1
|
Tyagi A, Chandrasekaran B, Shukla V, Tyagi N, Sharma AK, Damodaran C. Nutraceuticals target androgen receptor-splice variants (AR-SV) to manage castration resistant prostate cancer (CRPC). Pharmacol Ther 2024:108743. [PMID: 39491756 DOI: 10.1016/j.pharmthera.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
Every year, prostate cancer is diagnosed in millions of men. The androgen receptor's (AR) unchecked activation is crucial in causing the development and progression of prostate cancer. Second-generation anti-androgen therapies, which primarily focus on targeting the Ligand Binding Domain (LBD) of AR, are effective for most patients. However, the adverse effects pose significant challenges in managing the disease. Furthermore, genetic mutations or the emergence of AR splice variants create an even more complex tumor environment, fostering resistance to these treatments. Natural compounds and their analogs, while showing a lower toxicity profile and a potential for selective AR splice variants inhibition, are constrained by their bioavailability and therapeutic efficacy. Nonetheless, recent breakthroughs in using natural derivatives to target AR and its splice variants have shown promise in treating chemoresistant castration-resistant prostate cancer (CRPC). This review will discuss the role of AR variants, particularly androgen receptor splice variant 7 (AR-V7), in CRPC and investigate the latest findings on how natural compounds and their derivatives target AR and AR splice variants.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Balaji Chandrasekaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Vaibhav Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Neha Tyagi
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, College of Medicine, Penn State University, Hershey, PA 17033, United States
| | - Chendil Damodaran
- Department of Pharmaceutical Sciences, College of Pharmacy, Texas A&M University, College Station, TX 77845, United States.
| |
Collapse
|
2
|
Phoenix JT, Budreika A, Kostlan RJ, Hwang JH, Fanning SW, Kregel S. Editorial: Hormone resistance in cancer. Front Endocrinol (Lausanne) 2023; 14:1272932. [PMID: 37693345 PMCID: PMC10484586 DOI: 10.3389/fendo.2023.1272932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- John T. Phoenix
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Audris Budreika
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Raymond J. Kostlan
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Sean W. Fanning
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| | - Steven Kregel
- Department of Cancer Biology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
3
|
Kang B, Mottamal M, Zhong Q, Bratton M, Zhang C, Guo S, Hossain A, Ma P, Zhang Q, Wang G, Payton-Stewart F. Design, Synthesis, and Evaluation of Niclosamide Analogs as Therapeutic Agents for Enzalutamide-Resistant Prostate Cancer. Pharmaceuticals (Basel) 2023; 16:735. [PMID: 37242518 PMCID: PMC10222209 DOI: 10.3390/ph16050735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Niclosamide effectively downregulates androgen receptor variants (AR-Vs) for treating enzalutamide and abiraterone-resistant prostate cancer. However, the poor pharmaceutical properties of niclosamide due to its solubility and metabolic instability have limited its clinical utility as a systemic treatment for cancer. A novel series of niclosamide analogs was prepared to systematically explore the structure-activity relationship and identify active AR-Vs inhibitors with improved pharmaceutical properties based on the backbone chemical structure of niclosamide. Compounds were characterized using 1H NMR, 13C NMR, MS, and elemental analysis. The synthesized compounds were evaluated for antiproliferative activity and downregulation of AR and AR-V7 in two enzalutamide-resistant cell lines, LNCaP95 and 22RV1. Several of the niclosamide analogs exhibited equivalent or improved anti-proliferation effects in LNCaP95 and 22RV1 cell lines (B9, IC50 LNCaP95 and 22RV1 = 0.130 and 0.0997 μM, respectively), potent AR-V7 down-regulating activity, and improved metabolic stability. In addition, both a traditional structure-activity relationship (SAR) and 3D-QSAR analysis were performed to guide further structural optimization. The presence of two -CF3 groups of the most active B9 in the sterically favorable field and the presence of the -CN group of the least active B7 in the sterically unfavorable field seem to make B9 more potent than B7 in the antiproliferative activity.
Collapse
Affiliation(s)
- Borui Kang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Madhusoodanan Mottamal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiu Zhong
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Melyssa Bratton
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Changde Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Shanchun Guo
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Ahamed Hossain
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Peng Ma
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Qiang Zhang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Guangdi Wang
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| | - Florastina Payton-Stewart
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (B.K.); (M.M.); (Q.Z.); (C.Z.); (S.G.); (Q.Z.)
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; (M.B.); (A.H.); (P.M.)
| |
Collapse
|
4
|
Cordova RA, Misra J, Amin PH, Klunk AJ, Damayanti NP, Carlson KR, Elmendorf AJ, Kim HG, Mirek ET, Elzey BD, Miller MJ, Dong XC, Cheng L, Anthony TG, Pili R, Wek RC, Staschke KA. GCN2 eIF2 kinase promotes prostate cancer by maintaining amino acid homeostasis. eLife 2022; 11:e81083. [PMID: 36107759 PMCID: PMC9578714 DOI: 10.7554/elife.81083] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022] Open
Abstract
A stress adaptation pathway termed the integrated stress response has been suggested to be active in many cancers including prostate cancer (PCa). Here, we demonstrate that the eIF2 kinase GCN2 is required for sustained growth in androgen-sensitive and castration-resistant models of PCa both in vitro and in vivo, and is active in PCa patient samples. Using RNA-seq transcriptome analysis and a CRISPR-based phenotypic screen, GCN2 was shown to regulate expression of over 60 solute-carrier (SLC) genes, including those involved in amino acid transport and loss of GCN2 function reduces amino acid import and levels. Addition of essential amino acids or expression of 4F2 (SLC3A2) partially restored growth following loss of GCN2, suggesting that GCN2 targeting of SLC transporters is required for amino acid homeostasis needed to sustain tumor growth. A small molecule inhibitor of GCN2 showed robust in vivo efficacy in androgen-sensitive and castration-resistant mouse models of PCa, supporting its therapeutic potential for the treatment of PCa.
Collapse
Affiliation(s)
- Ricardo A Cordova
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| | - Jagannath Misra
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Parth H Amin
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Anglea J Klunk
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Nur P Damayanti
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
- Department of Neurological Surgery, Indiana University School of MedicineIndianapolisUnited States
| | - Kenneth R Carlson
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Andrew J Elmendorf
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Hyeong-Geug Kim
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Emily T Mirek
- Department of Nutritional Sciences, Rutgers UniversityNew BrunswickUnited States
| | - Bennet D Elzey
- Department of Comparative Pathology, Purdue UniversityWest LafayetteUnited States
- Department of Urology, Indiana University School of MedicineIndianapolisUnited States
| | - Marcus J Miller
- Department of Medical and Molecular Genetics, Indiana University School of MedicineIndianapolisUnited States
| | - X Charlie Dong
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
| | - Liang Cheng
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
- Department of Urology, Indiana University School of MedicineIndianapolisUnited States
- Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolisUnited States
| | - Tracy G Anthony
- Department of Nutritional Sciences, Rutgers UniversityNew BrunswickUnited States
| | - Roberto Pili
- Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| | - Kirk A Staschke
- Department of Biochemistry and Molecular Biology, Indiana University School of MedicineIndianapolisUnited States
- Indiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisUnited States
| |
Collapse
|
5
|
Chen X, Wu Y, Wang X, Xu C, Wang L, Jian J, Wu D, Wu G. CDK6 is upregulated and may be a potential therapeutic target in enzalutamide-resistant castration-resistant prostate cancer. Eur J Med Res 2022; 27:105. [PMID: 35780240 PMCID: PMC9250190 DOI: 10.1186/s40001-022-00730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 01/20/2023] Open
Abstract
Background Androgen deprivation therapy (ADT) is still the first-line treatment of prostate cancer (PCa). However, after a certain period of therapy, primary PCa inevitably progresses into castration-resistant PCa (CRPC). Enzalutamide (Enz) is an androgen receptor (AR) signal inhibitor which can delay the progression of CRPC and increase survival of patients with metastatic CRPC. However, the mechanisms involved in enzalutamide-resistant (EnzR) CRPC are still controversial. In the study, we used bioinformatic methods to find potential genes that correlated with the occurrence of EnzR CRPC. Methods We collected RNA sequencing data of the EnzR CRPC cell line LNCaP (EnzR LNCaP) from GSE44905, GSE78201, and GSE150807. We found the hub genes from the three datasets. Then we tested the expression of the hub genes in different databases and the potential drugs that can affect the hub genes. Finally, we verified the hub gene expression and drug function. Results From GSE44905, GSE78201 and GSE150807, we found 45 differentially expressed genes (DEGs) between LNCaP and EnzR LNCaP. Ten hub genes were found in the protein–protein interaction (PPI) network. The expression of hub gene and survival analysis were analyzed by different databases. We found that cyclin-dependent kinase 6 (CDK6) was highly expressed in both the EnzR LNCaP cell and PCa patients. Ten potential small molecules could suppress CDK6 expression as per “CLUE COMMAND” findings. Finally, we found the expression of CDK6 increased in both PCa patients’ samples, CRPC and EnzR PCa cell lines. Three potential CDK6 inhibitors, namely apigenin, chrysin and fisetin, can decrease cell proliferation. Conclusions The study proved that the abnormal overexpression of CDK6 may be a reason behind EnzR CRPC occurrence and suppression CDK6 expression may help treat EnzR CRPC. Supplementary Information The online version contains supplementary material available at 10.1186/s40001-022-00730-y.
Collapse
Affiliation(s)
- Xi Chen
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China
| | - Yechen Wu
- Department of Urology, Baoshan Branch, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China
| | - Licheng Wang
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China
| | - Jingang Jian
- Suzhou Medical School of Soochow University, Jiangsu, China
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China.
| | - Gang Wu
- Department of Urology, Tongji Hospital, School of Medicine,Tongji University, 389 Xincun Road, Shanghai, China.
| |
Collapse
|
6
|
Hwang JH, Arafeh R, Seo JH, Baca SC, Ludwig M, Arnoff TE, Sawyer L, Richter C, Tape S, Bergom HE, McSweeney S, Rennhack JP, Klingenberg SA, Cheung ATM, Kwon J, So J, Kregel S, Van Allen EM, Drake JM, Freedman ML, Hahn WC. CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor targeting therapies. eLife 2022; 11:73223. [PMID: 35550030 PMCID: PMC9135408 DOI: 10.7554/elife.73223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
Collapse
Affiliation(s)
- Justin H Hwang
- Masonic Cancer Center, University of Minnesota, Minneapolis, United States
| | - Rand Arafeh
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Ji-Heui Seo
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sylvan C Baca
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Megan Ludwig
- Department of Pharmacology, University of Minnesota, Minneapolis, United States
| | | | - Lydia Sawyer
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Camden Richter
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | - Sydney Tape
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Hannah E Bergom
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Sean McSweeney
- Department of Medicine, University of Minnesota, Minneapolis, United States
| | - Jonathan P Rennhack
- Department of Medical Oncology, Dana-Farber Cancer Institue, Boston, United States
| | | | | | - Jason Kwon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Jonathan So
- 1Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Steven Kregel
- Department of Cancer Biology, Loyola University Chicago, Maywood, United States
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - Justin M Drake
- Department of Pharmacology and Urology, University of Minnesota, Minneapolis, United States
| | - Matthew L Freedman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States
| |
Collapse
|
7
|
Hu H, Zhou H, Xu D. A review of the effects and molecular mechanisms of dimethylcurcumin (ASC-J9) on androgen receptor-related diseases. Chem Biol Drug Des 2021; 97:821-835. [PMID: 33277796 DOI: 10.1111/cbdd.13811] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Dimethylcurcumin (ASC-J9) is a curcumin analogue capable of inhibiting prostate cancer cell proliferation. The mechanism is associated with the unique role of ASC-J9 in enhancing androgen receptor (AR) degradation. So far, ASC-J9 has been investigated in typical AR-associated diseases such as prostate cancer, benign prostatic hypertrophy, bladder cancer, renal diseases, liver diseases, cardiovascular diseases, cutaneous wound, spinal and bulbar muscular atrophy, ovarian cancer and melanoma, exhibiting great potentials in disease control. In this review, the effects and molecular mechanisms of ASC-J9 on various AR-associated diseases are summarized. Importantly, the effects of ASC-J9 and AR antagonists enzalutamide/bicalutamide on prostate cancer are compared in detail and crucial differences are highlighted. At last, the pharmacological effects of ASC-J9 are summarized and the future applications of ASC-J9 in AR-associated disease control are discussed.
Collapse
Affiliation(s)
- Hang Hu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| | - Huan Zhou
- Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Defeng Xu
- National & Local Joint Engineering Research Center for High-efficiency Refining and High-quality Utilization of Biomass, School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China
| |
Collapse
|
8
|
Wang Y, Chen J, Wu Z, Ding W, Gao S, Gao Y, Xu C. Mechanisms of enzalutamide resistance in castration-resistant prostate cancer and therapeutic strategies to overcome it. Br J Pharmacol 2020; 178:239-261. [PMID: 33150960 DOI: 10.1111/bph.15300] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer is the second most common malignancy in men and androgen deprivation therapy is the first-line therapy. However, most cases will eventually develop castration-resistant prostate cancer after androgen deprivation therapy treatment. Enzalutamide is a second-generation androgen receptor antagonist approved by the Food and Drug Administration to treat patients with castration-resistant prostate cancer. Unfortunately, patients receiving enzalutamide treatment will ultimately develop resistance via various complicated mechanisms. This review examines the emerging information on these resistance mechanisms, including androgen receptor-related signalling pathways, glucocorticoid receptor-related pathways and metabolic effects. Notably, lineage plasticity and phenotype switching, gene polymorphisms and the relationship between microRNAs and drug resistance are addressed. Furthermore, potential therapeutic strategies for enzalutamide-resistant castration-resistant prostate cancer treatment are suggested, which can help discover more effective and specific regimens to overcome enzalutamide resistance.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiyuan Chen
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhengjie Wu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Weihong Ding
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shen Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yuan Gao
- Department of Clinical Pharmacy and Pharmaceutical Management, School of Pharmacy, Fudan University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
9
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
10
|
Hwang JH, Seo JH, Beshiri ML, Wankowicz S, Liu D, Cheung A, Li J, Qiu X, Hong AL, Botta G, Golumb L, Richter C, So J, Sandoval GJ, Giacomelli AO, Ly SH, Han C, Dai C, Pakula H, Sheahan A, Piccioni F, Gjoerup O, Loda M, Sowalsky AG, Ellis L, Long H, Root DE, Kelly K, Van Allen EM, Freedman ML, Choudhury AD, Hahn WC. CREB5 Promotes Resistance to Androgen-Receptor Antagonists and Androgen Deprivation in Prostate Cancer. Cell Rep 2019; 29:2355-2370.e6. [PMID: 31747605 PMCID: PMC6886683 DOI: 10.1016/j.celrep.2019.10.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/08/2019] [Accepted: 10/15/2019] [Indexed: 12/24/2022] Open
Abstract
Androgen-receptor (AR) inhibitors, including enzalutamide, are used for treatment of all metastatic castration-resistant prostate cancers (mCRPCs). However, some patients develop resistance or never respond. We find that the transcription factor CREB5 confers enzalutamide resistance in an open reading frame (ORF) expression screen and in tumor xenografts. CREB5 overexpression is essential for an enzalutamide-resistant patient-derived organoid. In AR-expressing prostate cancer cells, CREB5 interactions enhance AR activity at a subset of promoters and enhancers upon enzalutamide treatment, including MYC and genes involved in the cell cycle. In mCRPC, we found recurrent amplification and overexpression of CREB5. Our observations identify CREB5 as one mechanism that drives resistance to AR antagonists in prostate cancers.
Collapse
Affiliation(s)
- Justin H Hwang
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ji-Heui Seo
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stephanie Wankowicz
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Liu
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alexander Cheung
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ji Li
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Xintao Qiu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Andrew L Hong
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Ginevra Botta
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lior Golumb
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Jonathan So
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Gabriel J Sandoval
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Celine Han
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chao Dai
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Anjali Sheahan
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Ole Gjoerup
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Massimo Loda
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Leigh Ellis
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA, USA
| | - Henry Long
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - David E Root
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Matthew L Freedman
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Atish D Choudhury
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute of Harvard and MIT, Cambridge, MA, USA; Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
De Velasco MA, Kura Y, Sakai K, Hatanaka Y, Davies BR, Campbell H, Klein S, Kim Y, MacLeod AR, Sugimoto K, Yoshikawa K, Nishio K, Uemura H. Targeting castration-resistant prostate cancer with androgen receptor antisense oligonucleotide therapy. JCI Insight 2019; 4:122688. [PMID: 31484823 DOI: 10.1172/jci.insight.122688] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/01/2019] [Indexed: 12/25/2022] Open
Abstract
Sustained therapeutic responses from traditional and next-generation antiandrogen therapies remain elusive in clinical practice due to inherent and/or acquired resistance resulting in persistent androgen receptor (AR) activity. Antisense oligonucleotides (ASO) have the ability to block target gene expression and associated protein products and provide an alternate treatment strategy for castration-resistant prostate cancer (CRPC). We demonstrate the efficacy and therapeutic potential of this approach with a Generation-2.5 ASO targeting the mouse AR in genetically engineered models of prostate cancer. Furthermore, reciprocal feedback between AR and PI3K/AKT signaling was circumvented using a combination approach of AR-ASO therapy with the potent pan-AKT inhibitor, AZD5363. This treatment strategy effectively improved treatment responses and prolonged survival in a clinically relevant mouse model of advanced CRPC. Thus, our data provide preclinical evidence to support a combination strategy of next-generation ASOs targeting AR in combination with AKT inhibition as a potentially beneficial treatment approach for CRPC.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Urology and.,Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | | | - Kazuko Sakai
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | | | - Barry R Davies
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Hayley Campbell
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Stephanie Klein
- Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Youngsoo Kim
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | | | - Kazuhiro Yoshikawa
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | | |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW Prostate cancer (PCa) is diagnosed in one out of every nine men and is the second leading cause of cancer death among men. Although therapies targeting the androgen receptor (AR) are highly effective, development of resistance is universal and remains a major therapeutic challenge. Nonetheless, signaling via AR is frequently maintained despite standard androgen-signaling inhibition. We review the current understanding of mechanisms of resistance as well as therapeutic approaches to improving treatment of PCa via targeting of the AR. RECENT FINDINGS Resistance to AR-targeting therapies may be mediated by several mechanisms, including amplification, mutation, and alternative splicing of AR; intratumoral androgen synthesis; activation of alternative signaling pathways; and in a minority of cases, emergence of AR-independent phenotypes. Recent trials demonstrate that intensification of androgen blockade in metastatic castration-sensitive PCa can significantly improve survival. Similar strategies are being explored in earlier disease states. In addition, several other cellular signaling pathways have been identified as mechanisms of resistance, offering opportunities for cotargeted therapy. Finally, immune-based approaches are in development to complement AR-targeted therapies. SUMMARY Targeting the AR remains a critical focus in the treatment of PCa.
Collapse
Affiliation(s)
- David J Einstein
- Division of Medical Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Maximov PY, Abderrahman B, Curpan RF, Hawsawi YM, Fan P, Jordan VC. A unifying biology of sex steroid-induced apoptosis in prostate and breast cancers. Endocr Relat Cancer 2018; 25:R83-R113. [PMID: 29162647 PMCID: PMC5771961 DOI: 10.1530/erc-17-0416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Prostate and breast cancer are the two cancers with the highest incidence in men and women, respectively. Here, we focus on the known biology of acquired resistance to antihormone therapy of prostate and breast cancer and compare laboratory and clinical similarities in the evolution of the disease. Laboratory studies and clinical observations in prostate and breast cancer demonstrate that cell selection pathways occur during acquired resistance to antihormonal therapy. Following sex steroid deprivation, both prostate and breast cancer models show an initial increased acquired sensitivity to the growth potential of sex steroids. Subsequently, prostate and breast cancer cells either become dependent upon the antihormone treatment or grow spontaneously in the absence of hormones. Paradoxically, the physiologic sex steroids now kill a proportion of selected, but vulnerable, resistant tumor cells. The sex steroid receptor complex triggers apoptosis. We draw parallels between acquired resistance in prostate and breast cancer to sex steroid deprivation. Clinical observations and patient trials confirm the veracity of the laboratory studies. We consider therapeutic strategies to increase response rates in clinical trials of metastatic disease that can subsequently be applied as a preemptive salvage adjuvant therapy. The goal of future advances is to enhance response rates and deploy a safe strategy earlier in the treatment plan to save lives. The introduction of a simple evidence-based enhanced adjuvant therapy as a global healthcare strategy has the potential to control recurrence, reduce hospitalization, reduce healthcare costs and maintain a healthier population that contributes to society.
Collapse
Affiliation(s)
- Philipp Y Maximov
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - Balkees Abderrahman
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | | | - Yousef M Hawsawi
- Department of GeneticsKing Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Ping Fan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| | - V Craig Jordan
- Department of Breast Medical OncologyMD Anderson Cancer Centre, Houston, Texas, USA
| |
Collapse
|