Milano, Milan, Italy
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Bertram Glass
- Department of Hematology and Cell Therapy, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Mats Jerkeman
- Department of Oncology, Skane University Hospital, Lund, Sweden
| | - Marie Jose Kersten
- Department of Hematology, Amsterdam UMC, location AMC, Cancer Center Amsterdam and LYMMCARE, Amsterdam, Netherlands
| | - Franck Morschhauser
- Hematology Department, CHU Lille, Université de Lille, ULR 7365, Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Alberto Mussetti
- Hematology Department, Institut Català d'Oncologia - Hospitalet, Institut d'Investigació Biomèdique de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| | - Andreas Viardot
- Department of Internal Medicine III, Ulm University Hospital, Ulm, Germany
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia "Seràgnoli", Bologna, Italy; Dipartimento di Scienze Mediche e Chirurgiche, Università di Bologna, Bologna, Italy
| | - Anna Sureda
- Hematology Department, Institut Català d'Oncologia - Hospitalet, Institut d'Investigació Biomèdique de Bellvitge, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
23
|
Kelkar AH, Cliff ERS, Jacobson CA, Abel GA, Dijk SW, Krijkamp EM, Redd R, Zurko JC, Hamadani M, Hunink MGM, Cutler C. Second-Line Chimeric Antigen Receptor T-Cell Therapy in Diffuse Large B-Cell Lymphoma : A Cost-Effectiveness Analysis. Ann Intern Med 2023; 176:1625-1637. [PMID: 38048587 DOI: 10.7326/m22-2276] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND First-line treatment of diffuse large B-cell lymphoma (DLBCL) achieves durable remission in approximately 60% of patients. In relapsed or refractory disease, only about 20% achieve durable remission with salvage chemoimmunotherapy and consolidative autologous stem cell transplantation (ASCT). The ZUMA-7 (axicabtagene ciloleucel [axi-cel]) and TRANSFORM (lisocabtagene maraleucel [liso-cel]) trials demonstrated superior event-free survival (and, in ZUMA-7, overall survival) in primary-refractory or early-relapsed (high-risk) DLBCL with chimeric antigen receptor T-cell therapy (CAR-T) compared with salvage chemoimmunotherapy and consolidative ASCT; however, list prices for CAR-T exceed $400 000 per infusion. OBJECTIVE To determine the cost-effectiveness of second-line CAR-T versus salvage chemoimmunotherapy and consolidative ASCT. DESIGN State-transition microsimulation model. DATA SOURCES ZUMA-7, TRANSFORM, other trials, and observational data. TARGET POPULATION "High-risk" patients with DLBCL. TIME HORIZON Lifetime. PERSPECTIVE Health care sector. INTERVENTION Axi-cel or liso-cel versus ASCT. OUTCOME MEASURES Incremental cost-effectiveness ratio (ICER) and incremental net monetary benefit (iNMB) in 2022 U.S. dollars per quality-adjusted life-year (QALY) for a willingness-to-pay (WTP) threshold of $200 000 per QALY. RESULTS OF BASE-CASE ANALYSIS The increase in median overall survival was 4 months for axi-cel and 1 month for liso-cel. For axi-cel, the ICER was $684 225 per QALY and the iNMB was -$107 642. For liso-cel, the ICER was $1 171 909 per QALY and the iNMB was -$102 477. RESULTS OF SENSITIVITY ANALYSIS To be cost-effective with a WTP of $200 000, the cost of CAR-T would have to be reduced to $321 123 for axi-cel and $313 730 for liso-cel. Implementation in high-risk patients would increase U.S. health care spending by approximately $6.8 billion over a 5-year period. LIMITATION Differences in preinfusion bridging therapies precluded cross-trial comparisons. CONCLUSION Neither second-line axi-cel nor liso-cel was cost-effective at a WTP of $200 000 per QALY. Clinical outcomes improved incrementally, but costs of CAR-T must be lowered substantially to enable cost-effectiveness. PRIMARY FUNDING SOURCE No research-specific funding.
Collapse
Affiliation(s)
- Amar H Kelkar
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Harvard Medical School, Boston; and Harvard T.H. Chan School of Public Health, Boston, Massachusetts (A.H.K.)
| | - Edward R Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston; Harvard Medical School, Boston; Harvard T.H. Chan School of Public Health, Boston; and Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, Massachusetts (E.R.S.C.)
| | - Caron A Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| | - Gregory A Abel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| | - Stijntje W Dijk
- Department of Radiology and Nuclear Medicine and Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands (S.W.D.)
| | - Eline M Krijkamp
- Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, and Erasmus School of Health Policy and Management, Erasmus University Rotterdam, Rotterdam, the Netherlands (E.M.K.)
| | - Robert Redd
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts (R.R.)
| | - Joanna C Zurko
- Division of Hematology & Oncology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin (J.C.Z.)
| | - Mehdi Hamadani
- BMT & Cellular Therapy Program, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin (M.H.)
| | - M G Myriam Hunink
- Harvard T.H. Chan School of Public Health, Boston, and Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, Massachusetts; and Department of Epidemiology and Biostatistics, Erasmus University Medical Center, Rotterdam, the Netherlands (M.G.M.H.)
| | - Corey Cutler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, and Harvard Medical School, Boston, Massachusetts (C.A.J., G.A.A., C.C.)
| |
Collapse
|
24
|
Barraclough A, Hawkes EA. Antibody and immunotherapy in diffuse large B-cell lymphoma. Semin Hematol 2023; 60:338-345. [PMID: 38072722 DOI: 10.1053/j.seminhematol.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 03/12/2024]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma and a heterogeneous B-cell disease. The majority of patients with newly diagnosed disease are cured with first-line combination immunochemotherapy treatment however, those who experience treatment failure have dismal outcomes. Antibody therapies and immunotherapy have provided the single most major advance in the treatment of DLBCL in the last 4 decades. Rituximab, the first immunotherapy, and a monoclonal antibody targeting CD20, improved DLBCL overall survival when added to chemotherapy 2 decades ago. Since then, the advent of further "naked" monoclonal antibodies that target malignant B-cells or stimulate the immune system to kill cancer, as well as antibody-drug conjugates and bispecific antibodies have all entered the DLBCL armamentarium; with 5 antibody therapy approvals in the last 6 years alone. Here we review the literature on antibodies and immunotherapies for DLBCL and the future directions involving this successful group of drugs.
Collapse
Affiliation(s)
- Allison Barraclough
- Fiona Stanley Hospital, Perth, Australia; University of Melbourne, Melbourne, Victoria, Australia
| | - Eliza A Hawkes
- University of Melbourne, Melbourne, Victoria, Australia; Olivia Newton John Cancer Research & Wellness Centre, Austin Health, Melbourne, Victoria, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
25
|
Fabbri N, Mussetti A, Sureda A. Second-line treatment of diffuse large B-cell lymphoma: Evolution of options. Semin Hematol 2023; 60:305-312. [PMID: 38342663 DOI: 10.1053/j.seminhematol.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/24/2023] [Accepted: 12/04/2023] [Indexed: 02/13/2024]
Abstract
In the era of immunochemotherapy, approximately 60%-70% of diffuse large B-cell lymphoma (DLBCL) patients achieve remission with first-line rituximab-based chemoimmunotherapy. However, 30%-40% relapse after initial response to first-line therapy and, out of them, 20%-50% are refractory or experience early relapse. The second-line therapy algorithm for DLBCL has recently evolved, thanks to the recent approval of new therapeutic agents or their combinations. The new guidelines suggest a stratification of relapsed/refractory (R/R) DLBCL based on the time to relapse. For transplant-eligible patients, autologous stem cell transplant remains the preferred option when the patient relapses after 12 months from diagnosis, while anti-CD19 CART-cell therapy is the current preferred choice for high-risk DLBCL, defined as primary refractory or relapse ≤12 months. For transplant-ineligible or CAR T-cell therapy-ineligible patients, the therapeutic arsenal historically lacked effective options. However, new therapeutic options, including polatuzumab vedotin combined with bendamustine-rituximab and tafasitamab with lenalidomide, have been recently approved, and novel agents such as loncastuximab tesirine, selinexor, anti-CD19 CAR T-cell therapy, and bispecific antibodies have shown promising efficacy and manageable safety in this setting offering new hope to patients in this challenging scenario.
Collapse
Affiliation(s)
- N Fabbri
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - A Mussetti
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - A Sureda
- Clinical Hematology Department, Institut Català d'Oncologia - L'Hospitalet de Llobregat, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
26
|
Sharma P, Kasamon YL, Lin X, Xu Z, Theoret MR, Purohit-Sheth T. FDA Approval Summary: Axicabtagene Ciloleucel for Second-Line Treatment of Large B-Cell Lymphoma. Clin Cancer Res 2023; 29:4331-4337. [PMID: 37405396 PMCID: PMC10767767 DOI: 10.1158/1078-0432.ccr-23-0568] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/28/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
In April 2022, the FDA approved axicabtagene ciloleucel (axi-cel) for adults with large B-cell lymphoma (LBCL) that is refractory to first-line chemoimmunotherapy or that relapses within 12 months of first-line chemoimmunotherapy. Approval was based on ZUMA-7, a randomized (1:1), open-label trial in 359 patients with primary refractory LBCL (74%) or early relapse who were transplant candidates. The study compared a single course of axi-cel to standard therapy, consisting of chemoimmunotherapy followed by high-dose therapy and autologous hematopoietic stem cell transplantation (HSCT) in responding patients. Overall, 94% of the experimental arm received chimeric antigen receptor (CAR) T-cell product, and 35% of the control arm received on-protocol HSCT. The primary endpoint was event-free survival, which was significantly longer in the axi-cel arm with an HR of 0.40 (95% confidence interval, 0.31-0.51; P value < 0.0001) and estimated median of 8.3 months, versus 2.0 months with standard therapy. Among 168 recipients of axi-cel, cytokine release syndrome occurred in 92% (Grade ≥ 3, 7%), neurologic toxicity in 74% (Grade ≥ 3, 25%), prolonged cytopenias in 33%, and fatal adverse reactions in 1.8%. This is the first FDA approval of a CAR T-cell therapy for LBCL in the second-line setting and reflects a potential paradigm shift.
Collapse
Affiliation(s)
- Poornima Sharma
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yvette L. Kasamon
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Xue Lin
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Zhenzhen Xu
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Marc R. Theoret
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tejashri Purohit-Sheth
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
27
|
Khwaja J, Nayak L, Cwynarski K. Evidence-based management of primary and secondary CNS lymphoma. Semin Hematol 2023; 60:313-321. [PMID: 38135609 DOI: 10.1053/j.seminhematol.2023.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Central nervous system (CNS) lymphoma has traditionally had very poor outcomes however advances in management have resulted in dramatic improvements and long-term survival of patients. We describe the evidence for treatment strategies for these aggressive disorders. In primary CNS lymphoma there are randomized trial data to inform treatment decisions but these are lacking to guide management in secondary CNS lymphoma. Dynamic assessment of patient fitness and frailty is key throughout treatment, alongside delivery of CNS-bioavailable therapy and enrolment in clinical trials, at each stage of the disease. Intensive high-dose methotrexate-containing induction followed by consolidation with autologous stem cell transplantation with thiotepa-based conditioning is recommended for patients who are fit. Less intensive chemoimmunotherapy, novel agents (including Bruton tyrosine kinase inhibitors, cereblon targeting immunomodulatory agents, and checkpoint inhibitors in the context of clinical trials), and whole brain radiotherapy may be reserved for less fit patients or disease which is chemoresistant. Data regarding the efficacy of chimeric antigen receptor T-cells therapy is emerging, and concerns regarding greater toxicity have not been realized. Future areas of prospective studies include the identification of those at high risk of developing CNS lymphoma, management in elderly or frail patients as well as incorporating novel agents into regimens, particularly for those with chemoresistant disease.
Collapse
Affiliation(s)
- Jahanzaib Khwaja
- Department of Haematology, University College London Hospital, London, United Kingdom.
| | - Lakshmi Nayak
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Kate Cwynarski
- Department of Haematology, University College London Hospital, London, United Kingdom
| |
Collapse
|
28
|
Czapka MT, Riedell PA, Pisano JC. Infectious complications of car T-cell therapy: A longitudinal risk model. Transpl Infect Dis 2023; 25 Suppl 1:e14148. [PMID: 37695203 DOI: 10.1111/tid.14148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND CAR T-cell therapy, where a patient's own T cells are re-engineered to express a receptor to a target of interest, is becoming an increasingly utilized cancer-directed therapy. There are significant toxicities that contribute to a novel state of immunocompromise, leading to new patterns of infectious complications that require further detailed study. METHODS We created a single-center cohort of adult recipients of CD19-directed CAR T-cell therapy and assessed infectious outcomes, supportive care received, toxicities, and markers of immune function up to 2 years following CAR T-cell therapy. Descriptive statistics were used as appropriate for analysis. We additionally conducted time-to-event analysis assessing time-to-first infection with either log-rank testing or Cox regression with univariate analysis, before including significant predictors into a multivariate Cox model of time to infection. RESULTS We identified 73 patients who received CD19-directed CAR T-cell therapy who predominantly had diffuse large B-cell lymphoma. Within 30 days of cell infusion, bacterial and Candida infections were the most common, with 64% of infections due to these organisms. Between 30 days and 2 years postinfusion, respiratory viruses and pneumonia were the most frequent infections, with 68% of infections due to these etiologies. Receipt of tocilizumab, development of immune effector cell-associated neurotoxicity syndrome (ICANS), or lower neutrophil count were associated with quicker onset of infection in a multivariate Cox model. CONCLUSIONS Respiratory viruses remain an important infectious complication of CAR T-cell therapy following the first year. The model may be a useful tool to identify patients at the highest risk of infection.
Collapse
Affiliation(s)
- Michael T Czapka
- Department of Medicine, Section of Infectious Disease, University of Chicago, Chicago, Illinois, USA
| | - Peter A Riedell
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois, USA
| | - Jennifer C Pisano
- Department of Medicine, Section of Infectious Disease, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
29
|
Gong IY, Aminilari M, Landego I, Hueniken K, Zhou Q, Kuruvilla J, Hodgson DC. Comparative effectiveness of salvage chemotherapy regimens and chimeric antigen T-cell receptor therapies in relapsed and refractory diffuse large B cell lymphoma: a network meta-analysis of clinical trials. Leuk Lymphoma 2023; 64:1643-1654. [PMID: 37548344 DOI: 10.1080/10428194.2023.2234528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
The optimal salvage chemotherapy regimen (SC) for relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) prior to autologous stem cell transplant remains unclear. Moreover, although chimeric antigen receptor T cell (CAR-T) therapies were recently approved for primary refractory DLBCL, head-to-head comparisons are lacking. We searched MEDLINE, EMBASE and CENTRAL to July 2022, for randomized trials that enrolled adult patients with R/R DLBCL and performed network meta-analyses (NMA) to assess the efficacy of SC and CAR-T therapies. NMA of SC (6 trials, 7 regimens, n = 1831) indicated that rituximab with gemcitabine, dexamethasone, cisplatin (R-GDP) improved OS and PFS over compared regimens. NMA of 3 CAR-T trials (n = 865) indicated that both axi-cel and liso-cel improved PFS over standard of care, with no difference in OS. Our results indicate that R-GDP may be preferred for R/R DLBCL over other SC compared. Longer follow-up is required for ongoing comparative survival analysis as data from CAR-T trials matures.
Collapse
Affiliation(s)
- Inna Y Gong
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mahmood Aminilari
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Ivan Landego
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Katrina Hueniken
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Qianghua Zhou
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - John Kuruvilla
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - David C Hodgson
- Department of Radiation Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Martín García-Sancho A, Baile M, Rodríguez G, Dlouhy I, Sancho JM, Jarque I, González-Barca E, Salar A, Espeso M, Grande C, Bergua J, Montes-Moreno S, Redondo A, Enjuanes A, Campo E, López-Guillermo A, Caballero D. Lenalidomide in combination with R-ESHAP in patients with relapsed or refractory diffuse large B-cell lymphoma: A phase 2 study from GELTAMO. Br J Haematol 2023; 203:202-211. [PMID: 37485564 DOI: 10.1111/bjh.18989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) patients with relapsed or refractory (RR) disease have poor outcomes with current salvage regimens. We conducted a phase 2 trial to analyse the safety and efficacy of adding lenalidomide to R-ESHAP (LR-ESHAP) in patients with RR DLBCL. Subjects received 3 cycles of lenalidomide 10 mg/day on days 1-14 of every 21-day cycle, in combination with R-ESHAP at standard doses. Responding patients underwent autologous stem-cell transplantation (ASCT). The primary endpoint was the overall response rate (ORR) after 3 cycles. Centralized cell-of-origin (COO) classification was performed. Forty-six patients were included. The ORR after LR-ESHAP was 67% (35% of patients achieved complete remission). Patients with primary refractory disease (n = 26) had significantly worse ORR than patients with non-refractory disease (54% vs. 85%, p = 0.031). No differences in response rates according to the COO were observed. Twenty-eight patients (61%) underwent ASCT. At a median follow-up of 41 months, the estimated 3-year PFS and OS were 42% and 48%, respectively. The most common grade ≥3 adverse events were thrombocytopenia (70% of patients), neutropenia (67%) and anaemia (35%). There were no treatment-related deaths during LR-ESHAP cycles. In conclusion, LR-ESHAP is a feasible salvage regimen with promising efficacy results for patients with RR DLBCL.
Collapse
Affiliation(s)
- A Martín García-Sancho
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| | - M Baile
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| | - G Rodríguez
- Hematology Department, Hospital Universitario Virgen del Rocío/Virgen Macarena, Sevilla, Spain
| | - I Dlouhy
- Hematology Department, Hospital Clinic, Barcelona, Spain
| | - J M Sancho
- Hematology Department, Hospital Germans Trias i Pujol/ICO-IJC, Badalona, Spain
| | - I Jarque
- Hematology Department, Hospital Universitari i Plotècnic La Fe, CIBERONC, Valencia, Spain
| | - E González-Barca
- Institut Català d'Oncologia-Hospitalet, IDIBELL, Universitat de-Barcelona, Barcelona, Spain
| | - A Salar
- Hematology Department, Hospital del Mar, Barcelona, Spain
| | - M Espeso
- Hematology Department, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - C Grande
- Hematology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - J Bergua
- Hematology Department, Hospital San Pedro de Alcántara, Cáceres, Spain
| | - S Montes-Moreno
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - A Redondo
- Hematology Department, Hospital Virgen del Puerto, Plasencia, Spain
| | - A Enjuanes
- Unidad de Genómica del IDIBAPS, Barcelona, Spain
| | - E Campo
- Pathology Department, Hospital Clinic, Barcelona, Spain
| | | | - D Caballero
- Hematology Department, Hospital Universitario de Salamanca-IBSAL, CIBERONC, Universidad de Salamanca, Salamanca, Spain
| |
Collapse
|
31
|
Rosenquist R, Bernard E, Erkers T, Scott DW, Itzykson R, Rousselot P, Soulier J, Hutchings M, Östling P, Cavelier L, Fioretos T, Smedby KE. Novel precision medicine approaches and treatment strategies in hematological malignancies. J Intern Med 2023; 294:413-436. [PMID: 37424223 DOI: 10.1111/joim.13697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, USA
- PRISM Center for Personalized Medicine, Gustave Roussy, Villejuif, France
| | - Tom Erkers
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - David W Scott
- BC Cancer's Centre for Lymphoid Cancer, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Raphael Itzykson
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Département Hématologie et Immunologie, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Rousselot
- Department of Hematology, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Jean Soulier
- Université Paris Cité, Génomes, biologie cellulaire et thérapeutique U944, INSERM, CNRS, Paris, France
- Hématologie Biologique, APHP, Hôpital Saint-Louis, Paris, France
| | - Martin Hutchings
- Department of Haematology and Phase 1 Unit, Rigshospitalet, Copenhagen, Denmark
| | - Päivi Östling
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- SciLifeLab, Stockholm, Sweden
| | - Lucia Cavelier
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Thoas Fioretos
- Department of Clinical Genetics, Pathology and Molecular Diagnostics, Office for Medical Services, Region Skåne, Lund, Sweden
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genomics Lund, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Karin E Smedby
- Department of Hematology, Karolinska University Hospital, Solna, Stockholm, Sweden
- Division of Clinical Epidemiology, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
32
|
Houot R, Bachy E, Cartron G, Gros FX, Morschhauser F, Oberic L, Gastinne T, Feugier P, Duléry R, Thieblemont C, Joris M, Jardin F, Choquet S, Casasnovas O, Brisou G, Cheminant M, Bay JO, Gutierrez FL, Menard C, Tarte K, Delfau MH, Portugues C, Itti E, Palard-Novello X, Blanc-Durand P, Al Tabaa Y, Bailly C, Laurent C, Lemonnier F. Axicabtagene ciloleucel as second-line therapy in large B cell lymphoma ineligible for autologous stem cell transplantation: a phase 2 trial. Nat Med 2023; 29:2593-2601. [PMID: 37710005 PMCID: PMC10579056 DOI: 10.1038/s41591-023-02572-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Axicabtagene ciloleucel (axi-cel) demonstrated superior efficacy compared to standard of care as second-line therapy in patients with high-risk relapsed/refractory (R/R) large B cell lymphoma (LBCL) considered eligible for autologous stem cell transplantation (ASCT); however, in clinical practice, roughly half of patients with R/R LBCL are deemed unsuitable candidates for ASCT. The efficacy of axi-cel remains to be ascertained in transplant-ineligible patients. ALYCANTE, an open-label, phase 2 study, evaluated axi-cel as a second-line therapy in 62 patients with R/R LBCL who were considered ineligible for ASCT. The primary end point was investigator-assessed complete metabolic response at 3 months from the axi-cel infusion. Key secondary end points included progression-free survival, overall survival and safety. The study met its primary end point with a complete metabolic response of 71.0% (95% confidence interval, 58.1-81.8%) at 3 months. With a median follow-up of 12.0 months (range, 2.1-17.9), median progression-free survival was 11.8 months (95% confidence interval, 8.4-not reached) and overall survival was not reached. There was no unexpected toxicity. Grade 3-4 cytokine release syndrome and neurologic events occurred in 8.1% and 14.5% of patients, respectively. These results support axi-cel as second-line therapy in patients with R/R LBCL ineligible for ASCT. ClinicalTrials.gov Identifier: NCT04531046 .
Collapse
Affiliation(s)
- Roch Houot
- Department of Hematology, University Hospital of Rennes, UMR U1236, INSERM, University of Rennes, French Blood Establishment, Rennes, France.
| | - Emmanuel Bachy
- Department of Hematology, Lyon Sud Hospital Center, INSERM U1111, Lyon, France
| | - Guillaume Cartron
- Department of Hematology, University Hospital of Montpellier, UMR-CNRS 5535, Montpellier, France
| | - François-Xavier Gros
- Department of Clinical Hematology and Cellular Therapy, University Hospital of Bordeaux, Bordeaux, France
| | | | - Lucie Oberic
- Department of Hematology, Cancer University Institute of Toulouse Oncopole, Toulouse, France
| | - Thomas Gastinne
- Department of Hematology, University Hospital of Nantes, Nantes, France
| | - Pierre Feugier
- Department of Hematology, University Hospital of Nancy, INSERM 1256, University of Lorraine, Vandœuvre-lès-Nancy, France
| | - Rémy Duléry
- Department of Clinical Hematology and Cellular Therapy, Sorbonne University, Saint-Antoine Hospital, AP-HP, INSERM UMR938, Paris, France
| | | | - Magalie Joris
- Department of Hematology, University Hospital of Amiens, Amiens, France
| | - Fabrice Jardin
- Department of Clinical Hematology, Henri Becquerel Center, INSERM U1245, Rouen, France
| | - Sylvain Choquet
- Department of Hematology, University Hospital Pitié Salpêtrière, AP-HP, Sorbonne University, Paris, France
| | - Olivier Casasnovas
- Department of Clinical Hematology, Dijon University Hospital, INSERM UMR1231, Dijon, France
| | - Gabriel Brisou
- Department of Hematology, Institut Paoli-Calmettes, Marseille, France
| | - Morgane Cheminant
- Department of Clinical Hematology, Necker-Enfants Malades University Hospital, AP-HP, INSERM UMR1163, Paris, France
| | - Jacques-Olivier Bay
- Department of Clinical Hematology and Cellular Therapy, Clermont-Ferrand University Hospital Center, Clermont-Ferrand, France
| | | | - Cédric Menard
- French Blood Establishment and SITI Laboratory, UMR U1236, INSERM, University of Rennes, University Hospital Center of Rennes, Rennes, France
| | - Karin Tarte
- French Blood Establishment and SITI Laboratory, UMR U1236, INSERM, University of Rennes, University Hospital Center of Rennes, Rennes, France
| | | | - Cédric Portugues
- Department of Biostatistics, LYSARC, Lyon-Sud Hospital, Pierre-Bénite, France
| | - Emmanuel Itti
- Department of Nuclear Medicine, Henri Mondor Hospital, Créteil, France
| | - Xavier Palard-Novello
- Department of Nuclear Medicine, University of Rennes, CLCC Eugène Marquis, INSERM, Rennes, France
| | - Paul Blanc-Durand
- Department of Nuclear Medicine, CHU H. Mondor, U-PEC, AP-HP, Créteil, France
| | - Yassine Al Tabaa
- Scintidoc Nuclear Medicine Center, Clinique Clémentville, Montpellier, France
| | - Clément Bailly
- Nantes-Angers Cancer Research Center CRCI2NA, University of Nantes, INSERM UMR1307, CNRS-ERL6075, Nantes, France
| | - Camille Laurent
- Department of Pathology, Cancer University Institute of Toulouse Oncopole, CHU Toulouse, CRCT INSERM U1037, Toulouse, France
| | - François Lemonnier
- Lymphoid Malignancies Unit, Henri Mondor Hospital, Mondor Institute for Biomedical Research, INSERM U955, University Paris-Est, Créteil, France
| |
Collapse
|
33
|
Wang J, Wang Y, Wan L, Chen X, Zhang H, Yang S, Zhong L. Identification of lactate regulation pattern on tumor immune infiltration, therapy response, and DNA methylation in diffuse large B-cell lymphoma. Front Immunol 2023; 14:1230017. [PMID: 37790933 PMCID: PMC10542897 DOI: 10.3389/fimmu.2023.1230017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Lactate, produced through glycolytic metabolism in the tumor microenvironment (TME), is implicated in tumorigenesis and progression in diverse cancers. However, the impact of lactate on the remodeling of the TME in diffuse large B-cell lymphoma (DLBCL) and its implications for therapy options remain unclear. Method A lactate-related (LAR) scoring model was constructed in DLBCL patients using bioinformatic methods. CIBERSORT, XCELL, and ssGSEA algorithms were used to determine the correlation between LAR score and immune cell infiltration. Tumor Immune Dysfunction and Exclusion (TIDE), rituximab, cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP) cohorts, and Genomics of Drug Sensitivity in Cancer (GDSC) were utilized to predict the therapeutic response of DLBCL patients. The impact of the hub gene STAT4 on tumor biological behavior and DNA methylation was experimentally validated or accessed by the TSIDE database. Results The LAR scoring model was developed based on 20 prognosis-related lactate genes, which enabled the division of DLBCL patients into high- and low-risk groups based on the median LAR score. Patients with high-risk DLBCL exhibited significantly worse survival outcomes in both the training cohorts (GSE181063) and the validation cohorts (GSE10846, GSE32918, and GSE69053), as indicated by statistically significant differences (all P<0.05) and area under the curve (AUC) values exceeding 0.6. Immune analyses revealed that low-risk DLBCL patients had higher levels of immune cell infiltration and antitumor immune activation compared to high-risk DLBCL patients. Furthermore, DLBCL patients with high LAR scores were associated with a lower TIDE value and poor therapeutic efficacy of the R-CHOP regimen. GDSC analysis identified 18 drugs that exhibited significant response sensitivity in low-risk DLBCL patients. Moreover, in vitro experiments demonstrated that overexpression of the lactate key gene STAT4 could suppress proliferation and migration, induce cell cycle arrest, and promote cell apoptosis in DLBCL cells. Transcriptional expression and methylation of the STAT4 gene were found to be associated with immunomodulators and chemokines. Conclusion The lactate-based gene signature effectively predicts the prognosis and regulates TME in DLBCL. Our study underscores the role of lactate gene, STAT4, as an important tumor suppressor in DLBCL. Modulating STAT4 could be a promising strategy for DLBCL in clinical practice.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Li Wan
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xinyuan Chen
- Digestive Medicine Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Han Zhang
- Department of Gastroenterology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shuo Yang
- Department of Gastroenterology, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Liye Zhong
- Department of Hematology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
34
|
Yagi Y, Kanemasa Y, Sasaki Y, Sei M, Matsuo T, Ishimine K, Hayashi Y, Mino M, Ohigashi A, Morita Y, Tamura T, Nakamura S, Okuya T, Shimizuguchi T, Shingai N, Toya T, Shimizu H, Najima Y, Kobayashi T, Haraguchi K, Doki N, Okuyama Y, Shimoyama T. Clinical outcomes in transplant-eligible patients with relapsed or refractory diffuse large B-cell lymphoma after second-line salvage chemotherapy: A retrospective study. Cancer Med 2023; 12:17808-17821. [PMID: 37635630 PMCID: PMC10523963 DOI: 10.1002/cam4.6412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
OBJECTIVE The prognosis of patients with relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL) is poor. Although patients who fail first-line salvage chemotherapy are candidates for second-line salvage chemotherapy, the optimal treatment strategy for these patients has not yet been established. METHODS The present, single-center, retrospective study included transplant-eligible patients with R/R DLBCL who received second-line salvage chemotherapy with curative intent. RESULTS Seventy-six patients with R/R DLBCL received second-line salvage chemotherapy. Eighteen (23.7%) patients were responders to the first-line salvage chemotherapy. The overall response rate was 39.5%, and overall survival (OS) was significantly longer in patients who responded to second-line salvage chemotherapy than those who did not. Forty-one patients who proceeded to potentially curative treatment (autologous hematopoietic stem cell transplantation [ASCT], chimeric antigen receptor [CAR] T-cell therapy, or allogeneic hematopoietic stem cell transplantation) had a better prognosis than those who did not. Among the 46 patients who failed to respond to the second-line salvage regimen, only 18 (39.1%) could proceed to the curative treatments. However, among the 30 patients who responded to the second-line salvage regimen, 23 (76.7%) received one of the potentially curative treatments. Among 34 patients who received CAR T-cell therapy, OS was significantly longer in those who responded to salvage chemotherapy immediately prior to CAR T-cell therapy than in those who did not respond. In contrast, the number of prior lines of chemotherapy was not identified as a statistically significant prognostic factor of survival. No significant difference was detected in OS between patients receiving ASCT and those receiving CAR T-cell therapy after the response to second-line salvage chemotherapy. DISCUSSION In this study, we demonstrated that chemosensitivity remained a crucial factor in predicting survival outcomes following CAR T-cell therapy irrespective of the administration timing, and that both ASCT and CAR T-cell therapy were acceptable after the response to second-line salvage chemotherapy.
Collapse
Affiliation(s)
- Yu Yagi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yusuke Kanemasa
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuki Sasaki
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Mina Sei
- Department of Pharmacy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takuma Matsuo
- Department of Pharmacy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Kento Ishimine
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yudai Hayashi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Mano Mino
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - An Ohigashi
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuka Morita
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Taichi Tamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Shohei Nakamura
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Toshihiro Okuya
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takuya Shimizuguchi
- Department of Radiation Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Naoki Shingai
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takashi Toya
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Hiroaki Shimizu
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yuho Najima
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Takeshi Kobayashi
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Kyoko Haraguchi
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Noriko Doki
- Hematology Division, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Yoshiki Okuyama
- Division of Transfusion and Cell Therapy, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| | - Tatsu Shimoyama
- Department of Medical Oncology, Tokyo Metropolitan Cancer and Infectious Diseases CenterKomagome HospitalTokyoJapan
| |
Collapse
|
35
|
Lu T, Zhang J, Xu-Monette ZY, Young KH. The progress of novel strategies on immune-based therapy in relapsed or refractory diffuse large B-cell lymphoma. Exp Hematol Oncol 2023; 12:72. [PMID: 37580826 PMCID: PMC10424456 DOI: 10.1186/s40164-023-00432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) can be cured with standard front-line immunochemotherapy, whereas nearly 30-40% of patients experience refractory or relapse. For several decades, the standard treatment strategy for fit relapsed/refractory (R/R) DLBCL patients has been high-dose chemotherapy followed by autologous hematopoietic stem cell transplant (auto-SCT). However, the patients who failed in salvage treatment or those ineligible for subsequent auto-SCT have dismal outcomes. Several immune-based therapies have been developed, including monoclonal antibodies, antibody-drug conjugates, bispecific T-cell engaging antibodies, chimeric antigen receptor T-cells, immune checkpoint inhibitors, and novel small molecules. Meanwhile, allogeneic SCT and radiotherapy are still necessary for disease control for fit patients with certain conditions. In this review, to expand clinical treatment options, we summarize the recent progress of immune-related therapies and prospect the future indirections in patients with R/R DLBCL.
Collapse
Affiliation(s)
- Tingxun Lu
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jie Zhang
- Department of Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu Province, 214122, China
| | - Zijun Y Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Durham, NC, 27710, USA
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Duke Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
36
|
Lee B, Pierpont T, August A, Richards K. Monoclonal antibodies binding to different epitopes of CD20 differentially sensitize DLBCL to different classes of chemotherapy. Front Oncol 2023; 13:1159484. [PMID: 37601699 PMCID: PMC10436104 DOI: 10.3389/fonc.2023.1159484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/04/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Rituximab (R), an anti-CD20 monoclonal antibody (mAb) and the world's first approved antibody for oncology patients, was combined with the CHOP chemotherapy regimen and markedly improved the prognosis of all B- cell-derived lymphomas, the most common hematological malignancy worldwide. However, there is a 35% disease recurrence with no advancement in the first-line treatment since R was combined with the archetypal CHOP chemotherapy regimen nearly 30 years ago. There is evidence that R synergizes with chemotherapy, but the pharmacological interactions between R and CHOP or between newer anti-CD20 mAbs and CHOP remain largely unexplored. Methods We used in vitro models to score pharmacological interactions between R and CHOP across various lymphoma cell lines. We compared these pharmacological interactions to ofatumumab, a second-generation anti-CD20 mAb, and CHOP. Lastly, we used RNA-sequencing to characterize the transcriptional profiles induced by these two antibodies and potential molecular pathways that mediate their different effects. Results We discovered vast heterogeneity in the pharmacological interactions between R and CHOP in a way not predicted by the current clinical classification. We then discovered that R and ofatumumab differentially synergize with the cytotoxic and cytostatic capabilities of CHOP in separate distinct subsets of B-cell lymphoma cell lines, thereby expanding favorable immunochemotherapy interactions across a greater range of cell lines beyond those induced by R-CHOP. Lastly, we discovered these two mAbs differentially modulate genes enriched in the JNK and p38 MAPK family, which regulates apoptosis and proliferation. Discussion Our findings were completely unexpected because these mAbs were long considered to be biological and clinical equivalents but, in practice, may perform better than the other in a patient-specific manner. This finding may have immediate clinical significance because both immunochemotherapy combinations are already FDA-approved with no difference in toxicity across phase I, II, and III clinical trials. Therefore, this finding could inform a new precision medicine strategy to provide additional therapeutic benefit to patients with B-cell lymphoma using immunochemotherapy combinations that already meet the clinical standard of care.
Collapse
Affiliation(s)
- Brian Lee
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tim Pierpont
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kristy Richards
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| |
Collapse
|
37
|
Liu C, Shi P, Li Z, Li B, Li Z. A nomogram for predicting the rapid progression of diffuse large B-cell lymphoma established by combining baseline PET/CT total metabolic tumor volume, lesion diffusion, and TP53 mutations. Cancer Med 2023; 12:16734-16743. [PMID: 37366281 PMCID: PMC10501242 DOI: 10.1002/cam4.6295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVES This study aimed to integrate positron emission tomography/computed tomography (PET/CT) metrics and genetic mutations to optimize the risk stratification for diffuse large B-cell lymphoma (DLBCL) patients. METHODS The data of 94 primary DLBCL patients with baseline PET/CT examination completed in the Shandong Cancer Hospital and Institute (Jinan, China) were analyzed to establish a training cohort. An independent cohort of 45 DLBCL patients with baseline PET/CT examination from other hospitals was established for external validation. The baseline total metabolic tumor volume (TMTV) and the largest distance between two lesions (Dmax) standardized by patient body surface area (SDmax) were calculated. The pretreatment pathological tissues of all patients were sequenced by a lymphopanel including 43 genes. RESULTS The optimal TMTV cutoff was 285.3 cm3 and the optimal SDmax cutoff was 0.135 m-1 . TP53 status was found as an independent predictive factor significantly affecting complete remission (p = 0.001). TMTV, SDmax, and TP53 status were the main factors of the nomogram and could stratify the patients into four distinct subgroups based on their predicted progression-free survival (PFS). The calibration curve demonstrated satisfactory agreement between the predicted and actual 1-year PFS of the patients. The receiver operating characteristic curves showed this nomogram based on PET/CT metrics and TP53 mutations had a better predictive ability than the clinic risk scores. Similar results were identified upon external validation. CONCLUSIONS The nomogram based on imaging factors and TP53 mutations could lead to a more accurate selection of DLBCL patients with rapid progression, to increase tailor therapy.
Collapse
Affiliation(s)
- Cong Liu
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Department of Radiation OncologyTianjin Medical UniversityTianjinChina
- Department of Internal Medicine‐Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Pengyue Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Zhenjiang Li
- Department of Radiation Oncology Physics and Technology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Baosheng Li
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
- Department of Radiation OncologyTianjin Medical UniversityTianjinChina
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| | - Zengjun Li
- Department of Hematology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanShandongChina
| |
Collapse
|
38
|
Dada R. Redefining Precision Management of r/r Large B-Cell Lymphoma: Novel Antibodies Take on CART and BMT in the Quest for Future Treatment Strategies. Cells 2023; 12:1858. [PMID: 37508523 PMCID: PMC10378108 DOI: 10.3390/cells12141858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The treatment paradigms for patients with relapsed large B-cell lymphoma are expanding. Chimeric antigen receptor technology (CAR-T) has revolutionized the management of these patients. Novel bispecific antibodies and antibody-drug conjugates, used as chemotherapy-free single agents or in combination with other novel therapeutics, have been quickly introduced into the real-world setting. With such a paradigm shift, patients have an improved chance of better outcomes with unpredictable complete remission rates. Additionally, the excellent tolerance of new antibodies targeting B-cell lymphomas is another motivation to broaden its use in relapsed and refractory patients. With the increasing number of approved therapy approaches, future research needs to focus on optimizing the sequence and developing new combination strategies for these antibodies, both among themselves and with other agents. Clinical, pathological, and genetic risk profiling can assist in identifying which patients are most likely to benefit from these costly therapeutic options. However, new combinations may lead to new side effects, which we must learn to deal with. This review provides a comprehensive overview of the current state of research on several innovative antibodies for the precision management of large B-cell lymphoma. It explores various treatment strategies, such as CAR-T vs. ASCT, naked antibodies, antibody-drug conjugates, bispecific antibodies, and bispecific T-cell engagers, as well as discussing the challenges and future perspectives of novel treatment strategies. We also delve into resistance mechanisms and factors that may affect decision making. Moreover, each section provides a detailed analysis of the available literature and ongoing clinical trials.
Collapse
Affiliation(s)
- Reyad Dada
- King Faisal Specialist Hospital and Research Centre, Jeddah 21499, Saudi Arabia; ; Tel.: +966-2-6677777 (ext. 64065); Fax: +966-2-6677777 (ext. 64030)
- College of Medicine, Al-Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
39
|
Westin JR, Oluwole OO, Kersten MJ, Miklos DB, Perales MA, Ghobadi A, Rapoport AP, Sureda A, Jacobson CA, Farooq U, van Meerten T, Ulrickson M, Elsawy M, Leslie LA, Chaganti S, Dickinson M, Dorritie K, Reagan PM, McGuirk J, Song KW, Riedell PA, Minnema MC, Yang Y, Vardhanabhuti S, Filosto S, Cheng P, Shahani SA, Schupp M, To C, Locke FL. Survival with Axicabtagene Ciloleucel in Large B-Cell Lymphoma. N Engl J Med 2023; 389:148-157. [PMID: 37272527 DOI: 10.1056/nejmoa2301665] [Citation(s) in RCA: 130] [Impact Index Per Article: 130.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
BACKGROUND In an analysis of the primary outcome of this phase 3 trial, patients with early relapsed or refractory large B-cell lymphoma who received axicabtagene ciloleucel (axi-cel), an autologous anti-CD19 chimeric antigen receptor T-cell therapy, as second-line treatment had significantly longer event-free survival than those who received standard care. Data were needed on longer-term outcomes. METHODS In this trial, we randomly assigned patients with early relapsed or refractory large B-cell lymphoma in a 1:1 ratio to receive either axi-cel or standard care (two to three cycles of chemoimmunotherapy followed by high-dose chemotherapy with autologous stem-cell transplantation in patients who had a response). The primary outcome was event-free survival, and key secondary outcomes were response and overall survival. Here, we report the results of the prespecified overall survival analysis at 5 years after the first patient underwent randomization. RESULTS A total of 359 patients underwent randomization to receive axi-cel (180 patients) or standard care (179 patients). At a median follow-up of 47.2 months, death had been reported in 82 patients in the axi-cel group and in 95 patients in the standard-care group. The median overall survival was not reached in the axi-cel group and was 31.1 months in the standard-care group; the estimated 4-year overall survival was 54.6% and 46.0%, respectively (hazard ratio for death, 0.73; 95% confidence interval [CI], 0.54 to 0.98; P = 0.03 by stratified two-sided log-rank test). This increased survival with axi-cel was observed in the intention-to-treat population, which included 74% of patients with primary refractory disease and other high-risk features. The median investigator-assessed progression-free survival was 14.7 months in the axi-cel group and 3.7 months in the standard-care group, with estimated 4-year percentages of 41.8% and 24.4%, respectively (hazard ratio, 0.51; 95% CI, 0.38 to 0.67). No new treatment-related deaths had occurred since the primary analysis of event-free survival. CONCLUSIONS At a median follow-up of 47.2 months, axi-cel as second-line treatment for patients with early relapsed or refractory large B-cell lymphoma resulted in significantly longer overall survival than standard care. (Funded by Kite; ZUMA-7 ClinicalTrials.gov number, NCT03391466.).
Collapse
Affiliation(s)
- Jason R Westin
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Olalekan O Oluwole
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Marie José Kersten
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - David B Miklos
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Miguel-Angel Perales
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Armin Ghobadi
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Aaron P Rapoport
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Anna Sureda
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Caron A Jacobson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Umar Farooq
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Tom van Meerten
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Matthew Ulrickson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Mahmoud Elsawy
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Lori A Leslie
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Sridhar Chaganti
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Michael Dickinson
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Kathleen Dorritie
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Patrick M Reagan
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Joseph McGuirk
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Kevin W Song
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Peter A Riedell
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Monique C Minnema
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Yin Yang
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Saran Vardhanabhuti
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Simone Filosto
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Paul Cheng
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Shilpa A Shahani
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Marco Schupp
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Christina To
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| | - Frederick L Locke
- From University of Texas M.D. Anderson Cancer Center, Houston (J.R.W.); Vanderbilt-Ingram Cancer Center, Nashville (O.O.O.); Amsterdam University Medical Center (UMC), University of Amsterdam, Cancer Center Amsterdam, Amsterdam (M.J.K.), UMC Groningen, Groningen (T.M.), and UMC Utrecht, Utrecht (M.C.M.) - all in the Netherlands; Stanford University School of Medicine, Stanford (D.B.M.), and Kite, Santa Monica (Y.Y., S.V., S.F., P.C., S.A.S., M.S., C.T.) - both in California; Memorial Sloan Kettering Cancer Center, New York (M.-A.P.), and University of Rochester School of Medicine, Rochester (P.M.R.) - both in New York; Washington University School of Medicine, St. Louis (A.G.); Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore (A.P.R.); Servei d'Hematologia Clínica, Institut Català d'Oncologia-Hospitalet, Institut de Recerca Biomèdica de Bellvitge, Universitat de Barcelona, Barcelona (A.S.B.); Dana-Farber Cancer Institute, Boston (C.A.J.); University of Iowa, Iowa City (U.F.); Banner M.D. Anderson Cancer Center, Gilbert, AZ (M.U.); the Division of Hematology and Hematologic Oncology, Department of Medicine, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS (M.E.), and Vancouver General Hospital, BC Cancer, University of British Columbia, Vancouver (K.W.S.) - both in Canada; John Theurer Cancer Center, Hackensack, NJ (L.A.L.); the Centre for Clinical Haematology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom (S.C.); Peter MacCallum Cancer Centre, Royal Melbourne Hospital, and the University of Melbourne, Melbourne (M.D.); UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh (K.D.); University of Kansas Cancer Center, Kansas City (J.M.); David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago (P.A.R.); and Moffitt Cancer Center, Tampa, FL (F.L.L.)
| |
Collapse
|
40
|
Vely A, Paillassa J, Nunes Gomes C, Giltat A, Fouquet S, Lebreton A, Klemencie M, Clavert A, Tanguy-Schmidt A, Hunault-Berger M, Orvain C. Toxicity Profile According to Etoposide and Cytarabine Dosing in Patients with Lymphoma Receiving Autologous Stem Cell Transplantation Following BEAM Conditioning. Ann Hematol 2023:10.1007/s00277-023-05333-z. [PMID: 37380715 DOI: 10.1007/s00277-023-05333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
High-dose chemotherapy followed by autologous stem cell transplantation (ASCT) is part of the treatment strategy for some patients with high-risk lymphoma by improving survival with an acceptable toxicity profile. Although the BEAM (BCNU, etoposide, cytarabine, and melphalan) intensification regimen is the most used, the optimal dosing for each drug is unclear. Here, we retrospectively compared the outcome of 110 patients receiving higher (400 mg/m2, n = 69) or lower (200 mg/m2, n = 41) etoposide and cytarabine doses in our institution between 2012 and 2019. Patients in the BEAM 200 group experienced less toxicity with reduced fever duration (P < 0.001), number of platelet transfusions (P = 0.008), antibiotic duration (P < 0.001), antifungal therapy (P < 0.001), and mucositis (P < 0.001) whereas length of stay, admission to the intensive care unit, and in-hospital mortality were not different between groups. Progression-free survival (PFS) was non-significantly lower in the BEAM 200 group (36-month PFS, 68% vs. 80%, P = 0.053) whereas OS was similar between the two groups (36-month OS, 87% vs. 91%, respectively, P = 0.12). Albeit a non-significant reduction in PFS, BEAM 200 conditioning intensity was associated with a reduced toxicity profile.
Collapse
Affiliation(s)
- Agathe Vely
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Jérôme Paillassa
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | | | - Aurélien Giltat
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | | | - Anne Lebreton
- Département de Pharmacie, CHU d'Angers, Angers, France
| | - Marion Klemencie
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Aline Clavert
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
| | - Aline Tanguy-Schmidt
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia, FHU-GOAL, Angers, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Mathilde Hunault-Berger
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia, FHU-GOAL, Angers, France
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Corentin Orvain
- Maladies du Sang, CHU d'Angers, 4 Rue Larrey, 49933, Angers Cedex 9, France.
- Fédération Hospitalo-Universitaire Grand-Ouest Against Leukemia, FHU-GOAL, Angers, France.
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France.
| |
Collapse
|
41
|
Khwaja J, Cwynarski K. Management of primary and secondary CNS lymphoma. Hematol Oncol 2023; 41 Suppl 1:25-35. [PMID: 37294958 DOI: 10.1002/hon.3148] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Central nervous system (CNS) lymphoma has traditionally had very poor outcomes however advances in management have seen dramatic improvements and long-term survival of patients. In primary CNS lymphoma there are now randomised trial data to inform practice, however secondary CNS lymphoma has a lack of randomised trial data and CNS prophylaxis remains a contentious area. We describe treatment strategies in these aggressive disorders. Dynamic assessment of patient fitness and frailty is key throughout treatment alongside delivery of CNS-bioavailable therapy and enrolment in clinical trials. Intensive high-dose methotrexate-containing induction followed by autologous stem cell transplantation is preferred for patients who are fit. Less intensive chemoimmunotherapy, whole brain radiotherapy and novel therapies may be reserved for patients unfit or chemoresistant. It is essential to better define patients at increased risk of CNS relapse, as well as effective prophylactic strategies to prevent it. Future prospective studies incorporating novel agents are key.
Collapse
Affiliation(s)
- Jahanzaib Khwaja
- Department of Haematology, University College London Hospitals, London, England
| | - Kate Cwynarski
- Department of Haematology, University College London Hospitals, London, England
| |
Collapse
|
42
|
Hutchings M. The evolving therapy of DLBCL: Bispecific antibodies. Hematol Oncol 2023; 41:107-111. [PMID: 37294965 DOI: 10.1002/hon.3154] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
Bispecific antibodies have been successfully introduced into the management of relapsed or refractory B-cell lymphomas, including DLBCL. Phase 1 studies of the different CD3/CD20 bispecifics have shown manageable safety profile and promising activity in a range of B-cell lymphomas, and recent phase 2 studies confirm the favourable safety and show frequent and durable complete responses even in heavily pre-treated and high-risk patients. This paper discusses the future potential role of these new agents as single agents and in combinations, and their position in the current and future treatment landscape, also in relation to chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Martin Hutchings
- Department of Haematology, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Meng S, Xia Y, Li M, Wu Y, Wang D, Zhou Y, Ma D, Ye J, Sun T, Ji C. NCBP1 enhanced proliferation of DLBCL cells via METTL3-mediated m6A modification of c-Myc. Sci Rep 2023; 13:8606. [PMID: 37244946 DOI: 10.1038/s41598-023-35777-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is malignant hyperplasia of B lymphocytes and standard care cannot satisfactorily meet clinical needs. Potential diagnostic and prognostic DLBCL biomarkers are needed. NCBP1 could bind to the 5'-end cap of pre-mRNAs to participate in RNA processing, transcript nuclear export and translation. Aberrant NCBP1 expression is involved in the pathogenesis of cancers, but little is known about NCBP1 in DLBCL. We proved that NCBP1 is significantly elevated in DLBCL patients and is associated with their poor prognosis. Then, we found that NCBP1 is important for the proliferation of DLBCL cells. Moreover, we verified that NCBP1 enhances the proliferation of DLBCL cells in a METTL3-dependent manner and found that NCBP1 enhances the m6A catalytic function of METTL3 by maintaining METTL3 mRNA stabilization. Mechanistically, the expression of c-MYC is regulated by NCBP1-enhanced METTL3, and the NCBP1/METTL3/m6A/c-MYC axis is important for DLBCL progression. We identified a new pathway for DLBCL progression and suggest innovative ideas for molecular targeted therapy of DLBCL.
Collapse
Affiliation(s)
- Sibo Meng
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Department of Medical Oncology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Heifei Road, Qingdao, 266035, Shandong, People's Republic of China
| | - Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yuyan Wu
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Ying Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Daoxin Ma
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
44
|
Abramson JS, Solomon SR, Arnason J, Johnston PB, Glass B, Bachanova V, Ibrahimi S, Mielke S, Mutsaers P, Hernandez-Ilizaliturri F, Izutsu K, Morschhauser F, Lunning M, Crotta A, Montheard S, Previtali A, Ogasawara K, Kamdar M. Lisocabtagene maraleucel as second-line therapy for large B-cell lymphoma: primary analysis of the phase 3 TRANSFORM study. Blood 2023; 141:1675-1684. [PMID: 36542826 PMCID: PMC10646768 DOI: 10.1182/blood.2022018730] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
This global phase 3 study compared lisocabtagene maraleucel (liso-cel) with a standard of care (SOC) as second-line therapy for primary refractory or early relapsed (≤12 months) large B-cell lymphoma (LBCL). Adults eligible for autologous stem cell transplantation (ASCT; N = 184) were randomly assigned in a 1:1 ratio to liso-cel (100 × 106 chimeric antigen receptor-positive T cells) or SOC (3 cycles of platinum-based immunochemotherapy followed by high-dose chemotherapy and ASCT in responders). The primary end point was event-free survival (EFS). In this primary analysis with a 17.5-month median follow-up, median EFS was not reached (NR) for liso-cel vs 2.4 months for SOC. Complete response (CR) rate was 74% for liso-cel vs 43% for SOC (P < .0001) and median progression-free survival (PFS) was NR for liso-cel vs 6.2 months for SOC (hazard ratio [HR] = 0.400; P < .0001). Median overall survival (OS) was NR for liso-cel vs 29.9 months for SOC (HR = 0.724; P = .0987). When adjusted for crossover from SOC to liso-cel, 18-month OS rates were 73% for liso-cel and 54% for SOC (HR = 0.415). Grade 3 cytokine release syndrome and neurological events occurred in 1% and 4% of patients in the liso-cel arm, respectively (no grade 4 or 5 events). These data show significant improvements in EFS, CR rate, and PFS for liso-cel compared with SOC and support liso-cel as a preferred second-line treatment compared with SOC in patients with primary refractory or early relapsed LBCL. This trial was registered at www.clinicaltrials.gov as #NCT03575351.
Collapse
Affiliation(s)
- Jeremy S. Abramson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Harvard University, Boston, MA
| | - Scott R. Solomon
- Transplant and Cellular Immunotherapy Program, Northside Hospital Cancer Institute, Atlanta, GA
| | - Jon Arnason
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center, Boston, MA
| | | | - Bertram Glass
- Department of Hematology and Cell Therapy, Helios Klinikum Berlin-Buch, Berlin, Germany
| | - Veronika Bachanova
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Sami Ibrahimi
- Transplant and Cellular Therapy Clinic, University of Oklahoma Stephenson Cancer Center, Oklahoma City, OK
| | - Stephan Mielke
- Departments of Laboratory Medicine and Medicine at Huddinge, Center of Allogeneic Stem Cell Transplantation and Cellular Therapy, Karolinska Institutet and University Hospital, Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Pim Mutsaers
- Department of Hematology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Koji Izutsu
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Franck Morschhauser
- Centre Hospitalier Universitaire de Lille, Groupe de Recherche sur les formes Injectables et les Technologies Associées, Lille, France
| | - Matthew Lunning
- Hematology/Oncology Division, University of Nebraska Medical Center, Omaha, NE
| | | | | | | | | | - Manali Kamdar
- Division of Hematology, Hematologic Malignancies and Stem Cell Transplantation, University of Colorado Cancer Center, Aurora, CO
| |
Collapse
|
45
|
Van Le H, Van Naarden Braun K, Nowakowski GS, Sermer D, Radford J, Townsend W, Ghesquieres H, Menne T, Porpaczy E, Fox CP, Schusterbauer C, Liu FF, Yue L, De Benedetti M, Hasskarl J. Use of a real-world synthetic control arm for direct comparison of lisocabtagene maraleucel and conventional therapy in relapsed/refractory large B-cell lymphoma. Leuk Lymphoma 2023; 64:573-585. [PMID: 36755418 DOI: 10.1080/10428194.2022.2160200] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This study used a real-world population as a synthetic comparator for the single-arm TRANSCEND NHL 001 study (TRANSCEND; NCT02631044) to evaluate the efficacy of lisocabtagene maraleucel (liso-cel) compared with conventional (noncellular) therapies in patients with relapsed/refractory (R/R) large B-cell lymphoma (LBCL). Inclusion and exclusion criteria for the real-world study closely matched the enrollment criteria in TRANSCEND. The analytic comparator cohort was created by matching and balancing observed baseline characteristics of real-world patients with those in TRANSCEND using propensity score methodology. Efficacy outcomes comparing liso-cel- (n = 257) and conventional therapy-treated (n = 257) patients, respectively, significantly favored liso-cel: overall response rate (74% vs 39%; p < 0.0001), complete response rate (50% vs 24%; p < 0.0001), median overall survival (23.5 vs 6.8 months; p < 0.0001), and median progression-free survival (3.5 vs 2.2 months; p < 0.0001). These results demonstrated a statistically significant and clinically meaningful benefit of liso-cel in patients with third- or later-line R/R LBCL relative to conventional therapies.Clinical trial registration: ClinicalTrials.gov identifier: NCT02631044.
Collapse
Affiliation(s)
- Hoa Van Le
- Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | - David Sermer
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - John Radford
- Department of Medical Oncology, The Christie NHS Foundation Trust and University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - William Townsend
- Hematology, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Tobias Menne
- Hematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Northumberland, UK
| | - Edit Porpaczy
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Christopher P Fox
- Department of Clinical Hematology, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Claudia Schusterbauer
- Clinical Research and Development, Celgene, a Bristol-Myers Squibb Company, Boudry, Switzerland
| | - Fei Fei Liu
- Worldwide Health Economics and Outcomes Research CAR T, Bristol Myers Squibb, Princeton, NJ, USA
| | - Lihua Yue
- Statistics, Bristol Myers Squibb, Princeton, NJ, USA
| | - Marc De Benedetti
- Biometrics and Data Sciences, Bristol Myers Squibb, Princeton, NJ, USA
| | - Jens Hasskarl
- Cell Therapy Development, Celgene, a Bristol-Myers Squibb Company, Boudry, Switzerland
| |
Collapse
|
46
|
Bobillo S, Khwaja J, Ferreri AJM, Cwynarski K. Prevention and management of secondary central nervous system lymphoma. Haematologica 2023; 108:673-689. [PMID: 36384246 PMCID: PMC9973486 DOI: 10.3324/haematol.2022.281457] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Secondary central nervous system (CNS) lymphoma (SCNSL) is defined by the involvement of the CNS, either at the time of initial diagnosis of systemic lymphoma or in the setting of relapse, and can be either isolated or with synchronous systemic disease. The risk of CNS involvement in patients with diffuse large B-cell lymphoma is approximately 5%; however, certain clinical and biological features have been associated with a risk of up to 15%. There has been growing interest in improving the definition of patients at increased risk of CNS relapse, as well as identifying effective prophylactic strategies to prevent it. SCNSL often occurs within months of the initial diagnosis of lymphoma, suggesting the presence of occult disease at diagnosis in many cases. The differing presentations of SCNSL create the therapeutic challenge of controlling both the systemic disease and the CNS disease, which uniquely requires agents that penetrate the blood-brain barrier. Outcomes are generally poor with a median overall survival of approximately 6 months in retrospective series, particularly in those patients presenting with SCNSL after prior therapy. Prospective studies of intensive chemotherapy regimens containing high-dose methotrexate, followed by hematopoietic stem cell transplantation have shown the most favorable outcomes, especially for patients receiving thiotepa-based conditioning regimens. However, a proportion of patients will not respond to induction therapies or will subsequently relapse, indicating the need for more effective treatment strategies. In this review we focus on the identification of high-risk patients, prophylactic strategies and recent treatment approaches for SCNSL. The incorporation of novel agents in immunochemotherapy deserves further study in prospective trials.
Collapse
Affiliation(s)
- Sabela Bobillo
- Department of Hematology, Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona
| | - Jahanzaib Khwaja
- Department of Haematology, University College London Hospitals, London
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Haematology, IRCCS San Raffaele Scientific Institute, Milan
| | - Kate Cwynarski
- Department of Haematology, University College London Hospitals, London
| |
Collapse
|
47
|
Eyre TA, Barrington SF, Okosun J, Abamba C, Pearce RM, Lee J, Carpenter B, Crawley CR, Bloor AJC, Gilleece M, Nicholson E, Shah N, Orchard K, Malladi R, Townsend WM. Impact of positron emission tomography - computed tomography status on progression-free survival for relapsed follicular lymphoma patients undergoing autologous stem cell transplantation. Haematologica 2023; 108:785-796. [PMID: 35586966 PMCID: PMC9973492 DOI: 10.3324/haematol.2021.280287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/28/2022] [Indexed: 11/09/2022] Open
Abstract
The optimum management approach for patients with relapsed or refractory follicular lymphoma remains uncertain. Autologous stem cell transplantation (autoSCT) is considered a standard option in suitable, younger patients with relapsed follicular lymphoma. AutoSCT is associated with very durable remissions in a minority of subjects, but also with significant, well-established toxicities. Although positron emission tomography (PET) status prior to autoSCT is an established prognostic factor in diffuse large B-cell lymphoma and Hodgkin lymphoma, no data exist in follicular lymphoma. We describe survival outcomes according to pre-transplant PET status, classified by the Lugano criteria into complete metabolic remission (CMR) versus non-CMR, in 172 patients with relapsed or refractory follicular lymphoma within a national, multicenter, retrospective British Society of Blood and Marrow Transplantation and Cellular Therapy registry study. The median number of lines of therapy prior to SCT was three (range, 1-6). The median follow-up after SCT was 27 months (range, 3-70). The median progression-free survival for all patients after autoSCT was 28 months (interquartile range, 23- 36). There was no interaction between age at transplantation, sex, number of months since last relapse, Karnofsky performance status or comorbidity index and achieving CMR prior to autoSCT. Superior progression-free survival was observed in 115 (67%) patients obtaining CMR versus 57 (33%) non-CMR patients (3-year progression-free survival 50% vs. 22%, P=0.011) and by pre-SCT Deauville score (continuous variable 1-5, hazard ratio [HR]=1.32, P=0.049). PET status was independently associated with progression-free status (non-CMR HR=2.02, P=0.003), overall survival (non-CMR HR=3.08, P=0.010) and risk of relapse (non-CMR HR=1.64, P=0.046) after autoSCT by multivariable analysis. Our data suggest that pre- SCT PET status is of clear prognostic value and may help to improve the selection of patients for autoSCT.
Collapse
Affiliation(s)
- Toby A Eyre
- Department of Haematology, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford.
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, King's Health Partners, London
| | - Jessica Okosun
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London
| | - Clementina Abamba
- BSBMTCT data registry, 5th Floor Tabard House, Talbot Yard, Guy's Hospital, Great Maze Pond, London
| | - Rachel M Pearce
- BSBMTCT data registry, 5th Floor Tabard House, Talbot Yard, Guy's Hospital, Great Maze Pond, London
| | - Julia Lee
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London
| | - Ben Carpenter
- Department of Haematology, University College London Hospitals 235 Euston Road, London
| | - Charles R Crawley
- Department of Haematology and Bone Marrow Transplantation, Addenbrookes Hospital, Cambridge
| | - Adrian J C Bloor
- Department of Haematology, The Christie Hospital NHS Trust, Manchester
| | - Maria Gilleece
- Department of Haematology and Bone Marrow Transplantation, Leeds Teaching Hospitals NHS Trust, Leeds
| | - Emma Nicholson
- Department of Haematology and Bone Marrow Transplantation, Royal Marsden Hospital, London
| | - Nimish Shah
- Department of Haematology, Norfolk and Norwich University Hospitals, Norwich
| | - Kim Orchard
- Department of Haematology and Bone Marrow Transplantation, Southampton University Hospitals, Southampton
| | - Ram Malladi
- Department of Haematology and Bone Marrow Transplantation, Addenbrookes Hospital, Cambridge
| | - William M Townsend
- Department of Haematology, University College London Hospitals 235 Euston Road, London
| |
Collapse
|
48
|
Nastoupil LJ, Bartlett NL. Navigating the Evolving Treatment Landscape of Diffuse Large B-Cell Lymphoma. J Clin Oncol 2023; 41:903-913. [PMID: 36508700 DOI: 10.1200/jco.22.01848] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diffuse large B-cell lymphoma, the most common subtype of non-Hodgkin lymphoma, comprises a heterogenous group of morphologically, genetically, and clinically distinct diseases. Several recent advances have affected the treatment landscape, which had been mostly stagnant for the past few decades. We will review the practice-changing studies in frontline (POLARIX), early relapse (ZUMA-7 and TRANSFORM), and multiple recurrent (ZUMA-1, JULIET, TRANSCEND, L-MIND, and LOTIS-2) stages and discuss how the treatment landscape may evolve with the emergence of bispecific antibodies.
Collapse
|
49
|
Tian L, Li C, Sun J, Zhai Y, Wang J, Liu S, Jiang Y, Wu W, Xing D, Lv Y, Guo J, Xu H, Sun H, Li Y, Li L, Zhao Z. Efficacy of chimeric antigen receptor T cell therapy and autologous stem cell transplant in relapsed or refractory diffuse large B-cell lymphoma: A systematic review. Front Immunol 2023; 13:1041177. [PMID: 36733398 PMCID: PMC9886865 DOI: 10.3389/fimmu.2022.1041177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background We aimed to compare the efficacy of chimeric antigen receptor T (CAR-T) cell therapy with that of autologous stem cell transplantation (auto-HSCT) in relapsed/refractory diffuse large B cell lymphoma (R/R DLBCL). Research design and methods We searched eligible publications up to January 31st, 2022, in PubMed, Cochrane Library, Springer, and Scopus. A total of 16 publications with 3484 patients were independently evaluated and analyzed using STATA SE software. Results Patients who underwent CAR-T cell therapy showed a better overall response rate (ORR) and partial response (PR) than those treated with auto-HSCT (CAR-T vs. auto-HSCT, ORR: 80% vs. 73%, HR:0.90,95%CI:0.76-1.07,P = 0.001; PR: 20% vs. 14%, HR:0.65,95%CI:0.62-0.68,P = 0.034). No significant difference was observed in 6-month overall survival (OS) (CAR-T vs. auto-HSCT, six-month OS: 81% vs. 84%, HR:1.23,95%CI:0.63-2.38, P = 0.299), while auto-HSCT showed a favorable 1 and 2-year OS (CAR-T vs. auto-HSCT, one-year OS: 64% vs. 73%, HR:2.42,95%CI:2.27-2.79, P < 0.001; two-year OS: 54% vs. 68%, HR:1.81,95%CI:1.78-1.97, P < 0.001). Auto-HSCT also had advantages in progression-free survival (PFS) (CAR-T vs. auto-HSCT, six-month PFS: 53% vs. 76%, HR:2.81,95%CI:2.53-3.11,P < 0.001; one-year PFS: 46% vs. 61%, HR:1.84,95%CI:1.72-1.97,P < 0.001; two-year PFS: 42% vs. 54%, HR:1.62,95%CI:1.53-1.71, P < 0.001). Subgroup analysis by age, prior lines of therapy, and ECOG scores was performed to compare the efficacy of both treatment modalities. Conclusion Although CAR-T cell therapy showed a beneficial ORR, auto-HSCT exhibited a better long-term treatment superiority in R/R DLBCL patients. Survival outcomes were consistent across different subgroups.
Collapse
Affiliation(s)
- Linyan Tian
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Cheng Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Juan Sun
- Clinical Testing Center, Chinese Academy of Medical Sciences Blood Disease Hospital, Chinese Academy of Medical Sciences Institute of Hematology, State Key Laboratory of Experimental Hematology, National Clinical Medical Center for Blood Disease, Tianjin, China
| | - Yixin Zhai
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin, China
| | - Su Liu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yanan Jiang
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Wenqi Wu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Donghui Xing
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yangyang Lv
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Jing Guo
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Hong Xu
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Huimeng Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Yuhang Li
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Lanfang Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, The Sino‐US Center for Lymphoma and Leukemia Research, Tianjin, China,*Correspondence: Lanfang Li, ; Zhigang Zhao,
| | - Zhigang Zhao
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China,Department of Medical Oncology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China,*Correspondence: Lanfang Li, ; Zhigang Zhao,
| |
Collapse
|
50
|
Li T, Yu J, Hou M, Zha S, Cheng Q, Zheng Q, Li L. Quantitative evaluation of therapy options for relapsed/refractory diffuse large B-cell lymphoma: A model-based meta-analysis. Pharmacol Res 2023; 187:106592. [PMID: 36470547 DOI: 10.1016/j.phrs.2022.106592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
New therapies for relapsed/refractory diffuse large B-cell lymphoma (r/rDLBCL) have emerged in recent years, but there have been no comprehensive quantitative comparisons of the efficacy of these therapies. In this study, the efficacy characteristics of 11 types of treatment strategy and 63 treatment regimens were compared by model based meta-analysis. We found that compared with monotherapy, association therapy had significant benefits in terms of overall survival (OS), progression-free survival (PFS), and objective response rate (ORR). However, whereas treatment regimens involving chemotherapy contributed to significant improvements in ORR and PFS, OS was not improved. In terms of treatment strategy, we identified chemotherapy in association with immunotherapy sequential autologous stem cell transplantation (ASCT), the association of two different types of immunotherapies, chemotherapy sequential ASCT, chemotherapy in association with immunotherapy, and chemotherapy in association with two types of immunotherapies as showing better efficacy. With respect to specific treatment regimens, we found that the following had better efficacy: rituximab in association with inotuzumab ozogamicin; rituximab in association with carmustine, etoposide, cytarabine, and melphalan sequential ASCT (R-BEAM+ASCT); lenalidomide in association with rituximab, etoposide, cisplatin, cytarabine, and methylprednisolone; iodine-131 tositumomab in association with BEAM sequential ASCT; and chemotherapy sequential chimeric antigen receptor T-cell immunotherapy, with median OS of 48.2, 34.2, 27.8, 25.8, and 25 months, respectively. Moreover, with respect to association therapy, there was a strong correlation between the 6-month PFS and 2-year OS. The findings of this study provide the necessary quantitative information for clinical practice and clinical trial design for the treatment of r/rDLBCL.
Collapse
Affiliation(s)
- Ting Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Jiesen Yu
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Mengyuan Hou
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Sijie Zha
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Qingqing Cheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China
| | - Qingshan Zheng
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.
| | - Lujin Li
- Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.
| |
Collapse
|