1
|
Nelson BE, Reddy NK, Huse JT, Amini B, Nardo M, Gouda M, Weathers SP, Subbiah V. Histological transformation to gliosarcoma with combined BRAF/MEK inhibition in BRAF V600E mutated glioblastoma. NPJ Precis Oncol 2023; 7:47. [PMID: 37231247 DOI: 10.1038/s41698-023-00398-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The identification of BRAF V600 mutation in multiple cancers beyond melanoma and the development of combined BRAF and MEK targeting agents have altered the landscape of tissue-agnostic precision oncology therapies with an impact on survival outcomes. Despite initial efficacy, resistance emerges, and it is pertinent to identify putative resistance mechanisms. We report a case of recurrent glioblastoma (GBM) harboring BRAF V600E alteration who initially responded to combined BRAF + MEK inhibition and subsequently developed treatment resistance by histological transformation to gliosarcoma and acquisition of oncogenic KRAS G12D and an NF1 L1083R mutation. This documented case represents an initial evidence of a developing phenomenon in cancer research as it provides the first evidence of an emergent KRAS G12D/NF1 L1083R aberration with histological transformation occurring concurrently with primary BRAF V600E-altered glioblastoma as a previously unrecognized acquired mechanism of resistance in the setting of combined BRAF and MEK inhibition. This novel finding not only sheds new light on the RAS/MAPK pathway but also highlights the potential for morphological transformation to gliosarcoma, underscoring the critical need for further investigation in this area.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neha K Reddy
- Department of Internal Medicine, The University of Texas at Austin, Austin, TX, USA
| | - Jason T Huse
- Department of Pathology and Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Behrang Amini
- Department of Diagnostic Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiao-Pei Weathers
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson Cancer Network, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
2
|
Nelson BE, Roszik J, Janku F, Hong DS, Kato S, Naing A, Piha-Paul S, Fu S, Tsimberidou A, Cabanillas M, Busaidy NL, Javle M, Byers LA, Heymach JV, Meric-Bernstam F, Subbiah V. BRAF v600E-mutant cancers treated with vemurafenib alone or in combination with everolimus, sorafenib, or crizotinib or with paclitaxel and carboplatin (VEM-PLUS) study. NPJ Precis Oncol 2023; 7:19. [PMID: 36801912 PMCID: PMC9938883 DOI: 10.1038/s41698-022-00341-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 02/20/2023] Open
Abstract
Combined BRAF + MEK inhibition is FDA approved for BRAF V600E-mutant solid tumors except for colorectal cancer. However, beyond MAPK mediated resistance several other mechanisms of resistance such as activation of CRAF, ARAF, MET, P13K/AKT/mTOR pathway exist among other complex pathways. In the VEM-PLUS study, we performed a pooled analysis of four phase one studies evaluating the safety and efficacy of vemurafenib monotherapy and vemurafenib combined with targeted therapies (sorafenib, crizotinib, or everolimus) or carboplatin plus paclitaxel in advanced solid tumors harboring BRAF V600 mutations. When vemurafenib monotherapy was compared with the combination regimens, no significant differences in OS or PFS durations were noted, except for inferior OS in the vemurafenib and paclitaxel and carboplatin trial (P = 0.011; HR, 2.4; 95% CI, 1.22-4.7) and in crossover patients (P = 0.0025; HR, 2.089; 95% CI, 1.2-3.4). Patients naïve to prior BRAF inhibitors had statistically significantly improved OS at 12.6 months compared to 10.4 months in the BRAF therapy refractory group (P = 0.024; HR, 1.69; 95% CI 1.07-2.68). The median PFS was statistically significant between both groups, with 7 months in the BRAF therapy naïve group compared to 4.7 months in the BRAF therapy refractory group (P = 0.016; HR, 1.80; 95% CI 1.11-2.91). The confirmed ORR in the vemurafenib monotherapy trial (28%) was higher than that in the combination trials. Our findings suggest that, compared with vemurafenib monotherapy, combinations of vemurafenib with cytotoxic chemotherapy or with RAF- or mTOR-targeting agents do not significantly extend the OS or PFS of patients who have solid tumors with BRAF V600E mutations. Gaining a better understanding of the molecular mechanisms of BRAF inhibitor resistance, balancing toxicity and efficacy with novel trial designs are warranted.
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Jason Roszik
- grid.240145.60000 0001 2291 4776Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Filip Janku
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - David S. Hong
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Shumei Kato
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Aung Naing
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Sarina Piha-Paul
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Siqing Fu
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Apostolia Tsimberidou
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Maria Cabanillas
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Naifa Lamki Busaidy
- grid.240145.60000 0001 2291 4776Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Milind Javle
- grid.240145.60000 0001 2291 4776Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Lauren Averett Byers
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - John V. Heymach
- grid.240145.60000 0001 2291 4776Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Funda Meric-Bernstam
- grid.240145.60000 0001 2291 4776Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX USA
| | - Vivek Subbiah
- Departments of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Tumor Type Agnostic Therapy Carrying BRAF Mutation: Case Reports and Review of Literature. Pharmaceuticals (Basel) 2021; 14:ph14020159. [PMID: 33669326 PMCID: PMC7920250 DOI: 10.3390/ph14020159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 02/08/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Precision medicine is based on molecular and genotypic patient characterization to define specific target treatment. BRAF mutation is an oncogenic driver, and the Cancer Genome Atlas has identified BRAF mutations in different cancer types. Tumor type agnostic therapy is based on targeting genomic alterations, regardless of tumor origin. In this context, novel therapeutic agents including BRAF and MEK inhibitors based on the molecular landscape in solid tumors have been investigated. Case presentation, Case 1: The first case is chemotherapy-refractory, BRAF V600E mutated intrahepaticcholangiocarcinoma treated with vemurafenib and cobimetinib as third line therapy. In this setting the dual BRAF and MEK inhibition resulted in improved progression-free survival and quality of life; Case 2: The second case shows aBRAF G466A mutated Bellini duct carcinoma (BDC), treated with dabrafenib and trametinib in second line therapy. The disease remained under control for 11 months after the first relapse. DISCUSSION In the literature there is strong evidence that melanoma, colorectal cancer, non small cell lung cancer and anaplastic thyroid cancer with BRAF mutations are good targets for BRAF/MEK pathway inhibitors. The VE-BASKET and ROAR basket trials explored the efficacy of vemurafenib and the combination of dabrafenib/trametinib, respectively, in BRAF V600 mutation-positive cancers other than melanoma, papillary thyroid cancer, colorectal cancer and non small cell lung cancer. Within the concept of tumor type agnostic therapy, we decided to treat our BRAF-mutated tumors with the association of BRAF and MEK inhibitors. CONCLUSIONS Our results confirm the emerging importance of molecular tumor profiling for the successful management of cancer, and the potential of BRAF-targeted therapy in the treatment of rare solid tumors with poor prognosis and no clinical benefit from systemic therapies with.
Collapse
|
4
|
Ahn J, Jin M, Song E, Ryu YM, Song DE, Kim SY, Kim TY, Kim WB, Shong YK, Jeon MJ, Kim WG. Immune Profiling of Advanced Thyroid Cancers Using Fluorescent Multiplex Immunohistochemistry. Thyroid 2021; 31:61-67. [PMID: 32611231 DOI: 10.1089/thy.2020.0312] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background: Advanced thyroid cancers, including differentiated thyroid carcinoma (DTC) with distant metastasis, and anaplastic thyroid carcinoma (ATC), are associated with poor clinical outcomes and limited treatment options. This study aimed to determine the immune profiles of advanced thyroid cancers using fluorescent multiplex immunohistochemistry (F-MIHC) and multispectral imaging (MSI). Methods: Twenty-eight tissue samples were collected from 12 patients who had DTC with distant metastasis and from 16 with ATC. The samples were assessed using F-MIHC and MSI with antibodies against the cell surface molecules, cluster of differentiation (CD)4, CD8, programmed cell death-1 (PD-1), PD ligand 1 (PD-L1), forkhead box protein 3, and cytokeratin (CK). The expression of PD-L1 was evaluated using tumor proportion score (TPS) and combined positive score (CPS). Results: Significantly, more PD-L1-positive tumor cells (CK+PD-L1+) per mm2 were found in ATC samples than in DTC samples (183.5 vs. 0.03, p < 0.001). Lymphocyte infiltration was significantly increased in ATC compared with DTC, with significantly more PD-L1- or PD-1-positive lymphocytes in ATC samples than in DTC samples. The TPS and CPS for PD-L1 expression were negative in all DTC samples but positive in 81% and 94% of ATC samples, respectively. Conclusions: Immune profiling revealed significant differences between advanced DTC and ATC, particularly in terms of PD-L1 expression and lymphocyte infiltration. Therefore, immune profiling using F-MIHC and MSI can provide invaluable information regarding tumor microenvironments, which could help select candidates for immunotherapy.
Collapse
Affiliation(s)
- Jonghwa Ahn
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Meihua Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eyun Song
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine and School of Medicine, Seoul, Korea
| | - Yeon-Mi Ryu
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Dong Eun Song
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Yeob Kim
- Asan Institute for Life Sciences, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Tae Yong Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Bae Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Kee Shong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min Ji Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Won Gu Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm. Trends Cancer 2021; 7:15-28. [DOI: 10.1016/j.trecan.2020.08.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/29/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
|
6
|
Schürch CM, Roelli MA, Forster S, Wasmer MH, Brühl F, Maire RS, Di Pancrazio S, Ruepp MD, Giger R, Perren A, Schmitt AM, Krebs P, Charles RP, Dettmer MS. Targeting CD47 in Anaplastic Thyroid Carcinoma Enhances Tumor Phagocytosis by Macrophages and Is a Promising Therapeutic Strategy. Thyroid 2019; 29:979-992. [PMID: 30938231 PMCID: PMC6648226 DOI: 10.1089/thy.2018.0555] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background: Anaplastic thyroid carcinoma (ATC) is one of the most aggressive human cancers, with a median survival of only three to six months. Standard treatment options and even targeted therapies have so far failed to improve long-term overall survival. Thus, novel treatment modalities for ATC, such as immunotherapy, are urgently needed. CD47 is a "don't eat me" signal, which prevents cancer cells from phagocytosis by binding to signal regulatory protein alpha on macrophages. So far, the role of macrophages and the CD47-signal regulatory protein alpha signaling axis in ATC is not well understood. Methods: This study analyzed 19 primary human ATCs for macrophage markers, CD47 expression, and immune checkpoints by immunohistochemistry. ATC cell lines and a fresh ATC sample were assessed by flow cytometry for CD47 expression and macrophage infiltration, respectively. CD47 was blocked in phagocytosis assays of co-cultured macrophages and ATC cell lines. Anti-CD47 antibody treatment was administered to ATC cell line xenotransplanted immunocompromised mice, as well as to tamoxifen-induced ATC double-transgenic mice. Results: Human ATC samples were heavily infiltrated by CD68- and CD163-expressing tumor-associated macrophages (TAMs), and expressed CD47 and calreticulin, the dominant pro-phagocytic molecule. In addition, ATC tissues expressed the immune checkpoint molecules programmed cell death 1 and programmed death ligand 1. Blocking CD47 promoted the phagocytosis of ATC cell lines by macrophages in vitro. Anti-CD47 antibody treatment of ATC xenotransplanted mice increased the frequency of TAMs, enhanced the expression of macrophage activation markers, augmented tumor cell phagocytosis, and suppressed tumor growth. In double-transgenic ATC mice, CD47 was expressed on tumor cells, and blocking CD47 increased TAM frequencies. Conclusions: Targeting CD47 or CD47 in combination with programmed cell death 1 may potentially improve the outcomes of ATC patients and may represent a valuable addition to the current standard of care.
Collapse
Affiliation(s)
- Christian M. Schürch
- Institute of Pathology, University of Bern, Bern, Switzerland
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
- Address correspondence to: Christian M. Schürch, MD, PhD, Baxter Laboratory for Stem Cell Biology, Stanford University School of Medicine, 269 Campus Drive, CCSR 3220, Stanford, CA 94305
| | - Matthias A. Roelli
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Stefan Forster
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Marie-Hélène Wasmer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Frido Brühl
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Renaud S. Maire
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Sergio Di Pancrazio
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
- United Kingdom Dementia Research Institute Centre, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, United Kingdom
| | - Roland Giger
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Aurel Perren
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Anja M. Schmitt
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Roch-Philippe Charles
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Matthias S. Dettmer
- Institute of Pathology, University of Bern, Bern, Switzerland
- Matthias S. Dettmer, MD, Institute of Pathology, University of Bern, Murtenstrasse 31, 3008 Bern, Switzerland
| |
Collapse
|
7
|
Khan SA, Ci B, Xie Y, Gerber DE, Beg MS, Sherman SI, Cabanillas ME, Busaidy NL, Burtness BA, Heilmann AM, Bailey M, Ross JS, Sher DJ, Ali SM. Unique mutation patterns in anaplastic thyroid cancer identified by comprehensive genomic profiling. Head Neck 2019; 41:1928-1934. [PMID: 30758123 DOI: 10.1002/hed.25634] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/27/2018] [Accepted: 12/19/2018] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Anaplastic thyroid cancer (ATC) is a highly aggressive thyroid cancer. Those ATC with genomic alterations (GAs) in TSC2, ALK, and BRAF may respond to targeted therapies. METHODS Comprehensive genomic profiling on 90 ATC specimens identified base substitutions, short insertions and deletions, amplifications, copy number alterations, and genomic rearrangements in up to 315 cancer-related genes and 28 genes commonly rearranged in cancer. RESULTS Median patient age was 65 (range, 33-86) years, 50 patients were male. There was a mean of 4.2 GA per case, range 1-11. The most common GA were TP53 (66%), BRAF (34%), TERT (32%), CDKN2A (32%), and NRAS (26%). BRAF V600E and NRAS/HRAS/KRAS alteration were mutually exclusive. BRAF, CDKN2A, PIK3CA, and JAK2 were more frequent in patients >70 years of age; while myc, PTEN, and NRAS were more common in those ≤50 years. CONCLUSION ATC shows many GA with potential therapeutic significance and suggesting different molecular pathways can lead to ATC.
Collapse
Affiliation(s)
- Saad A Khan
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bo Ci
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - David E Gerber
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Muhammad S Beg
- Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Steven I Sherman
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naifa L Busaidy
- Department of Endocrine Neoplasia and Hormonal Disorders, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara A Burtness
- Department of Internal Medicine, Yale School of Medicine; Developmental Therapeutics Program, Yale Cancer Center, New Haven, Connecticut
| | | | - Mark Bailey
- Foundation Medicine, Inc., Cambridge, Massachusetts
| | | | - David J Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, Massachusetts
| |
Collapse
|
8
|
Leonetti A, Facchinetti F, Rossi G, Minari R, Conti A, Friboulet L, Tiseo M, Planchard D. BRAF in non-small cell lung cancer (NSCLC): Pickaxing another brick in the wall. Cancer Treat Rev 2018; 66:82-94. [PMID: 29729495 DOI: 10.1016/j.ctrv.2018.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/28/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
Molecular characterization of non-small cell lung cancer (NSCLC) marked an historical turning point for the treatment of lung tumors harboring kinase alterations suitable for specific targeted drugs inhibition, translating into major clinical improvements. Besides EGFR, ALK and ROS1, BRAF represents a novel therapeutic target for the treatment of advanced NSCLC. BRAF mutations, found in 1.5-3.5% of NSCLC, are responsible of the constitutive activation of mitogen activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway. Clinical trials evaluating the efficacy of the BRAF inhibitor dabrafenib in combination with the downstream MEK inhibitor trametinib in metastatic BRAFV600E-mutated NSCLC guaranteed FDA and EMA rapid approval of the combination regimen in this clinical setting. In line with the striking results observed in metastatic melanoma harboring the same molecular alteration, BRAF and MEK inhibition should be considered a new standard of care in this molecular subtype of NSCLC. In the present review, we propose an overview of the available evidence about BRAF in NSCLC mutations (V600E and non-V600E), from biological significance to emerging clinical implications of BRAF mutations detection. Focusing on the current strategies to act against the mutated kinase, we moreover approach additional strategies to overcome treatment resistance.
Collapse
Affiliation(s)
| | | | - Giulio Rossi
- Pathology Unit, Santa Maria delle Croci Hospital, Ravenna, Italy
| | - Roberta Minari
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy
| | | | - Luc Friboulet
- INSERM, U981, Gustave Roussy Cancer Campus, Villejuif, France
| | - Marcello Tiseo
- Medical Oncology Unit, University Hospital of Parma, Parma, Italy.
| | - David Planchard
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
9
|
Lubitz CC, Zhan T, Gunda V, Amin S, Gigliotti BJ, Fingeret AL, Holm TM, Wachtel H, Sadow PM, Wirth LJ, Sullivan RJ, Panka DJ, Parangi S. Circulating BRAF V600E Levels Correlate with Treatment in Patients with Thyroid Carcinoma. Thyroid 2018; 28:328-339. [PMID: 29378474 PMCID: PMC5865613 DOI: 10.1089/thy.2017.0322] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC) and can be associated with aggressive disease. Previously, a highly sensitive blood RNA-based BRAFV600E assay was reported. The objective of this study was to assess the correlation of BRAFV600E circulating tumor RNA levels with surgical and medical treatment. METHODS Circulating BRAFV600E levels were assessed in (i) a murine model of undifferentiated (anaplastic) thyroid carcinoma with known BRAFV600E mutation undergoing BRAFV600E-inhibitor (BRAFi) treatment, and (ii) in 111 patients enrolled prior to thyroidectomy (n = 86) or treatment of advanced recurrent or metastatic PTC (n = 25). Blood samples were drawn for BRAFV600E analysis before and after treatment. Testing characteristics were assessed and positivity criteria optimized. Changes in blood BRAFV600E values were assessed and compared to clinical characteristics and response to therapy. RESULTS In a murine model of anaplastic thyroid carcinoma with BRAFV600E mutation, blood BRAFV600E RNA correlated with tumor volume in animals treated with BRAFi. In tissue BRAFV600E-positive (n = 36) patients undergoing initial surgery for PTC, blood BRAFV600E levels declined postoperatively (median 370.0-178.5 fg/ng; p = 0.002). In four patients with metastatic or poorly differentiated thyroid carcinoma receiving targeted therapies, blood BRAFV600E declined following therapy and corresponded with radiographic evidence of partial response or stable disease. CONCLUSIONS This study shows the correlation of blood BRAFV600E levels in response to treatment in both an established animal model of thyroid cancer and in patients with BRAFV600E-positive tumors with all stages of disease. This assay represents an alternative biomarker in patients with positive thyroglobulin antibodies, and tumors, which do not express thyroglobulin.
Collapse
Affiliation(s)
- Carrie C. Lubitz
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts
| | - Tiannan Zhan
- Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts
| | - Viswanath Gunda
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Salma Amin
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Abbey L. Fingeret
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Tammy M. Holm
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Heather Wachtel
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter M. Sadow
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lori J. Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan J. Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - David J. Panka
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Naoum GE, Morkos M, Kim B, Arafat W. Novel targeted therapies and immunotherapy for advanced thyroid cancers. Mol Cancer 2018; 17:51. [PMID: 29455653 PMCID: PMC5817719 DOI: 10.1186/s12943-018-0786-0] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/01/2018] [Indexed: 02/06/2023] Open
Abstract
Thyroid cancer is a frequently encountered endocrine malignancy. Despite the favorable prognosis of this disease, 15–20% of differentiated thyroid cancer (DTC) cases and most anaplastic types, remain resistant to standard treatment options, including radioactive iodine (RAI). In addition, around 30% of medullary thyroid cancer (MTC) cases show resistance after surgery. The evolving understanding of disease-specific molecular therapeutic targets has led to the approval of two targeted therapies (Sorafenib and Lenvatinib) for RAI refractory DTC and another two drugs (Vandetanib and Cabozantinib) for MTC. These advanced therapies exert their effects by blocking the MAPK pathway, which has been widely correlated to different types of thyroid cancers. While these drugs remain reserved for thyroid cancer patients who failed all treatment options, their ability to improve patients’ overall survival remain hindered by their low efficacy and other molecular factors. Among these factors is the tumor’s ability to activate parallel proliferative signaling pathways other than the cascades blocked by these drugs, along with overexpression of some tyrosine kinase receptors (TKR). These facts urge the search for novel different treatment strategies for advanced thyroid cases beyond these drugs. Furthermore, the growing knowledge of the dynamic immune system interaction with tumor microenvironment has revolutionized the cancer immune therapy field. In this review, we aim to discuss the molecular escape mechanisms of thyroid tumors from these drugs. We also highlight novel therapeutic options targeting other pathways than MAPK, including PI3K pathway, ALK translocations and HER2/3 receptors and their clinical impact. We also aim to discuss the usage of targeted therapy in restoring thyroid tumor sensitivity to RAI, and finally turn to extensively discuss the role of immunotherapy as a potential alternative treatment option for advanced thyroid diseases.
Collapse
Affiliation(s)
- George E Naoum
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,Alexandria Comprehensive Cancer center, Alexandria, Egypt
| | - Michael Morkos
- Department of Endocrinology, Rush University, 1900 W Polk St, Room 801, Chicago, IL, USA
| | - Brian Kim
- Department of Endocrinology, Thyroid Cancer Program, Rush University, Jelke Building, Room 604, 1735 W Harrison St, Chicago, IL, 60612, UK
| | - Waleed Arafat
- Alexandria Comprehensive Cancer center, Alexandria, Egypt. .,University Of Alexandria, Clinical oncology department, Alexandria, Egypt. .,Department of Radiation Oncology, University of Alabama at Birmingham, 1720 2nd Ave S, Birmingham, AL, 35294, UK.
| |
Collapse
|
11
|
Roche AM, Fedewa SA, Shi LL, Chen AY. Treatment and survival vary by race/ethnicity in patients with anaplastic thyroid cancer. Cancer 2018; 124:1780-1790. [DOI: 10.1002/cncr.31252] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ansley M. Roche
- Division of Otolaryngology-Head and Neck Surgery; Hofstra Northwell School of Medicine; Staten Island New York
| | - Stacey A. Fedewa
- Surveillance and Health Services Research, American Cancer Society; Atlanta Georgia
| | - Lucy L. Shi
- Department of Otolaryngology-Head and Neck Surgery; The Ohio State University; Columbus Ohio
| | - Amy Y. Chen
- Department of Otolaryngology-Head and Neck Surgery; Emory University; Atlanta Georgia
| |
Collapse
|
12
|
Takahashi S, Kiyota N, Tahara M. Optimal use of lenvatinib in the treatment of advanced thyroid cancer. CANCERS OF THE HEAD & NECK 2017; 2:7. [PMID: 31093354 PMCID: PMC6460646 DOI: 10.1186/s41199-017-0026-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 08/18/2017] [Indexed: 01/13/2023]
Abstract
The development of orally active, multitargeted kinase inhibitors (MKIs) represents a significant advance in the treatment of progressive, metastatic thyroid cancer. Lenvatinib, an MKI targeting vascular endothelial growth factor receptor, fibroblast growth factor receptor, platelet-derived growth factor receptor, c-Kit, and RET, has shown efficacy in stabilizing previously progressive disease, with emerging evidence of a possible benefit in terms of overall survival. However, lenvatinib is associated with a side-effect profile similar to those of other MKIs that might affect the outcome of therapy. The aim of this review is to summarize the clinical efficacy and safety of MKIs in the treatment of advanced thyroid cancer in pivotal phase III trials. Common adverse events that may occur during lenvatinib therapy and their management are discussed, including conditions in which its administration should be temporarily withdrawn and resumed pending resolution of adverse events. We focus on data from a subanalysis of Japanese patients in the SELECT trial and in a post-marketing study in Japan. We suggest that lenvatinib is a valuable treatment option for advanced differentiated thyroid cancer. Monitoring and careful management of adverse events including supportive care are required to ensure continuation of therapy.
Collapse
Affiliation(s)
- Shunji Takahashi
- Department of Medical Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550 Japan
| | - Naomi Kiyota
- Department of Medical Oncology and Hematology, Kobe University Hospital, Kobe, Japan
| | - Makoto Tahara
- Department of Head and Neck Medical Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| |
Collapse
|