1
|
Novak U, Mooyaart JE, Daskalakis M, Scheid C, Gabellier L, Yakoub-Agha I, Ram R, Forcade E, López-Corral L, Nicholson E, Galli E, Stölzel F, Bethge W, Wagner-Drouet EM, Hoogenboom JD, Mielke S, Arber C, Simonetta F, Chabannon C, Kuball J, Ruggeri A, Malard F. Choice of commercially available CAR-T cell products for r/r DLBCL & PMBCL in Europe: a survey on behalf of the cellular therapy & immunobiology working party (CTIWP) of the EBMT. Bone Marrow Transplant 2024:10.1038/s41409-024-02401-4. [PMID: 39192081 DOI: 10.1038/s41409-024-02401-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Michael Daskalakis
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ludovic Gabellier
- Hematology Department, CHU Montpellier, UMR5535, Université de Montpellier, Montpellier, France
| | | | - Ron Ram
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Lucía López-Corral
- Hospital Universitario de Salamanca (Spain), IBSAL, CIBERONC. Centro de Investigación del Cáncer-IBMCC (USAL-CSIC), Salamanca, Spain
| | | | | | | | | | | | | | | | - Caroline Arber
- Département d'Oncologie, Service d'Hématologie et Service d'Immuno-Oncologie, CHUV Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Christian Chabannon
- Institut Paoli-Calmettes Comprehensive Cancer Centre and Module Biothérapies du Centre d'Investigations Cliniques de Marseille, INSERM-Aix-Marseille Université-AP-HM-IPC, CBT-1409, Marseille, France
| | - Jürgen Kuball
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annalisa Ruggeri
- San Raffaele Scientific Institute, Hematology and Bone Marrow Transplantation Unit, Milan, Italy
| | - Florent Malard
- Sorbonne Université, Centre de Recherche Saint-Antoine INSERM UMRs938, Paris, France.
- Service d'Hématologie Clinique et de Thérapie Cellulaire, Hôpital Saint Antoine, AP-HP, Paris, France.
| |
Collapse
|
2
|
Tardif M, Usmani N, Krajinovic M, Bittencourt H. Cytokine release syndrome after CAR T-cell therapy for B-cell acute lymphoblastic leukemia in children and young adolescents: storms make trees take deeper roots. Expert Opin Pharmacother 2024; 25:1497-1506. [PMID: 39087712 DOI: 10.1080/14656566.2024.2387673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Chimeric antigen receptor (CAR) T-cells have revolutionized cancer treatment, showing significant success, including treatment of pediatric B-cell acute lymphoblastic leukemia (B-ALL). Despite their efficacy, cytokine release syndrome (CRS) emerges as a common early adverse effect that can be life threatening in severe cases, resulting from the immune system's targeted activation against tumors. AREAS COVERED This review concentrates on CRS in children and young adults undergoing CAR T-cell therapy for B-ALL. It explores CRS pathophysiology, clinical presentation, and incidence, emphasizing the importance of a consensus definition and grading to homogenize the treatment according to the severity of symptoms. We will discuss the standard of care treatment of CRS but also novel approaches. We will highlight the importance of managing CRS without compromising the efficacy of immune cell activation against tumors. EXPERT OPINION As CAR T-cell therapy in pediatric B-ALL become increasingly available and used, optimal management of CRS becomes increasingly important. Early recognition and timely management has improved. Further information will aid us to identify optimal timing of tocilizumab and corticosteroids. Continued bench research coupled with clinical studies and biomarker discovery will allow for valuable insights into CRS pathophysiology and patient and/or cell-targeted treatments.
Collapse
Affiliation(s)
- Magalie Tardif
- Hematology/Oncology Division, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Nida Usmani
- Hematology/Oncology Division, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Maja Krajinovic
- Hematology/Oncology Division, CHU Sainte-Justine, Montreal, Quebec, Canada
- Research Center - CHU Sainte-Justine, Montreal, Quebec, Canada
- School of Medicine, Université de Montreal, Montreal, Quebec, Canada
| | - Henrique Bittencourt
- Hematology/Oncology Division, CHU Sainte-Justine, Montreal, Quebec, Canada
- Research Center - CHU Sainte-Justine, Montreal, Quebec, Canada
- School of Medicine, Université de Montreal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Yu L, Zou R, He J, Qu C. Role of radiation in chimeric antigen receptor T-cell therapy for patients with relapsed/refractory non-Hodgkin lymphoma: Current studies and future prospects. Crit Rev Oncol Hematol 2024; 199:104390. [PMID: 38782146 DOI: 10.1016/j.critrevonc.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024] Open
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment approach for patients with relapsed/refractory non-Hodgkin lymphoma (R/R NHL). However, the long-term prognosis has been discouraging. Moreover, the urgent resolution of two critical issues is necessary: minimize tumor burden before CAR-T infusion and control fatal toxicities post CAR-T therapy. By combining radiotherapy (RT), the safety and efficacy of CAR-T can be improved. RT can serve as bridging therapy, reducing the tumor burden before CAR-T infusion, thus enabling safe and successful CAR-T infusion, and as salvage therapy in cases of CAR-T therapy failure. This review aims to discuss the current evidence supporting the use of RT in CAR-T therapy for patients with R/R NHL. Although most studies have shown a positive role of RT in combined modality treatments for patients undergoing CAR-T therapy, the synergy gained from these remains uncertain. Furthermore, the optimal dose/fraction and radiation response require further investigation.
Collapse
Affiliation(s)
- Lingzi Yu
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Rui Zou
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Jiajie He
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| | - Changju Qu
- Department of Hematology, the First Affiliated Hospital of Soochow University, and Jiangsu Institute of Hematology, Suzhou 215000, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215000, China; Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215000, China.
| |
Collapse
|
4
|
Evangelidis P, Evangelidis N, Kalmoukos P, Kourti M, Tragiannidis A, Gavriilaki E. Genetic Susceptibility in Endothelial Injury Syndromes after Hematopoietic Cell Transplantation and Other Cellular Therapies: Climbing a Steep Hill. Curr Issues Mol Biol 2024; 46:4787-4802. [PMID: 38785556 PMCID: PMC11119915 DOI: 10.3390/cimb46050288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) remains a cornerstone in the management of patients with hematological malignancies. Endothelial injury syndromes, such as HSCT-associated thrombotic microangiopathy (HSCT-TMA), veno-occlusive disease/sinusoidal obstruction syndrome (SOS/VOD), and capillary leak syndrome (CLS), constitute complications after HSCT. Moreover, endothelial damage is prevalent after immunotherapy with chimeric antigen receptor-T (CAR-T) and can be manifested with cytokine release syndrome (CRS) or immune effector cell-associated neurotoxicity syndrome (ICANS). Our literature review aims to investigate the genetic susceptibility in endothelial injury syndromes after HSCT and CAR-T cell therapy. Variations in complement pathway- and endothelial function-related genes have been associated with the development of HSCT-TMA. In these genes, CFHR5, CFHR1, CFHR3, CFI, ADAMTS13, CFB, C3, C4, C5, and MASP1 are included. Thus, patients with these variations might have a predisposition to complement activation, which is also exaggerated by other factors (such as acute graft-versus-host disease, infections, and calcineurin inhibitors). Few studies have examined the genetic susceptibility to SOS/VOD syndrome, and the implicated genes include CFH, methylenetetrahydrofolate reductase, and heparinase. Finally, specific mutations have been associated with the onset of CRS (PFKFB4, CX3CR1) and ICANS (PPM1D, DNMT3A, TE2, ASXL1). More research is essential in this field to achieve better outcomes for our patients.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Nikolaos Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Panagiotis Kalmoukos
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| | - Maria Kourti
- 3rd Department of Pediatrics, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Athanasios Tragiannidis
- 2nd Department of Pediatrics, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (N.E.); (P.K.)
| |
Collapse
|
5
|
Li N, Zhang R, Wang J, Zhu X, Meng F, Cao Y, Wang G, Yang Y. Case report: Acute HHV6B encephalitis/myelitis post CAR-T cell therapy in patients with relapsed/refractory aggressive B-cell lymphoma. Front Neurol 2024; 15:1334000. [PMID: 38487325 PMCID: PMC10937551 DOI: 10.3389/fneur.2024.1334000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
Background The development of chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment outcomes in patients with lymphoid malignancies. However, several studies have reported a relatively high rate of infection in adult patients following CD19-targeting CAR T-cell therapy, particularly in the first 28 days. Notably, acute human herpesvirus 6 B (HHV6B) reactivation occurs in up to two-thirds of allogeneic hematopoietic stem cell transplantation patients. Case presentations Herein, we describe a report of HHV6B encephalitis/myelitis in three patients with relapsed/refractory diffuse large B-cell lymphoma post CAR T-cell therapy. All three patients received multiple lines of prior treatment (range: 2-9 lines). All patients presented with fever that persisted for at least 2 weeks after CAR-T cell infusion (CTI). Both the onset time and duration were similar to those of the cytokine release syndrome (CRS); nevertheless, the CRS grades of the patients were low (grade 1 or 2). Delirium and memory loss after CTI were the earliest notable mental presentations. Neurological manifestations progressed rapidly, with patients experiencing varying degrees of impaired consciousness, seizures, and coma. Back pain, lumbago, lower limb weakness and uroschesis were also observed in Patient 3, indicating myelitis. High HHV6B loads were detected in all Cerebral spinal fluid (CSF) samples using metagenomic next-generation sequencing (mNGS). Only one patient required high-activity antivirals and IgG intravenous pulse treatment finally recovered, whereas the other two patients died from HHV6B encephalitis. Conclusion Considering its fatal potential, HHV6B encephalitis/myelitis should be urgently diagnosed post CAR-T cell-based therapy. Furthermore, hematologists should differentially diagnose these conditions from CRS or other immunotherapy-related neurotoxicities as early as possible. The results of this study demonstrate the potential of mNGS in the early diagnosis of HHV6B infection, particularly when the organism is difficult to culture.
Collapse
Affiliation(s)
- Ningwen Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Ruoxuan Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Fankai Meng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Gaoxiang Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| | - Yang Yang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Immunotherapy Research Center for Hematologic Diseases of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
6
|
Patel R, Patel M, Laxmidhar F, Lakhatariya K, Patel D, Patel Z, Shaikh S. Cytokine Release Syndrome in Patients Treated With Chimeric Antigen Receptor T-cell Therapy: A Retrospective Study Analyzing Risks, Outcomes, and Healthcare Burden. Cureus 2023; 15:e49452. [PMID: 38152777 PMCID: PMC10751860 DOI: 10.7759/cureus.49452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Background Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a promising immunotherapy for various malignancies. However, its use is associated with challenges, including cytokine release syndrome (CRS), a potentially severe complication. This retrospective study aims to analyze the risks, outcomes, and healthcare burden of CRS in patients undergoing CAR-T therapy. Method Data from the 2020 National Inpatient Sample (NIS) were utilized, comprising 415 CAR-T-related hospitalizations. They were categorized into those with CRS (n = 68) and those without CRS (n = 347). Baseline characteristics, including age, gender, race, income, insurance status, and comorbidities, were compared. Outcomes of interest included in-hospital mortality, length of stay (LOS), total hospital charges, and access to complications, associations, and interventions. Statistical analyses, including multivariable models, were employed to assess associations. Results Hospitalizations with CRS did not exhibit significant differences in age, gender, race, income, or insurance status compared to those without CRS. The multivariable analysis showed no statistically significant difference in mortality (adjusted odds ratio (aOR) = 2.48, 95% confidence interval (CI): 0.71 to 8.69, p = 0.151), LOS (coefficient = -2.1 days, 95% CI: -5.43 to 1.21, p = 0.207), or total hospital charges (coefficient = $207,456, 95% CI: $6119 to $421,031, p = 0.057) between the two groups. The CRS group had a higher incidence of fever (aOR = 1.91, 95% CI: 1.15 to 3.17, p = 0.014), acute respiratory failure (aOR = 2.10, 95% CI: 1.01 to 4.40, p= 0.049), and the need for intubation/mechanical ventilation (aOR = 2.59, 95% CI: 1.14 to 5.88, p = 0.024). Hemophagocytic lymphohistiocytosis (HLH) was significantly associated with CRS (aOR = 6.72, 95% CI: 2.03 to 22.18, p = 0.002). Conclusion While the development of CRS in CAR-T-treated patients did not significantly increase mortality, LOS, or total hospital charges, it was associated with specific risks and outcomes, including fever, respiratory failure, and HLH. This study emphasizes the importance of vigilance in recognizing and managing CRS in CAR-T therapy to optimize patient outcomes. The findings contribute valuable insights to guide clinical decision-making in the context of CAR-T therapy.
Collapse
Affiliation(s)
- Rushin Patel
- Internal Medicine, Community Hospital of San Bernardino, San Bernardino, USA
| | - Mrunal Patel
- Internal Medicine, Trumbull Regional Medical Center, Niles, USA
| | | | | | - Darshil Patel
- Clinical Research, Rush University Medical Center, Chicago, USA
| | - Zalak Patel
- Internal Medicine, University of California Riverside School of Medicine, Riverside, USA
| | - Safia Shaikh
- Internal Medicine, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
7
|
Abramson HN. Immunotherapy of Multiple Myeloma: Current Status as Prologue to the Future. Int J Mol Sci 2023; 24:15674. [PMID: 37958658 PMCID: PMC10649824 DOI: 10.3390/ijms242115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The landscape of therapeutic measures to treat multiple myeloma has undergone a seismic shift since the dawn of the current century. This has been driven largely by the introduction of new classes of small molecules, such as proteasome blockers (e.g., bortezomib) and immunomodulators (e.g., lenalidomide), as well as by immunotherapeutic agents starting with the anti-CD38 monoclonal antibody daratumumab in 2015. Recently, other immunotherapies have been added to the armamentarium of drugs available to fight this malignancy. These include the bispecifics teclistamab, talquetamab, and elranatamab, and the chimeric antigen receptor (CAR) T-cell products idecabtagene vicleucel (ide-cel) and ciltacabtagene autoleucel (cilta-cel). While the accumulated benefits of these newer agents have resulted in a more than doubling of the disease's five-year survival rate to nearly 60% and improved quality of life, the disease remains incurable, as patients become refractory to the drugs and experience relapse. This review covers the current scope of antimyeloma immunotherapeutic agents, both those in clinical use and in development. Included in the discussion are additional monoclonal antibodies (mAbs), antibody-drug conjugates (ADCs), bi- and multitargeted mAbs, and CAR T-cells and emerging natural killer (NK) cells, including products intended for "off-the-shelf" (allogeneic) applications. Emphasis is placed on the benefits of each along with the challenges that need to be surmounted if MM is to be cured.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Salem AM, Mugundu GM, Singh AP. Development of a multiscale mechanistic modeling framework integrating differential cellular kinetics of CAR T-cell subsets and immunophenotypes in cancer patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:1285-1304. [PMID: 37448297 PMCID: PMC10508581 DOI: 10.1002/psp4.13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell subsets and immunophenotypic composition of the pre-infusion product, as well as their longitudinal changes following infusion, are expected to affect CAR T-cell expansion, persistence, and clinical outcomes. Herein, we sequentially evolved our previously described cellular kinetic-pharmacodynamic (CK-PD) model to incorporate CAR T-cell product-associated attributes by utilizing published preclinical and clinical datasets from two affinity variants (FMC63 and CAT19 scFv) anti-CD19 CAR T-cells. In step 1, a unified cell-level PD model was used to simultaneously characterize the in vitro killing datasets of two CAR T-cells against CD19+ cell lines at varying effector:target ratios. In step 2, an augmented CK-PD model for anti-CD19 CAR T-cells was developed, by integrating CK dataset(s) from two bioanalytical measurements (quantitative polymerase chain reaction and flow cytometry) in patients with cancer. The model described the differential in vivo expansion properties of CAR T-cell subsets. The estimated expansion rate constant was ~1.12-fold higher for CAR+CD8+ cells in comparison to CAR+CD4+ T-cells. In step 3, the model was extended to characterize the disposition of four immunophenotypic populations of CAR T-cells, including stem-cell memory, central memory, effector memory, and effector cells. The model adequately characterized the longitudinal changes in immunophenotypes post anti-CD19 CAR T-cell infusion in pediatric patients with acute lymphocytic leukemia. Polyclonality in the pre-infusion product was identified as a categorical covariate influencing differentiation of immunophenotypes. In the future, this model could be leveraged a priori toward optimizing the composition of CAR T-cell infusion product, and further understand the CK-PD relationship in patients.
Collapse
Affiliation(s)
- Ahmed M. Salem
- Clinical Pharmacology and Modeling, Precision and Translational MedicineOncology Cell Therapy and Therapeutic Area Unit, Takeda PharmaceuticalsCambridgeMassachusettsUSA
- Center for Translational MedicineUniversity of Maryland School of PharmacyBaltimoreMarylandUSA
| | - Ganesh M. Mugundu
- Clinical Pharmacology and Modeling, Precision and Translational MedicineOncology Cell Therapy and Therapeutic Area Unit, Takeda PharmaceuticalsCambridgeMassachusettsUSA
| | - Aman P. Singh
- Clinical Pharmacology and Modeling, Precision and Translational MedicineOncology Cell Therapy and Therapeutic Area Unit, Takeda PharmaceuticalsCambridgeMassachusettsUSA
| |
Collapse
|
9
|
Breen WG, Young JR, Hathcock MA, Kowalchuk RO, Thorpe MP, Bansal R, Khurana A, Bennani NN, Paludo J, Bisneto JV, Wang Y, Ansell SM, Peterson JL, Johnston PB, Lester SC, Lin Y. Metabolic PET/CT analysis of aggressive Non-Hodgkin lymphoma prior to Axicabtagene Ciloleucel CAR-T infusion: predictors of progressive disease, survival, and toxicity. Blood Cancer J 2023; 13:127. [PMID: 37591834 PMCID: PMC10435575 DOI: 10.1038/s41408-023-00895-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
PET/CT is used to evaluate relapsed/refractory non-Hodgkin lymphoma (NHL) prior to chimeric antigen receptor T-cell (CAR-T) infusion at two time points: pre-leukapheresis (pre-leuk) and pre-lymphodepletion chemotherapy (pre-LD). We hypothesized that changes in PET/CT between these time points predict outcomes after CAR-T. Metabolic tumor volume (MTV), total lesion glycolysis (TLG), and other metrics were calculated from pre-leuk and pre-LD PET/CT scans in patients with NHL who received axicabtagene ciloleucel, and assessed for association with outcomes. Sixty-nine patients were analyzed. While single time point PET/CT characteristics were not associated with risk of PD or death, increases from pre-leuk to pre-LD in parenchymal MTV, nodal MTV, TLG of the largest lesion, and total number of lesions were associated with increased risk of death (p < 0.05 for all). LASSO analysis identified increasing extranodal MTV and increasing TLG of the largest lesion as strong predictors of death (AUC 0.74). Greater pre-LD total MTV was associated with higher risk of grade 3+ immune effector cell-associated neurotoxicity syndrome (ICANS) (p = 0.042). Increasing metabolic disease burden during CAR-T manufacturing is associated with increased risk of progression and death. A two variable risk score stratifies prognosis prior to CAR-T infusion and may inform risk-adapted strategies.
Collapse
Affiliation(s)
- William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Jason R Young
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Matthew A Hathcock
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | | | | | - Radhika Bansal
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arushi Khurana
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - N Nora Bennani
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jonas Paludo
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Yucai Wang
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Stephen M Ansell
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Patrick B Johnston
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Scott C Lester
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Lin
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Barreira M, Kerridge C, Jorda S, Olofsson D, Neumann A, Horton H, Smith-Moore S. Enzymatically amplified linear dbDNA TM as a rapid and scalable solution to industrial lentiviral vector manufacturing. Gene Ther 2023; 30:122-131. [PMID: 35606492 PMCID: PMC9935383 DOI: 10.1038/s41434-022-00343-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/09/2022]
Abstract
Traditional bacterial fermentation techniques used to manufacture plasmid are time-consuming, expensive, and inherently unstable. The production of sufficient GMP grade material thus imposes a major bottleneck on industrial-scale manufacturing of lentiviral vectors (LVV). Touchlight's linear doggybone DNA (dbDNATM) is an enzymatically amplified DNA vector produced with exceptional speed through an in vitro dual enzyme process, enabling industrial-scale manufacturing of GMP material in a fraction of the time required for plasmid. We have previously shown that dbDNATM can be used to produce functional LVV; however, obtaining high LVV titres remained a challenge. Here, we aimed to demonstrate that dbDNATM could be optimised for the manufacture of high titre LVV. We found that dbDNATM displayed a unique transfection and expression profile in the context of LVV production, which necessitated the optimisation of DNA input and construct ratios. Furthermore, we demonstrate that efficient 3' end processing of viral genomic RNA (vgRNA) derived from linear dbDNATM transfer vectors required the addition of a strong 3' termination signal and downstream spacer sequence to enable efficient vgRNA packaging. Using these improved vector architectures along with optimised transfection conditions, we were able to produce a CAR19h28z LVV with equivalent infectious titres as achieved using plasmid, demonstrating that dbDNATM technology can provide a highly effective solution to the plasmid bottleneck.
Collapse
Affiliation(s)
- Maria Barreira
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom.,Cell and Gene Therapy Catapult, Guy's Hospital, London, SE1 9RT, United Kingdom
| | | | - Sara Jorda
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom.,Medical Research Institute La Fe, 46026, Valencia, Spain
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195, Berlin, Germany
| | - Alexander Neumann
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195, Berlin, Germany
| | - Helen Horton
- Touchlight Genetics Ltd, Hampton, TW12 2ER, United Kingdom
| | | |
Collapse
|
11
|
von Matt S, Bacher U, Banz Y, Taleghani BM, Novak U, Pabst T. Outcome of Patients with Diffuse Large B-Cell Lymphoma Relapsing after Autologous Transplant before Availability of CAR-T Cell Treatment. Mediterr J Hematol Infect Dis 2023; 15:e2023025. [PMID: 37180203 PMCID: PMC10171206 DOI: 10.4084/mjhid.2023.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Autologous stem cell transplantation (ASCT) following high-dose chemotherapy is applied as salvage therapy in patients with relapsed disease or as first-line consolidation in high-risk DLBCL with chemo-sensitive disease. However, the prognosis of relapsing DLBCL post-ASCT remained poor until the availability of CAR-T cell treatment. To appreciate this development, understanding the outcome of these patients in the pre-CAR-T era is essential. Methods We retrospectively analyzed 125 consecutive DLBCL patients who underwent HDCT/ASCT. Results After a median follow-up of 26 months, OS and PFS were 65% and 55%. Fifty-three patients (42%) had a relapse (32 patients, 60%) or refractory disease (21 patients, 40%) after a median of 3 months post-ASCT. 81% of relapses occurred within the first year post-ASCT with an OS of 19% versus 40% at the last follow-up in patients with later relapses (p=0.0022). Patients with r/r disease after ASCT had inferior OS compared to patients in ongoing remission (23% versus 96%; p<0.0001). Patients relapsing post-ASCT without salvage therapy (n=22) had worse OS than patients with 1-4 subsequent treatment lines (n=31) (OS 0% versus 39%; median OS 3 versus 25 months; p<0.0001). Forty-one (77%) of patients relapsing after ASCT died, 35 of which due to progression. Conclusions Additional therapies can extend OS but mostly cannot prevent death in DLBCL relapsing/refractory post-ASCT. This study may serve as a reference to emerging results after CAR-T treatment in this population.
Collapse
Affiliation(s)
- Stefanie von Matt
- Department of Medical Oncology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology and Central Hematology Laboratory; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Behrouz Mansouri Taleghani
- Department of Hematology and Central Hematology Laboratory; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology; Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
12
|
Wen H, Lou X, Qu Z, Qin C, Jiang H, Yang Y, Kang L, Geng X, Yu L, Huang Y. Pre-clinical efficacy of CD20-targeted chimeric antigen receptor T cells for non-Hodgkin's lymphoma. Discov Oncol 2022; 13:122. [PMID: 36352168 PMCID: PMC9646688 DOI: 10.1007/s12672-022-00588-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND A 4-1BB/CD3-ζ-costimulated CAR-T against CD20 (CAR-T20) was subjected to a systemic efficacy evaluation in a cell co-culture model, and NOD-SCID IL-2 receptor gamma null mice (short for NSG mice) were xenografted with human Burkitt's lymphoma Raji cells. METHODS CAR-T20 cells were incubated with target cells (K562, K562 CD20 or Raji cells) at ratios of 10:1 and 5:1 for 24 h, and the killing rate was estimated by an LDH cytotoxicity assay. To evaluate the effect of CAR-T20 on the survival time of tumor-bearing animals, 30 NSG mice were employed, and Raji-Luc cells (5 × 105 cells per mouse) were administered prior to CAR-T20 administration. The survival time, optical intensity of Raji-Luc cells, clinical symptoms, and body mass of the animals were observed. Another 144 male NSG mice were employed to investigate the proliferation and antitumor effects of CAR-T20. Human cytokine and murine cytokines were detected at 1, 7, 14, 21, 28, 42, 56 and 90 days post-CAR-T administration, while biochemistry index analysis, T-cell and CAR-T-cell detection in peripheral blood, and histopathological examination were performed at 14, 28, 56 and 90 days post-administration. RESULTS CAR-T20 cells had a specific killing effect on CD20-expressing cells in vitro. At a dose of 1 × 106 per mouse or above, CAR-T20 prolonged the median survival time from 14 days to more than 3 months, inhibited the proliferation of Raji cells in mice, and alleviated the clinical manifestations and weight loss caused by the Raji-Luc cell load. CAR-T20 at a dose of 2 × 106 per mouse or above inhibited the proliferation of Raji cells in mice for up to 111 days post-administration without recurrence. The numbers of T cells and CAR-T cells in the animals administered CAR-T20 increased significantly when Raji cells were markedly proliferated and subsequently decreased when Raji cells were predominantly inhibited. CAR-T20 increased human IFN-γ, murine TNF and murine IL-6 levels and decreased human IL-10 levels in tumor-bearing mice. The incidences of xenografted tumors in organs/tissues were also reduced effectively by CAR-T20. CONCLUSION The effective dose of CAR-T20 in mice starts from 1 × 106 per mouse, equivalent to a clinical dose of 5 × 106/kg. Together, our data support the clinical translation of CAR-T20 for R/R B-cell NHL patients.
Collapse
Affiliation(s)
- Hairuo Wen
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Xiaoyan Lou
- Shanghai Unicar-Therapy Bio-Medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, People's Republic of China
| | - Zhe Qu
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Chao Qin
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Hua Jiang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Ying Yang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Liqing Kang
- Shanghai Unicar-Therapy Bio-Medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, People's Republic of China
| | - Xingchao Geng
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China
| | - Lei Yu
- Shanghai Unicar-Therapy Bio-Medicine Technology Co., Ltd, No 1525 Minqiang Road, Shanghai, People's Republic of China.
| | - Ying Huang
- Key Laboratory of Beijing for Safety Evaluation of Drugs, National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, Beijing, 100176, People's Republic of China.
| |
Collapse
|
13
|
Palomba ML, Till BG, Park SI, Morschhauser F, Cartron G, Marks R, Shivhare M, Hong WJ, Raval A, Chang AC, Penuel E, Popplewell LL. Combination of Atezolizumab and Obinutuzumab in Patients with Relapsed/Refractory Follicular Lymphoma and Diffuse Large B-Cell Lymphoma: Results from a Phase 1b Study. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:e443-e451. [PMID: 35031227 DOI: 10.1016/j.clml.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND This was an open-label, phase 1b study assessing the safety, tolerability, preliminary efficacy and pharmacokinetics of the combination of atezolizumab and obinutuzumab in patients with relapsed/refractory follicular lymphoma (FL) or diffuse large B-cell lymphoma (DLBCL). There is a mechanistic rationale suggesting that this combination may enhance recruitment of both innate and adaptive immunity and be effective against CD20+ B-cell malignancies. MATERIALS AND METHODS The study consisted of a safety evaluation stage and an expansion stage. Patients received obinutuzumab 1000 mg intravenously (IV) in cycle (C) 1, obinutuzumab plus atezolizumab 1200 mg IV for C2-8, and atezolizumab only from C9. Primary endpoints were to identify a recommended phase 2 dose (RP2D) for atezolizumab, and safety and tolerability in the safety and expansion stages. RESULTS A total of 49 patients were enrolled (FL, n = 26; DLBCL, n = 23), with a median of 2 prior lines of treatment. The RP2D for atezolizumab was 1200 mg IV every 3 weeks. Adverse events reported in ≥ 20% of patients were fatigue (15 patients [31%]), nausea (13 patients [27%]), cough, and diarrhea (10 patients [20%] each). Objective response rate was 54% in the FL cohort (complete response [CR] rate: 23%) and 17% in the DLBCL cohort (CR: 4%). Median progression-free survival was 9 months for FL and 3 months for DLBCL. Median overall survival was not estimable for FL and 9 months for DLBCL. CONCLUSION The combination of obinutuzumab and atezolizumab was determined to be safe and tolerable, with no new toxicities observed.
Collapse
Affiliation(s)
- M Lia Palomba
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Brian G Till
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, Seattle, WA
| | | | - Franck Morschhauser
- Department of Clinical Hematology, Lille University Hospital Center, Lille, France
| | - Guillaume Cartron
- Department of Clinical Hematology, University Hospital Center of Montpellier, Montpellier, France
| | - Reinhard Marks
- Department of Hematology, Oncology and Stem Cell Transplantation, Universitätsklinikum Freiburg, Freiburg, Germany
| | | | - Wan-Jen Hong
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - Aparna Raval
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Alice C Chang
- Product Development Oncology, Genentech, Inc., South San Francisco, CA
| | - Elicia Penuel
- Oncology Biomarker Development, Genentech, Inc., South San Francisco, CA
| | - Leslie L Popplewell
- Lymphoma Division, Department of Hematology and Hematopoitic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
14
|
Hoogland AI, Barata A, Logue J, Kommalapati A, Hyland KA, Nelson AM, Eisel SL, Small BJ, James BW, Christy SM, Bulls HW, Booth-Jones M, Jayani RV, Jain MD, Mokhtari S, Chavez JC, Lazaryan A, Shah BD, Locke FL, Jim HS. Change in Neurocognitive Performance Among Patients with Non-Hodgkin Lymphoma in the First Year after Chimeric Antigen Receptor T Cell Therapy. Transplant Cell Ther 2022; 28:305.e1-305.e9. [PMID: 35378330 PMCID: PMC9197947 DOI: 10.1016/j.jtct.2022.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/31/2023]
Abstract
The success of chimeric antigen receptor (CAR) T cell therapy in treating patients with relapsed/refractory hematologic malignancies is leading to a growing number of survivors treated with this regimen. To our knowledge, no previous studies have examined neurocognitive performance in adult CAR T cell therapy recipients, despite high rates of neurotoxicity and cytokine release syndrome (CRS) in the acute treatment period. This study examined changes in neurocognitive performance in the first year after CAR T cell therapy for non-Hodgkin lymphoma (NHL). Putative risk factors for worsening neurocognitive performance (eg, neurotoxicity, CRS) were explored as well. Neurocognition was assessed before initiation of CAR T cell therapy and at 30, 90, and 360 days post-treatment. Clinical variables were abstracted from medical records. Mixed models were used to examine change in total neurocognitive performance (TNP) and cognitive domains (ie, attention, executive function, verbal ability, immediate and delayed memory, and visuospatial abilities). Among 117 participants (mean age, 61 years; 62% male), TNP and executive function declined slightly on average from baseline to day 90 and then improved from day 90 to day 360 (P < .04). Small but significant linear declines in visuospatial ability on average were also observed over time (P = .03). Patients who had 4 or more lines of previous therapy and those with worse neurotoxicity (but not CRS) demonstrated worse TNP. CAR T cell therapy recipients reported transient or persistent deterioration in several cognitive domains, although changes were slight. These findings may be useful when educating future patients on what to expect when receiving CAR T cell therapy.
Collapse
Affiliation(s)
- Aasha I. Hoogland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Anna Barata
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Jennifer Logue
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Anuhya Kommalapati
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Kelly A. Hyland
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Ashley M. Nelson
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Sarah L. Eisel
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Brent J. Small
- School of Aging Studies, University of South Florida, Tampa, FL
| | - Brian W. James
- Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Shannon M. Christy
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | - Hailey W. Bulls
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| | | | - Reena V. Jayani
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Michael D. Jain
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | | | - Julio C. Chavez
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Aleksandr Lazaryan
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Bijal D. Shah
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Frederick L. Locke
- Department of Blood and Marrow Transplantation and Cellular Therapy, Moffitt Cancer Center, Tampa, FL
| | - Heather S.L. Jim
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
15
|
Abstract
Genetic modification of T cells to express chimeric antigen receptors (CARs) has yielded remarkable clinical outcomes and initiated a novel era for cancer immunotherapy. The impressive clinical responses seen in hematologic malignancies have led to the investigation of CAR T cells in solid tumors but attaining similar results has been challenging to date. Glioblastoma (GBM) presents a particularly challenging malignancy for treatment and despite some progress in treatments over the past decade, prognosis remains poor for the vast majority of patients. However, recent data support the clinical efficacy and safety of CAR T cell therapy in GBM. In this review, common challenges associated with treating GBM will be discussed in addition to how CAR T cells can overcome such barriers. Additionally, emerging techniques of optimizing CAR T cell therapy for GBM will be emphasized, highlighting the prospective promise of cellular immunotherapy.
Collapse
|
16
|
Novel insights in CAR-NK cells beyond CAR-T cell technology; promising advantages. Int Immunopharmacol 2022; 106:108587. [PMID: 35149294 DOI: 10.1016/j.intimp.2022.108587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/08/2023]
Abstract
CAR-T (chimeric antigen receptor T cell) technology, which has recently showed successful results in the treatment of hematological tumors, has been the focus of attention as one of the most potent approaches in tumor immunotherapy. However, side effects and limitations of this application, such as the risk of graft versus host disease (GvHD), make it challenging to be as accessible as other treatments. Natural killer cells (NK) could be transplanted without alloreactivity, making them as an off-the-shelf product. CAR-NK (chimeric antigen receptor NK cell) therapy can circumvent some serious limitations of CAR-T cell therapy. Application of CAR-NK cells have some considerable advantages over CAR-T cells. These include lack of cytokine release syndrome (CRS), neurotoxicity, and GvHD when using allogenic CAR-T cell. These features lessen the risk of tumor antigen loss and disease relapse. Moreover, NK cells which were derived from different sources, can make the CAR therapy more feasible. In this narrative review, we outlined the key features of CAR-NK cells as an alternative to CAR-T cell therapy in cancer immunotherapy and highlighted the main advantages.
Collapse
|
17
|
Treatments on the Horizon: Breast Cancer Patients with Central Nervous System Metastases. Curr Oncol Rep 2022; 24:343-350. [PMID: 35138599 DOI: 10.1007/s11912-022-01206-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW The goal of this paper is to provide a review on the current emerging management strategies as described in the literature pertaining to breast cancer and central nervous system metastases. As systemic oncology treatments evolve, so are new approaches to the management of central nervous system metastases from breast cancer. RECENT FINDINGS In this review, we describe how novel treatment strategies have evolved from standard chemotherapy to more targeted approaches, innovative drug delivery methodologies, immunotherapeutics, and radiotherapeutic approaches. We describe innovative treatment strategies on the horizon for breast cancer and central nervous metastases. Future therapeutics may be better able to penetrate through the blood-brain-barrier bypassing limitations from standard therapies. These pioneering strategies will hopefully improve patients' quality of life as well as survival.
Collapse
|
18
|
Meeuwsen MH, Wouters AK, Jahn L, Hagedoorn RS, Kester MG, Remst DF, Morton LT, van der Steen DM, Kweekel C, de Ru AH, Griffioen M, van Veelen PA, Falkenburg JF, Heemskerk MH. A broad and systematic approach to identify B cell malignancy-targeting TCRs for multi-antigen-based T cell therapy. Mol Ther 2022; 30:564-578. [PMID: 34371177 PMCID: PMC8821929 DOI: 10.1016/j.ymthe.2021.08.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 07/20/2021] [Indexed: 02/04/2023] Open
Abstract
CAR T cell therapy has shown great promise for the treatment of B cell malignancies. However, antigen-negative escape variants often cause disease relapse, necessitating the development of multi-antigen-targeting approaches. We propose that a T cell receptor (TCR)-based strategy would increase the number of potential antigenic targets, as peptides from both intracellular and extracellular proteins can be recognized. Here, we aimed to isolate a broad range of promising TCRs targeting multiple antigens for treatment of B cell malignancies. As a first step, 28 target genes for B cell malignancies were selected based on gene expression profiles. Twenty target peptides presented in human leukocyte antigen (HLA)-A∗01:01, -A∗24:02, -B∗08:01, or -B∗35:01 were identified from the immunopeptidome of B cell malignancies and used to form peptide-HLA (pHLA)-tetramers for T cell isolation. Target-peptide-specific CD8 T cells were isolated from HLA-mismatched healthy donors and subjected to a stringent stepwise selection procedure to ensure potency and eliminate cross-reactivity. In total, five T cell clones specific for FCRL5 in HLA-A∗01:01, VPREB3 in HLA-A∗24:02, and BOB1 in HLA-B∗35:01 recognized B cell malignancies. For all three specificities, TCR gene transfer into CD8 T cells resulted in cytokine production and efficient killing of multiple B cell malignancies. In conclusion, using this systematic approach we successfully identified three promising TCRs for T cell therapy against B cell malignancies.
Collapse
Affiliation(s)
- Miranda H. Meeuwsen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Miranda H. Meeuwsen, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Lorenz Jahn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Department of Immunology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Michel G.D. Kester
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Dirk M. van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Christiaan Kweekel
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Arnoud H. de Ru
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Peter A. van Veelen
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
19
|
The Implementation of TNFRSF Co-Stimulatory Domains in CAR-T Cells for Optimal Functional Activity. Cancers (Basel) 2022; 14:cancers14020299. [PMID: 35053463 PMCID: PMC8773791 DOI: 10.3390/cancers14020299] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/31/2023] Open
Abstract
The Tumor Necrosis Factor Receptor Superfamily (TNFRSF) is a large and important immunoregulatory family that provides crucial co-stimulatory signals to many if not all immune effector cells. Each co-stimulatory TNFRSF member has a distinct expression profile and a unique functional impact on various types of cells and at different stages of the immune response. Correspondingly, exploiting TNFRSF-mediated signaling for cancer immunotherapy has been a major field of interest, with various therapeutic TNFRSF-exploiting anti-cancer approaches such as 4-1BB and CD27 agonistic antibodies being evaluated (pre)clinically. A further application of TNFRSF signaling is the incorporation of the intracellular co-stimulatory domain of a TNFRSF into so-called Chimeric Antigen Receptor (CAR) constructs for CAR-T cell therapy, the most prominent example of which is the 4-1BB co-stimulatory domain included in the clinically approved product Kymriah. In fact, CAR-T cell function can be clearly influenced by the unique co-stimulatory features of members of the TNFRSF. Here, we review a select group of TNFRSF members (4-1BB, OX40, CD27, CD40, HVEM, and GITR) that have gained prominence as co-stimulatory domains in CAR-T cell therapy and illustrate the unique features that each confers to CAR-T cells.
Collapse
|
20
|
Harnessing Antitumor CD4 + T Cells for Cancer Immunotherapy. Cancers (Basel) 2022; 14:cancers14010260. [PMID: 35008422 PMCID: PMC8750687 DOI: 10.3390/cancers14010260] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/22/2021] [Accepted: 12/31/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Diverse evidence revealed that CD4+ T cells play an important role in antitumor immunity by promoting or suppressing cytotoxic T cell responses. This review outlines the role of CD4+ T subsets within the tumor microenvironment and summarizes the latest progress regarding their potentials in cancer immunotherapy and methods for improving outcomes in cancer strategies by modulating CD4+ T responses. Abstract Over the past decades, CD4+ T cells have been considered as a supporting actor in the fields of cancer immunotherapy. Until recently, accumulating evidence has demonstrated the critical role of CD4+ T cells during antitumor immunity. CD4+ T cells can either suppress or promote the antitumor cytotoxic CD8+ T cell responses, either in secondary lymphoid organs or in the tumor. In this review, we provide an overview of the multifaceted role of different CD4+ T cell subsets in cancer immune response and their contribution during cancer therapies. Specifically, we focus on the latest progress regarding the impact of CD4+ T cell modulation on immunotherapies and other cancer therapies and discuss the prospect for harnessing CD4+ T cells to control tumor progression and prevent recurrence in patients.
Collapse
|
21
|
Using chimeric antigen receptor T-cell therapy to fight glioblastoma multiforme: past, present and future developments. J Neurooncol 2021; 156:81-96. [PMID: 34825292 PMCID: PMC8714623 DOI: 10.1007/s11060-021-03902-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022]
Abstract
Introduction Glioblastoma multiforme (GBM) constitutes one of the deadliest tumors to afflict humans, although it is still considered an orphan disease. Despite testing multiple new and innovative therapies in ongoing clinical trials, the median survival for this type of malignancy is less than two years after initial diagnosis, regardless of therapy. One class of promising new therapies are chimeric antigen receptor T cells or CAR-T which have been shown to be very effective at treating refractory liquid tumors such as B-cell malignancies. However, CAR-T effectivity against solid tumors such as GBM has been limited thus far. Methods A Pubmed, Google Scholar, Directory of Open Access Journals, and Web of Science literature search using the terms chimeric antigen receptor or CAR-T, GBM, solid tumor immunotherapy, immunotherapy, and CAR-T combination was performed for publication dates between January 1987 and November 2021. Results In the current review, we present a comprehensive list of CAR-T cells developed to treat GBM, we describe new possible T-cell engineering strategies against GBM while presenting a short introductory history to the reader regarding the origin(s) of this cutting-edge therapy. We have also compiled a unique list of anti-GBM CAR-Ts with their specific protein sequences and their functions as well as an inventory of clinical trials involving CAR-T and GBM. Conclusions The aim of this review is to introduce the reader to the field of T-cell engineering using CAR-Ts to treat GBM and describe the obstacles that may need to be addressed in order to significantly delay the relentless growth of GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03902-8.
Collapse
|
22
|
Mathys A, Bacher U, Banz Y, Legros M, Mansouri Taleghani B, Novak U, Pabst T. Outcome of patients with mantle cell lymphoma after autologous stem cell transplantation in the pre-CAR T-cell era. Hematol Oncol 2021; 40:292-296. [PMID: 34817087 DOI: 10.1002/hon.2952] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mantle cell lymphoma (MCL) patients can be treated with intensive induction therapy, followed by high dose chemotherapy (HDCT) with autologous stem cell transplantation (ASCT) for consolidation and subsequent anti-CD20 maintenance. For patients relapsing after bruton tyrosine kinase (BTK) inhibitors, CAR T-cell therapy became available in late 2020 fueling the interest in outcomes of relapsing MCL patients. We retrospectively analyzed the outcome of MCL patients receiving HDCT/ASCT at our center between 2000 and 2021, thus, before availability of CAR-T cells. We identified 97 MCL patients undergoing HDCT/ASCT in this period with a median follow-up of 52 months. 43 (44%) patients ultimately relapsed, and 29 (30%) have died. The median progression-free survival (PFS) for the entire cohort was 48 months and overall survival (OS) was 202 months. Relapsing patients had a median PFS of only 28 months and median OS of 105 months. The OS of relapsing patients receiving BTK inhibitors was 148 versus 78 months in patients who never received BTK inhibitors (p = 0.1175). Even after HDCT/ASCT, a substantial proportion of MCL patients will relapse and ultimately die of the disease, emphasizing the need for new therapeutic options including CAR T-cell treatment for this lymphoma subtype.
Collapse
Affiliation(s)
- Anina Mathys
- Department of Medical Oncology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Hematology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Myriam Legros
- Center of Laboratory Medicine, Inselspital, University Hospital, Bern, Switzerland
| | | | - Urban Novak
- Department of Medical Oncology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
23
|
Rampotas A, Sangha G, Collins GP. Integration of cell therapies and bispecific antibodies into the treatment pathway of relapsed diffuse large B-cell lymphoma. Ther Adv Hematol 2021; 12:20406207211053120. [PMID: 34733463 PMCID: PMC8558790 DOI: 10.1177/20406207211053120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Gina Sangha
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Graham P Collins
- Oxford University Hospitals NHS Foundation Trust, Churchill Hospital, Old Road, Headington, Oxford OX3 7LE, UK
| |
Collapse
|
24
|
Fan L, Wang L, Cao L, Zhu H, Xu W, Li J. Phase I study of CBM.CD19 chimeric antigen receptor T cell in the treatment of refractory diffuse large B-cell lymphoma in Chinese patients. Front Med 2021; 16:285-294. [PMID: 34727319 DOI: 10.1007/s11684-021-0843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/29/2020] [Indexed: 10/19/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cell therapy has shown impressive efficacy in treating B-cell malignancies. A single-center phase I dose-escalation study was conducted to evaluate the safety and efficacy of T cells transduced with CBM.CD19 CAR, a second-generation anti-CD19 CAR bearing 4-1BB costimulatory molecule, for the treatment of patients with refractory diffuse large B-cell lymphoma (DLBCL). Ten heavily treated patients with refractory DLBCL were given CBM.CD19 CAR-T cell (C-CAR011) treatment. The overall response rate was 20% and 50% at 4 and 12 weeks after the infusion of C-CAR011, respectively, and the disease control rate was 60% at 12 weeks after infusion. Treatment-emergent adverse events occurred in all patients. The incidence of cytokine release syndrome in all grades and grade ⩾ 3 was 90% and 0, respectively, which is consistent with the safety profile of axicabtagene ciloleucel and tisagenlecleucel. Neurotoxicity or other dose-limiting toxicities was not observed in any dose cohort of C-CAR011 therapy. Antitumor efficacy was apparent across dose cohorts. Therefore, C-CAR011 is a safe and effective therapeutic option for Chinese patients with refractory DLBCL, and further large-scale clinical trials are warranted.
Collapse
Affiliation(s)
- Lei Fan
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Li Wang
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Cao
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Huayuan Zhu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Jianyong Li
- Department of Hematology, Pukou CLL Center, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
25
|
Messmer AS, Que YA, Schankin C, Banz Y, Bacher U, Novak U, Pabst T. CAR T-cell therapy and critical care : A survival guide for medical emergency teams. Wien Klin Wochenschr 2021; 133:1318-1325. [PMID: 34613477 PMCID: PMC8671280 DOI: 10.1007/s00508-021-01948-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T‑cells are genetically engineered to give T‑cells the ability to attack specific cancer cells, and to improve outcome of patients with refractory/relapsed aggressive B‑cell malignancies. To date, several CAR T‑cell products are approved and additional products with similar indication or extended to other malignancies are currently being evaluated. Side effects of CAR T‑cell treatment are potentially severe or even life-threatening immune-related toxicities, specifically cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS). Consequently, medical emergency teams (MET) are increasingly involved in the assessment and management of CAR T‑cell recipients. This article describes the principles of CAR T‑cell therapy and summarizes the main complications and subsequent therapeutic interventions aiming to provide a survival guide for METs with a proposed management algorithm.
Collapse
Affiliation(s)
- Anna S Messmer
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland.
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 10, 3010, Bern, Switzerland
| | - Christoph Schankin
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yara Banz
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Ulrike Bacher
- Department of Haematology and Central Haematology Laboratory, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Urban Novak
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Pabst
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Calimeri T, Steffanoni S, Foppoli M, Ponzoni M, Ferreri AJM. Implications of recent molecular achievements in early diagnosis and precision treatments for primary CNS lymphoma. Expert Opin Ther Targets 2021; 25:749-760. [PMID: 34606736 DOI: 10.1080/14728222.2021.1988927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Introduction: Primary diffuse large B-cell lymphoma (DLBCL) of the central nervous system (PCNSL) represents a relevant challenge in onco-hematology. PCNSL has specific molecular profile and biological characteristics that distinguish it from systemic DLBCL. Several translational studies have allowed for significant improvement in the knowledge about its genomic and molecular profile. High-dose-methotrexate-based chemotherapy followed whole-brain irradiation or autologous stem cell transplantation is the most commonly used therapeutic approach in PCNSL patients.Areas covered: This work provides an overview of the new biomarkers of PCNSL, focusing on their potential diagnostic, predictive and prognostic role. Publications in English language, peer-reviewed, high-quality international journals, were identified on PubMed.Expert opinion: Early diagnosis, a better antitumor response definition and recognition of new effective treatments are important research fields aiming to improve PCNSL outcome and management. The acquisition of new molecular and genomic knowledge in PCNSL has allowed for the attainment of promising diagnostic and prognostic tools as well as the development of clinical trials with new therapeutic approaches beyond chemotherapy agents, which have demonstrated activity in refractory/relapsed PCNSL and deserve to be investigated in first-line therapy.
Collapse
Affiliation(s)
- Teresa Calimeri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Steffanoni
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Foppoli
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maurilio Ponzoni
- Universita' di Medicina e Chirurgia, Vita -Salute San Raffaele, Milano, Italy.,Department of Pathology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrés J M Ferreri
- Lymphoma Unit, Department of Onco-Hematology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Ernst M, Oeser A, Besiroglu B, Caro-Valenzuela J, Abd El Aziz M, Monsef I, Borchmann P, Estcourt LJ, Skoetz N, Goldkuhle M. Chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory diffuse large B-cell lymphoma. Cochrane Database Syst Rev 2021; 9:CD013365. [PMID: 34515338 PMCID: PMC8436585 DOI: 10.1002/14651858.cd013365.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer of the lymphatic system. About 30% to 40% of people with DLBCL experience relapse and 10% are refractory to first-line treatment usually consisting of R-CHOP chemotherapy. Of those eligible for second-line treatment, commonly consisting of salvage chemotherapy followed by autologous stem-cell transplantation (ASCT), around 50% experience relapse. With a median overall survival of less than six to 12 months, the prognosis of individuals who relapse or are refractory (r/r) to advanced lines of treatment or of those who are ineligible for ASCT, is very poor. With the introduction of chimeric antigen receptor (CAR) T-cell therapy, a novel treatment option for these people is available. OBJECTIVES To assess the benefits and harms of chimeric antigen receptor (CAR) T-cell therapy for people with relapsed or refractory (r/r) DLBCL. SEARCH METHODS An experienced information specialist performed a systematic database search for relevant articles on CENTRAL, MEDLINE and Embase until September 11th, 2020. We also searched trial registries and reference lists of identified studies up to this date. All search results were screened by two authors independently and a third author was involved in case of discrepancies. SELECTION CRITERIA We included prospectively planned trials evaluating CAR T-cell therapy for people with r/r DLBCL. We had planned to include randomised controlled trials (RCTs) and we flexibly adapted eligibility criteria to the most reliable study designs available. We excluded studies involving fewer than 10 participants with r/r DLBCL and studies with a proportion of participants with r/r DLBCL below 70%, unless data were reported separately for this subgroup. DATA COLLECTION AND ANALYSIS Two review authors extracted data and performed risk of bias ratings independently. A third author was involved in case of disagreements. As our search did not yield any completed RCTs, prospective controlled non-randomised studies of interventions (NRSIs) or prospective observational studies with a control group, we did not meta-analyse data and reported all results narratively. We adopted the GRADE approach to assess the certainty of the evidence for prioritised outcomes. MAIN RESULTS We identified 13 eligible uncontrolled studies evaluating a single or multiple arms of CAR T-cell therapies. We also identified 38 ongoing studies, including three RCTs. Ten studies are awaiting classification due to completion with no retrievable results data or insufficient data to justify inclusion. The mean number of participants enrolled, treated with CAR T-cell therapy and evaluated in the included studies were 79 (range 12 to 344; data unavailable for two studies), 61 (range 12 to 294; data unavailable for one study) and 52 (range 11 to 256), respectively. Most studies included people with r/r DLBCL among people with other haematological B-cell malignancies. Participants had received at least a median of three prior treatment lines (data unavailable for four studies), 5% to 50% had undergone ASCT (data unavailable for five studies) and, except for two studies, 3% to 18% had undergone allogenic stem-cell transplantation (data unavailable for eight studies). The overall risk of bias was high for all studies, in particular, due to incomplete follow-up and the absence of blinding. None of the included studies had a control group so that no adequate comparative effect measures could be calculated. The duration of follow-up varied substantially between studies, in particular, for harms. Our certainty in the evidence is very low for all outcomes. Overall survival was reported by eight studies (567 participants). Four studies reported survival rates at 12 months which ranged between 48% and 59%, and one study reported an overall survival rate of 50.5% at 24 months. The evidence is very uncertain about the effect of CAR T-cell therapy on overall survival. Two studies including 294 participants at baseline and 59 participants at the longest follow-up (12 months or 18 months) described improvements of quality of life measured with the EuroQol 5-Dimension 5-Level visual analogue scale (EQ-5D-5L VAS) or Function Assessment of Cancer Therapy-Lymphoma (FACT-Lym). The evidence is very uncertain about the effect of CAR T-cell therapy on quality of life. None of the studies reported treatment-related mortality. Five studies (550 participants) reported the occurrence of adverse events among participants, ranging between 99% and 100% for any grade adverse events and 68% to 98% for adverse events grade ≥ 3. In three studies (253 participants), 56% to 68% of participants experienced serious adverse events, while in one study (28 participants), no serious adverse events occurred. CAR T-cell therapy may increase the risk of adverse events and serious adverse events but the evidence is very uncertain about the exact risk. The occurrence of cytokine release syndrome (CRS) was reported in 11 studies (675 participants) under use of various grading criteria. Five studies reported between 42% and 100% of participants experiencing CRS according to criteria described in Lee 2014. CAR T-cell therapy may increase the risk of CRS but the evidence is very uncertain about the exact risk. Nine studies (575 participants) reported results on progression-free survival, disease-free survival or relapse-free survival. Twelve-month progression-free survival rates were reported by four studies and ranged between 44% and 75%. In one study, relapse-free survival remained at a rate of 64% at both 12 and 18 months. The evidence is very uncertain about the effect of CAR T-cell therapy on progression-free survival. Thirteen studies (620 participants) provided data on complete response rates. At six months, three studies reported complete response rates between 40% and 45%. The evidence is very uncertain about the effect of CAR T-cell therapy on complete response rates. AUTHORS' CONCLUSIONS The available evidence on the benefits and harms of CAR T-cell therapy for people with r/r DLBCL is limited, mainly because of the absence of comparative clinical trials. The results we present should be regarded in light of this limitation and conclusions should be drawn very carefully. Due to the uncertainty in the current evidence, a large number of ongoing investigations and a risk of substantial and potentially life-threatening complications requiring supplementary treatment, it is critical to continue evaluating the evidence on this new therapy.
Collapse
Affiliation(s)
- Moritz Ernst
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Annika Oeser
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Burcu Besiroglu
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Caro-Valenzuela
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marius Goldkuhle
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Abramson HN. Immunotherapy of Multiple Myeloma: Promise and Challenges. Immunotargets Ther 2021; 10:343-371. [PMID: 34527606 PMCID: PMC8437262 DOI: 10.2147/itt.s306103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 12/16/2022] Open
Abstract
Whereas the treatment of MM was dependent solely on alkylating agents and corticosteroids during the prior three decades, the landscape of therapeutic measures to treat the disease began to expand enormously early in the current century. The introduction of new classes of small-molecule drugs, such as proteasome blockers (bortezomib and carfilzomib), immunomodulators (lenalidomide and pomalidomide), nuclear export inhibitors (selinexor), and histone deacetylase blockers (panobinostat), as well as the application of autologous stem cell transplantation (ASCT), resulted in a seismic shift in how the disease is treated. The picture changed dramatically once again starting with the 2015 FDA approval of two monoclonal antibodies (mAbs) - the anti-CD38 daratumumab and the anti-SLAMF7 elotuzumab. Daratumumab, in particular, has had a great impact on MM therapy and today is often included in various regimens to treat the disease, both in newly diagnosed cases and in the relapse/refractory setting. Recently, other immunotherapies have been added to the arsenal of drugs available to fight this malignancy. These include isatuximab (also anti-CD38) and, in the past year, the antibody-drug conjugate (ADC) belantamab mafodotin and the chimeric antigen receptor (CAR) T-cell product idecabtagene vicleucel (ide-cel). While the accumulated benefits of these newer agents have resulted in a doubling of the disease's five-year survival rate to more than 5 years and improved quality of life, the disease remains incurable. Almost without exception patients experience relapse and/or become refractory to the drugs used, making the search for innovative therapies all the more essential. This review covers the current scope of anti-myeloma immunotherapeutic agents, both those in clinical use and on the horizon, including naked mAbs, ADCs, bi- and multi-targeted mAbs, and CAR T-cells. Emphasis is placed on the benefits of each along with the challenges that need to be overcome if MM is to be considered curable in the future.
Collapse
Affiliation(s)
- Hanley N Abramson
- Wayne State University, Department of Pharmaceutical Sciences, Detroit, MI, 48201, USA
| |
Collapse
|
29
|
Maloney DG, Kuruvilla J, Liu FF, Kostic A, Kim Y, Bonner A, Zhang Y, Fox CP, Cartron G. Matching-adjusted indirect treatment comparison of liso-cel versus axi-cel in relapsed or refractory large B cell lymphoma. J Hematol Oncol 2021; 14:140. [PMID: 34493319 PMCID: PMC8425084 DOI: 10.1186/s13045-021-01144-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/21/2021] [Indexed: 01/17/2023] Open
Abstract
Background In the absence of randomized studies directly comparing chimeric antigen receptor T cell therapies, this study used matching-adjusted indirect comparisons (MAIC) to evaluate the comparative efficacy and safety of lisocabtagene maraleucel (liso-cel) versus axicabtagene ciloleucel (axi-cel) in patients with relapsed or refractory large B cell lymphoma (LBCL). Methods Primary data sources included individual patient data from the TRANSCEND NHL 001 study (TRANSCEND [NCT02631044]; N = 256 for efficacy set, N = 269 for safety set) for liso-cel and summary-level data from the ZUMA-1 study (NCT02348216; N = 101 for efficacy set, N = 108 for safety set) for axi-cel. Inter-study differences in design, eligibility criteria, baseline characteristics, and outcomes were assessed and aligned to the extent feasible. Clinically relevant prognostic factors were adjusted in a stepwise fashion by ranked order. Since bridging therapy was allowed in TRANSCEND but not ZUMA-1, the initial efficacy and safety analyses included bridging therapy use as a matching factor (TRANSCEND patients who received bridging therapy were removed). Subsequent sensitivity analyses excluded this matching factor. Results The initial analysis showed similar MAIC-weighted efficacy outcomes between TRANSCEND and ZUMA-1 for overall and complete response rates (odds ratio [95% confidence interval (CI)], 1.40 [0.56–3.49] and 1.21 [0.56–2.64], respectively) and for overall survival and progression-free survival (hazard ratio [95% CI], 0.81 [0.44–1.49] and 0.95 [0.58–1.57], respectively). MAIC-weighted safety outcomes favored liso-cel, with significantly lower odds of all-grade and grade ≥ 3 cytokine release syndrome (odds ratio [95% CI], 0.03 [0.01–0.07] and 0.08 [0.01–0.67], respectively) and study-specific neurological events (0.16 [0.08–0.33] and 0.05 [0.02–0.15], respectively). Efficacy and safety outcomes remained similar in sensitivity analyses, which did not include use of bridging therapy as a matching factor. Conclusions After matching and adjusting for clinically relevant prognostic factors, liso-cel demonstrated comparable efficacy and a more favorable safety profile compared with axi-cel in patients with third- or later-line relapsed or refractory LBCL. Trial registration: NCT02631044 and NCT02348216 Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01144-9.
Collapse
Affiliation(s)
- David G Maloney
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, 98109-1024, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Namoglu EC, Hughes ME, Nasta SD. Targeted immunotherapies to consider for B Cell non-hodgkin lymphoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021. [DOI: 10.1080/23808993.2021.1967142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Esin C. Namoglu
- Lymphoma Program, Hematology/Oncology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mitchell E. Hughes
- Lymphoma Program, Hematology/Oncology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Sunita D. Nasta
- Lymphoma Program, Hematology/Oncology Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Zam W, Assaad A. Chimeric antigen receptor T-cells (CARs) in cancer treatment. Curr Mol Pharmacol 2021; 15:532-546. [PMID: 34382510 DOI: 10.2174/1874467214666210811150255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/27/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of death worldwide. Chemotherapy, radiation therapy, and stem cell transplantation were the main cancer treatment approaches for several years but due to their limited effectiveness, there was a constant search for new therapeutic approaches. Cancer immunotherapy that utilizes and enhances the normal capacity of the patient's immune system was used to fight against cancer. Genetically engineered T-cells that express chimeric antigen receptors (CARs) showed remarkable anti-tumor activity against hematologic malignancies and is now being investigated in a variety of solid tumors. The use of this therapy in the last few years has been successful, achieving a great success in improving the quality of life and prolonging the survival time of patients with a reduction in remission rates. However, many challenges still need to be resolved in order for this technology to gain widespread adoption. <P> Objective: This review summarizes various experimental approaches towards the use of CAR T-cells in hematologic malignancies and solid tumors. <P> Conclusion: Finally, we address the challenges posed by CAR T-cells and discuss strategies for improving the performance of these T cells in fighting cancers.
Collapse
Affiliation(s)
- Wissam Zam
- Department of Analytical and Food Chemistry, Faculty of Pharmacy, Al-Wadi International University, Homs. Syrian Arab Republic
| | - Amany Assaad
- 2. Department of Analytical and Food Chemistry, Faculty of Pharmacy,Tartous University, Tartous. Syrian Arab Republic
| |
Collapse
|
32
|
Shao M, Yu Q, Teng X, Guo X, Wei G, Xu H, Cui J, Chang AH, Hu Y, Huang H. CRS-related coagulopathy in BCMA targeted CAR-T therapy: a retrospective analysis in a phase I/II clinical trial. Bone Marrow Transplant 2021; 56:1642-1650. [PMID: 33608658 DOI: 10.1038/s41409-021-01226-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/15/2020] [Accepted: 11/20/2020] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy that targets B-cell maturation antigen (BCMA) has shown promising effects in the treatment of patients with refractory/relapsed multiple myeloma (R/R MM) patients. In this retrospective analysis of phase I/II clinical trial (ChiCTR1800017404), 37 patients with R/R MM received their first BCMA-targeted CAR T-cells following lymphodepletion chemotherapy. The response rate was high (97%), while accompanied by a high incidence of adverse events including coagulation dysfunction. Of 37 patients, all (100%) had cytokine release syndrome (CRS) and 34 (91%) developed at least one abnormal coagulation parameter. The values of coagulation parameters were positively correlated with the severity of CRS as well as with the levels of some cytokines, such as interleukin (IL)-6, IL-10, and interferon (IFN)-γ, etc. Furthermore, levels of the plasma tissue factor (TF), Factor X (FX), Factor XII (FXII), and P-selectin also showed a positive correlation with severity of CRS as well as some specific cytokines, which indicates that these factors are likely to play important roles in CRS-related coagulopathy. Our study suggests that there exists relationship in some extent between coagulation disorder and CRS. Moreover, coagulation dysfunction can be managed with daily monitoring and early intervention despite high incidence.
Collapse
Affiliation(s)
- Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Qin Yu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Xin Guo
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Huijun Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - Jiazhen Cui
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
| | - A H Chang
- Shanghai YaKe Biotechnology Ltd, Shanghai, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China. .,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, China.
| |
Collapse
|
33
|
Hematopoietic recovery in patients receiving chimeric antigen receptor T-cell therapy for hematologic malignancies. Blood Adv 2021; 4:3776-3787. [PMID: 32780846 DOI: 10.1182/bloodadvances.2020002509] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/23/2020] [Indexed: 12/19/2022] Open
Abstract
Factors contributing to hematopoietic recovery following chimeric antigen receptor (CAR) T-cell therapy have not been well studied. In an analysis of 83 patients with hematologic malignancies treated with CAR T-cell therapy, we describe patterns of hematopoietic recovery and evaluate potentially associated factors. We included patients who received axicabtagene ciloleucel (n = 30) or tisagenlecleucel (n = 10) for B-cell lymphoma, CD19-28z CAR T therapy for B-cell acute lymphoblastic leukemia (NCT01044069; n = 37), or B-cell maturation antigen targeting CAR T cells for multiple myeloma (NCT03070327; n = 6). Patients treated with CAR T cells who had not progressed, died, or received additional chemotherapy had "recovered" (per definition in Materials and methods section) hemoglobin, platelet, neutrophil, and white blood cell counts at rates of 61%, 51%, 33%, and 28% at month 1 postinfusion and 93%, 90%, 80%, and 59% at month 3 postinfusion, respectively. Univariate analysis showed that increasing grade of immune effector cell-associated neurological syndrome (ICANS), baseline cytopenias, CAR construct, and higher peak C-reactive protein or ferritin levels were statistically significantly associated with a lower likelihood of complete count recovery at 1 month; a similar trend was seen for cytokine release syndrome (CRS). After adjustment for baseline cytopenia and CAR construct, grade ≥3 CRS or ICANS remained significantly associated with the absence of complete count recovery at 1 month. Higher levels of vascular endothelial growth factor and macrophage-derived chemokines, although not statistically significant, were seen patients without complete count recovery at 1 month. This remains to be studied further in larger prospective studies.
Collapse
|
34
|
Britten CM, Shalabi A, Hoos A. Industrializing engineered autologous T cells as medicines for solid tumours. Nat Rev Drug Discov 2021; 20:476-488. [PMID: 33833444 DOI: 10.1038/s41573-021-00175-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2021] [Indexed: 02/06/2023]
Abstract
Cell therapy is one of the fastest growing areas in the pharmaceutical industry, with considerable therapeutic potential. However, substantial challenges regarding the utility of these therapies will need to be addressed before they can become mainstream medicines with applicability similar to that of small molecules or monoclonal antibodies. Engineered T cells have achieved success in the treatment of blood cancers, with four chimeric antigen receptor (CAR)-T cell therapies now approved for the treatment of B cell malignancies based on their unprecedented efficacy in clinical trials. However, similar results have not yet been achieved in the treatment of the much larger patient population with solid tumours. For cell therapies to become mainstream medicines, they may need to offer transformational clinical effects for patients and be applicable in disease settings that remain unaddressed by simpler approaches. This Perspective provides an industry perspective on the progress achieved by engineered T cell therapies to date and the opportunities and current barriers for accessing broader patient populations, and discusses the solutions and new development strategies required to fully industrialize the therapeutic potential of engineered T cells as medicines.
Collapse
Affiliation(s)
- Cedrik M Britten
- Oncology R&D, GlaxoSmithKline, Stevenage, UK.,Immatics Biotechnologies, Munich, Germany
| | - Aiman Shalabi
- Oncology R&D, GlaxoSmithKline, Philadelphia, PA, USA
| | - Axel Hoos
- Oncology R&D, GlaxoSmithKline, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Myers GD, Verneris MR, Goy A, Maziarz RT. Perspectives on outpatient administration of CAR-T cell therapy in aggressive B-cell lymphoma and acute lymphoblastic leukemia. J Immunother Cancer 2021; 9:e002056. [PMID: 33846220 PMCID: PMC8047987 DOI: 10.1136/jitc-2020-002056] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2021] [Indexed: 12/05/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies that specifically target the CD19 antigen have emerged as a highly effective treatment option in patients with refractory B-cell hematological malignancies. Safety and efficacy outcomes from the pivotal prospective clinical trials of axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel and the retrospective, postmarketing, real-world analyses have confirmed high response rates and durable remissions in patients who had failed multiple lines of therapy and had no meaningful treatment options. Although initially administered in the inpatient setting, there has been a growing interest in delivering CAR-T cell therapy in the outpatient setting; however, this has not been adopted as standard clinical practice for multiple reasons, including logistic and reimbursement issues. CAR-T cell therapy requires a multidisciplinary approach and coordination, particularly if given in an outpatient setting. The ability to monitor patients closely is necessary and proper protocols must be established to respond to clinical changes to ensure efficient, effective and rapid evaluation either in the clinic or emergency department for management decisions regarding fever, sepsis, cytokine release syndrome and neurological events, specifically immune effector cell-associated neurotoxicity syndrome. This review presents the authors' institutional experience with the preparation and delivery of outpatient CD19-directed CAR-T cell therapy.
Collapse
Affiliation(s)
- G Doug Myers
- Division of Hematology/Oncology/Cellular Therapy and Stem Cell Transplantation, Children's Mercy Hospital; University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael R Verneris
- Cancer and Blood Disorders, Section of Blood and Marrow Transplantation and Cellular Therapy, University of Colorado, Denver, Colorado, USA
| | - Andre Goy
- Division of Lymphoma, John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, New Jersey, USA
| | - Richard T Maziarz
- BMT & Cell Therapy Program, Division of Hematology/Medical Oncology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| |
Collapse
|
36
|
|
37
|
Shah H, Stephens D, Seymour J, Maddocks K. Incorporating Novel Targeted and Immunotherapeutic Agents in Treatment of B-Cell Lymphomas. Am Soc Clin Oncol Educ Book 2021; 41:1-18. [PMID: 33770460 DOI: 10.1200/edbk_320117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The introduction of novel targeted agents and immunotherapeutic modalities into the treatment of B-cell lymphomas has drastically shifted the treatment landscape. In diffuse large B-cell lymphoma, recent approvals of CAR T-cell therapy, the antibody-drug conjugate polatuzumab, and the anti-CD19 monoclonal antibody tafasitamab have provided efficacious options for patients with relapsed and refractory disease. These immunotherapies attempt to harness power from the patient's own immune system to eradicate lymphoma. In chronic lymphocytic leukemia, oral targeted kinase inhibitors such as ibrutinib and acalabrutinib (Bruton tyrosine kinase inhibitors) and venetoclax (BCL2 inhibitor) are now favored over chemoimmunotherapy for upfront treatment because of improved progression-free survival across all subgroups (including high-risk subgroups such as unmutated immunoglobulin variable heavy chain and chromosome 17p deletion). In indolent lymphomas, several PI3K inhibitors are approved for treatment of relapsed disease. However, uptake of these agents has been limited because of toxicity concerns. Combination of lenalidomide and rituximab has been a safe and effective immune modality for patients with refractory indolent lymphomas; it is currently being used as a backbone to bring other targeted agents such as tazemetostat (EZH2 inhibitor) into earlier lines of treatment. In this article, we will review novel commercially available agents in the treatment of relapsed/refractory diffuse large B-cell lymphoma, treatment-naïve chronic lymphocytic leukemia, and relapsed/refractory indolent lymphomas. We will evaluate clinical trials that led to their approval and will provide an outlook into the future novel agents currently under investigation in B-cell malignancies.
Collapse
Affiliation(s)
| | | | - John Seymour
- Peter MacCallum Cancer Centre & Royal Melbourne Hospital, Melbourne, Australia
| | | |
Collapse
|
38
|
Abstract
Immunotherapy has changed the landscape of cancer treatment and has significantly improved the outcome of several cancer types including breast, lung, colorectal and prostate. Neoantigen recognition and immune checkpoint inhibitors are nowadays the milestones of different immunotherapeutic regimes; however, high cost, primary and acquired resistance and the high variability of responses make their extensive use difficult. The development of better predictive biomarkers that represent tumour diversity shows promise because there is a significant body of clinical data showing a spectrum of immunotherapeutic responses that might be related back to their specific characteristics. This article makes a conceptual and historical review to summarise the main advances in our understanding of the role of the immune system in cancer, while describing the methodological details that have been successfully implemented on cancer treatments and that may hold the key to improved therapeutic approaches.
Collapse
|
39
|
Doraiswamy A, Shah MR, Bannerji R. Immunotherapies Old and New: Hematopoietic Stem Cell Transplant, Chimeric Antigen Receptor T Cells, and Bispecific Antibodies for the Treatment of Relapsed/Refractory Diffuse Large B Cell Lymphoma. Curr Hematol Malig Rep 2021; 16:72-81. [PMID: 33619641 DOI: 10.1007/s11899-021-00610-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Diffuse large B cell lymphoma (DLBCL) is curable in a majority of patients; however, a significant portion of patients develop relapsed or refractory disease. High-dose chemotherapy followed by autologous stem cell transplant is the standard approach in appropriately selected patients. Many patients are not candidates for transplant and many who do receive autologous transplant relapse. Therapies which harness T cells including chimeric antigen receptor T cells (CAR-T) and bispecific antibodies are active in this chemotherapy-resistant population. We review the role of autologous and allogeneic stem cell transplant, CAR-T therapy, and bispecific antibodies in the treatment of relapsed or refractory DLBCL. RECENT FINDINGS Phase I studies of bispecific antibodies directed against CD20 × CD3 have shown activity in heavily pre-treated DLBCL including in patients who have progressed following autologous transplant and/or CAR-T therapy. Two CAR-T products have received regulatory approval in relapsed or refractory DLBCL, with other products in clinical trials. CAR-T treatment has resulted in durable remissions and trials are ongoing to determine if CAR-T should replace autologous transplant as second-line therapy for DLBCL. The development of multiple T cell-directed therapies for DLBCL offers new treatment options for chemotherapy-resistant disease. We discuss our approach to relapsed or refractory DLBCL patients and the open question of optimal sequencing of autologous transplant (a current standard treatment), CAR-T therapy (FDA approved), and bispecific antibodies (in clinical trials).
Collapse
Affiliation(s)
- Anupama Doraiswamy
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Mansi R Shah
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA
| | - Rajat Bannerji
- Division of Blood Disorders, Section of Hematologic Malignancies, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
40
|
Health Economic Aspects of Chimeric Antigen Receptor T-cell Therapies for Hematological Cancers: Present and Future. Hemasphere 2021; 5:e524. [PMID: 33880433 PMCID: PMC8051992 DOI: 10.1097/hs9.0000000000000524] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/24/2020] [Indexed: 12/15/2022] Open
Abstract
Since 2018, 2 chimeric antigen receptor (CAR) T-cell therapies received approval from the European Medicine Agency, with list prices around 320 000 Euro (€) (EUR) per treatment. These high prices raise concerns for patient access and the sustainability of healthcare systems. We aimed to estimate the costs and budget impact associated with CAR T-cell therapies for current and future indications in hematological cancers from 2019 to 2029. We focused on the former France, Germany, Spain, Italy and the United Kingdom (EU-5) and the Netherlands. We conducted a review of list prices, health technology assessment reports, budget impact analysis dossiers, and published cost-effectiveness analyses. We forecasted the 10-year health expenditures on CAR T-cells for several hematological cancers in selected European Union countries. Nine cost-effectiveness studies were identified and list prices for CAR T-cell therapies ranged between 307 200 EUR and 350 000 EUR. Estimated additional costs for pre- and post-treatment were 50 359 EUR per patient, whereas the incremental costs of CAR T-cell therapy (when compared with care as usual) ranged between 276 086 EUR and 328 727 EUR. We estimated market entry of CAR T-cell therapies for chronic mantle cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, multiple myeloma, and acute myeloid leukemia in 2021, 2022, 2022, 2022, and 2025, respectively. Cumulative expenditure estimates for existing and future indications from 2019 to 2029 were on average 28.5 billion EUR, 32.8 billion EUR, and 28.9 billion EUR when considering CAR T-cell therapy costs only, CAR T-cell therapy costs including pre- and post-treatment, and incremental CAR T-cell therapy costs, respectively. CAR T-cell therapies seem to be promising treatment options for hematological cancers but the financial burden on healthcare systems in the former EU-5 and the Netherlands will contribute to a substantial rise in healthcare expenditure in the field of hematology.
Collapse
|
41
|
Wang S, Wang L, Hu J, Qian W, Zhang X, Hu Y, Zhu Q, Chen B, Wu D, Chang CCH, Xu P, Zheng X, Wei J, Liu Y, Cui G, Tang Y, Ma Y, Huang H, Yi H, Zhao W. Outcomes in refractory diffuse large B-cell lymphoma: results from a multicenter real-world study in China. Cancer Commun (Lond) 2021; 41:229-239. [PMID: 33482051 PMCID: PMC7968882 DOI: 10.1002/cac2.12126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diffuse large B-cell lymphoma (DLBCL) patients refractory to rituximab-based immunochemotherapy have a dismal prognosis. However, the definition of refractory DLBCL remains inconsistent and no large cohort study data is available from Asian countries. To validate the definition and outcomes of refractory DLBCL in China, we conducted a multicenter, retrospective cohort study. METHODS The REtrospective AnaLysis of Treatment REspoNse of refractory DLBCL (REAL-TREND) study was performed using real-world data from 8 centers in China. DLBCL patients with curative intent were included in the REAL-TREND dataset. Overall survival (OS) was estimated using the Kaplan-Meier method and compared by the log-rank test. Due to heterogeneity in response rates among different centers, the response rates of refractory patients were pooled using random-effect models. Multivariate survival analysis was performed using the Cox regression model. RESULTS A total of 2778 DLBCL patients diagnosed between January, 2010 and December, 2015 were enrolled to this study. After validating previous definitions, the SCHOLAR-1 study was most suitable to define refractory DLBCL. The estimated 5-year cumulative incidence of refractory patients was 20% (95% confidence Interval [CI] = 18%-22%). After the determination of refractory disease, overall response rate and complete remission rate were 30% (95% CI = 22%-38%) and 9% (95% CI = 4%-15%), respectively. Patients with either no response to immunochemotherapy or relapse within 12 months after stem-cell transplantation had inferior survival with a median OS of 5.9 months (95% CI = 5.5-7.1 months) and 2-year OS rate of 16% (95% CI = 12%-20%). International prognostic index score 4-5 (hazard ratio [HR] = 2.22; 95% CI = 1.47-3.35), central nervous system relapse (HR = 1.43; 95% CI = 1.04-1.97), and best response status (HR = 2.68; 95% CI = 1.42-5.03 for partial remission. HR = 5.97, 95% CI = 3.21-11.11 for stable disease/progressive disease) were independent unfavorable prognostic factors. CONCLUSIONS This is the first large-scale Asian cohort study focusing on outcomes of refractory DLBCL. The definition of the SCHOLAR-1 study identifies patients with homogenously inferior survival, thus is appropriate to select refractory DLBCL. Due to poor clinical outcomes in the rituximab era, patients with refractory DLBCL may be potential candidates for novel treatment modalities.
Collapse
Affiliation(s)
- Shuo Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Chinese-French Research Center in Living Science and Genomics, Laboratory of Molecular Pathology, Shanghai, 200025, P. R. China
| | - Jianda Hu
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P. R. China
| | - Wenbin Qian
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Yu Hu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Qi Zhu
- Shanghai Ninth People's Hospital, Shanghai, 200011, P. R. China
| | - Bobin Chen
- Huashan Hospital Affiliated with Fudan University, Shanghai, 200040, P. R. China
| | - Depei Wu
- Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Chung-Chou H Chang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, United States of America
| | - Pengpeng Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Chinese-French Research Center in Living Science and Genomics, Laboratory of Molecular Pathology, Shanghai, 200025, P. R. China
| | - Xiaoyun Zheng
- Fujian Institute of Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P. R. China
| | - Juying Wei
- The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, Zhejiang, 310003, P. R. China
| | - Yao Liu
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, P. R. China
| | - Guohui Cui
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Yong Tang
- Shanghai Ninth People's Hospital, Shanghai, 200011, P. R. China
| | - Yan Ma
- Huashan Hospital Affiliated with Fudan University, Shanghai, 200040, P. R. China
| | - Haiwen Huang
- Jiangsu Institute of Hematology, Institute of Blood and Marrow Transplantation, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, P. R. China
| | - Hongmei Yi
- Department of Pathology, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.,Chinese-French Research Center in Living Science and Genomics, Laboratory of Molecular Pathology, Shanghai, 200025, P. R. China
| |
Collapse
|
42
|
Guerrouahen B, Elnaggar M, Al-Mohannadi A, Kizhakayil D, Bonini C, Benjamin R, Brentjens R, Buchholz CJ, Casorati G, Ferrone S, Locke FL, Martin F, Schambach A, Turtle C, Veys P, van der Vliet HJ, Maccalli C. Proceedings From the First International Workshop at Sidra Medicine: "Engineered Immune Cells in Cancer Immunotherapy (EICCI): From Discovery to Off-the-Shelf Development", 15 th-16 th February 2019, Doha, Qatar. Front Immunol 2021; 11:589381. [PMID: 33584653 PMCID: PMC7874217 DOI: 10.3389/fimmu.2020.589381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
The progress in the isolation and characterization of tumor antigen (TA)-specific T lymphocytes and in the genetic modification of immune cells allowed the clinical development of adoptive cell therapy (ACT). Several clinical studies highlighted the striking clinical activity of T cells engineered to express either Chimeric Antigen (CAR) or T Cell (TCR) Receptors to target molecularly defined antigens expressed on tumor cells. The breakthrough of immunotherapy is represented by the approval of CAR-T cells specific for advanced or refractory CD19+ B cell malignancies by both the Food and Drug Administration (FDA) and the European Medicinal Agency (EMA). Moreover, advances in the manufacturing and gene editing of engineered immune cells contributed to the selection of drug products with desired phenotype, refined specificity and decreased toxicity. An important step toward the optimization of CAR-T cell therapy is the development of "off-the shelf" T cell products that allow to reduce the complexity and the costs of the manufacturing and to render these drugs available for a broad number of cancer patients. The Engineered Immune Cells in Cancer Immunotherapy (EICCI) workshop hosted in Doha, Qatar, renowned experts, from both academia and industry, to present and discuss the progress on both pre-clinical and clinical development of genetically modified immune cells, including advances in the "off-the-shelf" manufacturing. These experts have addressed also organizational needs and hurdles for the clinical grade production and application of these biological drugs.
Collapse
Affiliation(s)
| | | | | | | | - Chiara Bonini
- Experimental Hematology Unit, University Vita-Salute San Raffaele and Hospital San Raffaele Scientific Institute, Milan, Italy
| | - Reuben Benjamin
- Division of Cancer Studies, King's College Hospital, London, United Kingdom
| | - Renier Brentjens
- Cellular Therapeutics, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christian J Buchholz
- Research Unit for Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Giulia Casorati
- Experimental Immunology Unit, University Vita-Salute San Raffaele and Hospital San Raffaele Scientific Institute, Milan, Italy
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, United States
| | - Francisco Martin
- Pfizer/University of Granada/Andalusian Regional Government, Genomic Medicine Department, Granada, Spain
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boson, MA, United States
| | - Cameron Turtle
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Paul Veys
- Bone Marrow Transplant Unit, Great Ormond Street (GOS) Hospital, and University College London GOS Institute of Child Health, London, United Kingdom
| | - Hans J van der Vliet
- Hans van Der Vliet, Department of Medical Oncology, Amsterdam UMC, VU University and Cancer Center, Amsterdam, Netherlands.,Lava Therapeutics, Utrecht, Netherlands
| | | | | |
Collapse
|
43
|
Ying Z, Yang H, Guo Y, Li W, Zou D, Zhou D, Wang Z, Zhang M, Wu J, Liu H, Zhang P, Yang S, Zhou Z, Zheng H, Song Y, Zhu J. Relmacabtagene autoleucel (relma-cel) CD19 CAR-T therapy for adults with heavily pretreated relapsed/refractory large B-cell lymphoma in China. Cancer Med 2020; 10:999-1011. [PMID: 33382529 PMCID: PMC7897944 DOI: 10.1002/cam4.3686] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Despite numerous chimeric antigen receptor T-cell (CAR-T) trials conducted in China, no CAR-T has been registered in the country. Furthermore, China law and regulations restrict the export of patient material for CAR-T manufacture abroad. Relma-cel (JWCAR029), an anti-CD19 product produced with a commercial-ready process in China, was evaluated in the first prospective, single-arm, multicenter, pivotal study of CAR-T therapy conducted under Chinese IND to support an NMPA-accepted BLA submission in relapsed/refractory (r/r) LBCL (NCT04089215). METHODS Patients were randomized to receive either 100 × 106 (low dose, n = 27) or 150 × 106 (high dose, n = 32) CAR+ T-cells as a single infusion following lymphodepleting chemotherapy (fludarabine 25 mg/m2 and cyclophosphamide 250 mg/m2 daily × 3), and then, monitored for efficacy and safety outcomes and pharmacokinetics. The primary endpoint was ORR at 3 months, as assessed by the investigators. Secondary endpoints included DOR, PFS, OS, and adverse event frequency/severity and cell expansion kinetics. RESULTS As of the data cutoff on 17 June 2020, 68 patients were enrolled, and 59 were treated. Among the 58 efficacy-evaluable patients, the primary endpoint of 3 month ORR was 60.3% (95% CI, 46.6-73.0), excluding the null hypothesis rate of 20%. Any grade and severe grade CRS occurred in 47.5% and 5.1%, respectively, and any grade and severe grade neurotoxicity events occurred in 20.3% and 5.1%. CONCLUSIONS Relma-cel met the primary endpoint analysis and demonstrated a high rate of durable responses and low rate of CAR-T-associated toxicities in patients with r/r LBCL in a multicenter trial supporting regulatory submission in China.
Collapse
Affiliation(s)
- Zhitao Ying
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Haiyan Yang
- Department of Lymphatic Medical, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang, China
| | - Ye Guo
- Department of Oncology, Shanghai East Hospital, Shanghai, China
| | - Wenyu Li
- Department of Lymphoma, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong, China
| | - Dehui Zou
- Lymphoma Center, Institute of Hematology & Blood Diseases, Hospital Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Hematology and Blood Diseases Hospital (IH), Tianjin, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhao Wang
- Department of Hematology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Mingzhi Zhang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianqiu Wu
- Department of Medical Oncology, Jiangsu Institute of Cancer Research, Jiangsu Red Cross Cancer Center, Jiangsu Cancer Hospital, the Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Liu
- Department of Hematology, Beijing Hospital, Beijing, China
| | - Pian Zhang
- JW Therapeutics (Shanghai) Co. Ltd, Shanghai, China
| | - Su Yang
- JW Therapeutics (Shanghai) Co. Ltd, Shanghai, China
| | - Zisong Zhou
- JW Therapeutics (Shanghai) Co. Ltd, Shanghai, China
| | | | - Yuqin Song
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| | - Jun Zhu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of adoptive cellular immunotherapy targeting CD19 in its most advanced form. Up to 30% of infused patients achieve long-term survival, meaning that 70% of patients still fail to respond or relapse after therapy. This review will address the unresolved issues relating to responders' characterization, relapse prediction, and prevention, CAR T-cell construct optimization, rational combination with other therapies and treatment toxicity, focusing on the management of relapsed/refractory lymphoma patients. RECENT FINDINGS Many new antigenic targets are currently investigated and raise the hope of broader successes. However, literature data report that treatment failure is not only related to CAR T construct and infusion but is also due to hostile tumor microenvironment and poor interaction with the host effector cells. Further research should not only target CAR T structure, toxicity and associated therapies, but also tumor-related and host-related microenvironment interactions that lead to treatment failure in relapsed/refractory lymphoma patients. SUMMARY Poor persistence of CAR T and loss of CD19 antigen are well established mechanisms of relapse in Acute Lymphoblastic Leukemia (ALL). A fourth generation of CAR T construct is currently investigated to overcome this issue. In non-Hodgkin lymphoma, mechanisms of treatment failure remain poorly understood but tumor and host microenvironment are undoubtedly involved and should be further investigated. A deeper understanding of CAR T-cell therapy failure in individuals will help personalize CAR T-cell therapy in the future.
Collapse
|
45
|
Patriarca A, Gaidano G. Investigational drugs for the treatment of diffuse large B-cell lymphoma. Expert Opin Investig Drugs 2020; 30:25-38. [PMID: 33295827 DOI: 10.1080/13543784.2021.1855140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Diffuse large B cell lymphoma (DLBCL) is the most frequent lymphoma in adults. 30-40% DLBCL eventually relapse and 10% are primary refractory, posing an unmet clinical need, especially in patients not eligible for hematopoietic stem cell transplant. Knowledge of DLBCL molecular pathogenesis has identified druggable molecular pathways. Surface antigens can be targeted by novel antibodies and innovative cell therapies. Areas covered: This review illuminates those investigational drugs and cell therapies that are currently in early phase clinical trials for the treatment of DLBCL. New small molecules that modulate the pathways involved in the molecular pathogenesis of DLBCL, monospecific and bispecific monoclonal antibodies, drug-immunoconjugates, and cellular therapies are placed under the spotlight. A futuristic perspective concludes the paper. Expert opinion: A precision medicine strategy based on robust molecular predictors of outcome is desirable in the development of investigational small molecules for DLBCL. Novel monoclonal and bispecific antibodies may be offered to (i) relapsed/refractory patients ineligible for CAR-T cells because of comorbidities, and (ii) younger patients before CAR-T cell infusion to reduce a high tumor burden. A focus on the optimal sequencing of the emerging DLBCL drugs is appropriate and necessary.
Collapse
Affiliation(s)
- Andrea Patriarca
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Translational Medicine, Università Del Piemonte Orientale and Ospedale Maggiore Della Carità , Novara, Italy
| |
Collapse
|
46
|
Locke FL, Go WY, Neelapu SS. Development and Use of the Anti-CD19 Chimeric Antigen Receptor T-Cell Therapy Axicabtagene Ciloleucel in Large B-Cell Lymphoma: A Review. JAMA Oncol 2020; 6:281-290. [PMID: 31697310 DOI: 10.1001/jamaoncol.2019.3869] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Importance Axicabtagene ciloleucel, an anti-CD19-CD28-CD3ζ chimeric antigen receptor T-cell therapy, was the first US Food and Drug Administration-approved, genetically engineered T-cell therapy for adults with relapsed or refractory large B-cell lymphoma (LBCL) after 2 or more lines of systemic therapy. There has not been a US Food and Drug Administration-approved product for these cancers in more than 4 decades. Observations Unlike traditional anticancer therapies, axicabtagene ciloleucel is a patient-specific, live-cell product that has unique requirements for manufacturing, shipping, and storage, as well as for its administration and management of its adverse events. In addition, axicabtagene ciloleucel has demonstrated efficacy in patients with refractory LBCL. This review presents a timeline of the rapid clinical development of axicabtagene ciloleucel from bench to bedside, highlights how axicabtagene ciloleucel satisfies an unmet medical need for treatment of refractory LBCL, outlines the logistics of the production process and administration of axicabtagene ciloleucel, describes its mechanism of action, and summarizes the results of the pivotal study. This review also provides a survey of adverse events, with attention to the kinetics of their clinical presentation; discusses the management of adverse events; and offers suggestions for appropriate patient selection for safe administration of axicabtagene ciloleucel. Conclusions and Relevance The integration of axicabtagene ciloleucel therapy into standard-of-care practice for relapsed/refractory LBCL is the beginning of a paradigm shift in the treatment of patients with LBCL and is likely to lead to improvements in their survival and curability. Timely referral to centers offering the therapy is necessary for optimal patient outcomes.
Collapse
Affiliation(s)
- Frederick L Locke
- Department of Blood and Marrow Transplant and Cellular Immunotherapy, H Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - William Y Go
- Kite, a Gilead Company, Santa Monica, California
| | - Sattva S Neelapu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
47
|
Di Rocco A, Cuneo A, Di Rocco A, Merli F, De Luca G, Petrucci L, Ansuinelli M, Penna D, Rotondo F, Rigolin GM, Giaimo M, Re F, Farcomeni A, Martelli M, Foà R. Relapsed/refractory diffuse large B-cell lymphoma patients. A multicenter retrospective analysis of eligibility criteria for car-T cell therapy. Leuk Lymphoma 2020; 62:828-836. [PMID: 33274677 DOI: 10.1080/10428194.2020.1849676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR) T cells represent the first approved third-line therapy associated with long-term remissions in patients with refractory/relapsed (R/R) diffuse large B-cell lymphoma (DLBCL). Eligibility criteria to identify patients who can successfully receive CAR-T are still debated. For this reason, the aim of this study was to identify factors influencing eligibility and define a realistic patient estimate. Of 1100 DLBCL patients, 137 were included. Based on the Juliet trial inclusion criteria, only 64 patients (46.7%) would be eligible. Median overall survival (OS) was 8.04 months in eligible vs 3.23 in non-eligible patients (p < 0.001). Multivariate analysis identified stage III-IV (p = 0.017) and ECOG ≥2 (p < 0.001) as significant independent prognostic factors for OS. Moreover, only 64/1100 (5.8%) DLBCL patients would be truly eligible for CAR-T. Our real-life data confirm that with a longer waiting time patients with advanced stage and poor ECOG are less likely to be eligible for CAR-T cell infusion.
Collapse
Affiliation(s)
- Alice Di Rocco
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Antonio Cuneo
- Department of Hematology, S. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Arianna Di Rocco
- Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Francesco Merli
- Hematology, AUSLL/IRCCS Santa Maria Nuova Hospital, Reggio Emilia, Italy
| | - Giulia De Luca
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Luigi Petrucci
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Michela Ansuinelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Domenico Penna
- Hematology, AUSLL/IRCCS Santa Maria Nuova Hospital, Reggio Emilia, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Rotondo
- Department of Hematology, S. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Gian Matteo Rigolin
- Department of Hematology, S. Anna Hospital, University of Ferrara, Ferrara, Italy
| | - Mariateresa Giaimo
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Francesca Re
- Division of Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessio Farcomeni
- Department of Economics and Finance, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Martelli
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - Robin Foà
- Hematology, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
48
|
Zhou X, Tu S, Wang C, Huang R, Deng L, Song C, Yue C, He Y, Yang J, Liang Z, Wu A, Li M, Zhou W, Du J, Guo Z, Li Y, Jiao C, Liu Y, Chang LJ, Li Y. Phase I Trial of Fourth-Generation Anti-CD19 Chimeric Antigen Receptor T Cells Against Relapsed or Refractory B Cell Non-Hodgkin Lymphomas. Front Immunol 2020; 11:564099. [PMID: 33329526 PMCID: PMC7731732 DOI: 10.3389/fimmu.2020.564099] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023] Open
Abstract
Background The administration of second- or third-generation anti-CD19 chimeric antigen receptor (CAR) T cells has remarkably improved the survival of patients with relapsed or refractory B cell malignancies. However, there are limited clinical results from fourth-generation CAR-T cell therapy, and the factors affecting response rate and survival have not been fully determined. Methods Lymphoma patients with progression or relapse after intensive treatments, including hematopoietic stem cell transplantation, and life expectancy >2 months were enrolled in the study. Peripheral lymphocytes were collected through apheresis, and magnetically selected T cells were lentivirally transduced with a 4th-generation CAR featuring an anti-CD19 CAR and the iCasp9 suicide switch (4SCAR19). The patients received 4SCAR19 T cell infusion after approximately seven days of expansion and a conditioning regimen comprising cyclophosphamide/fludarabine. The efficacy, safety, and risk factors were evaluated. Results A total of 21 patients with relapsed/refractory B cell non-Hodgkin lymphoma were enrolled and received 4SCAR19 T cell infusions at a median dose of 8.9×105 CAR-T cells/kg. The overall response rate was 67% [95% confidence interval (CI), 43 to 85], with 43% of patients achieving a complete response and 24% having a partial response. The overall and complete response rates were 58 and 33% in the diffuse large B-cell lymphoma (DLBCL) group and 78 and 56% in the non-DLBCL group, respectively. The median overall survival was 23.8 months (95% CI, not reached), with a median follow-up of 13.7 months. Factors affecting overall survival were International Prognostic Index (IPI), disease type, and remission status after CAR-T cell treatment. The most common adverse events of grade 3 or 4 during treatment were neutropenia (76%), leukopenia (71%), and thrombocytopenia (29%). The incidence of cytokine release syndrome (CRS) was 14%, and all cases were grade 1. One patient developed grade 3 neurotoxicity. No deaths were attributed to infusion of 4SCAR19 T cells, CRS, or neurotoxicity. Conclusions In this study, patients with relapsed or refractory B cell non-Hodgkin's lymphoma who received 4SCAR19 T cell therapy had durable responses and few of adverse events. The IPI model is suitable for evaluating the prognosis of patients receiving CAR-T cell therapy. Trial registration Chinese Clinical Trial Registry (http://www.chictr.org.cn): ChiCTR-OOC-16007779.
Collapse
Affiliation(s)
- Xuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunsheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lan Deng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaoyang Song
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jilong Yang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqin Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weijun Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingwen Du
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenling Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongqian Li
- Department of Hematology, Shantou Central Hospital, Shantou, China
| | - Cheng Jiao
- Department of Research and Development, Geno-Immue Medical Institute, Shenzhen, China
| | - Yuchen Liu
- Department of Research and Development, Geno-Immue Medical Institute, Shenzhen, China
| | - Lung-Ji Chang
- Department of Research and Development, Geno-Immue Medical Institute, Shenzhen, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
49
|
Lin WY, Wang HH, Chen YW, Lin CF, Fan HC, Lee YY. Gene Modified CAR-T Cellular Therapy for Hematologic Malignancies. Int J Mol Sci 2020; 21:ijms21228655. [PMID: 33212810 PMCID: PMC7697548 DOI: 10.3390/ijms21228655] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
With advances in the understanding of characteristics of molecules, specific antigens on the surface of hematological malignant cells were identified and multiple therapies targeting these antigens as neoplasm treatments were developed. Among them, chimeric antigen receptor (CAR) T-cell therapy, which got United States Food and Drug Administration (FDA) approval for relapsed/refractory (r/r) diffuse large B-cell lymphoma (DLBCL) as well as for recurrent acute lymphoblastic leukemia (ALL) within the past five years, and for r/r mantle cell lymphoma (MCL) this year, represents one of the most rapidly evolving immunotherapies. Nevertheless, its applicability to other hematological malignancies, as well as its efficacy and persistence are fraught with clinical challenges. Currently, more than one thousand clinical trials in CAR T-cell therapy are ongoing and its development is changing rapidly. This review introduces the current status of CAR T-cell therapy in terms of the basic molecular aspects of CAR T-cell therapy, its application in hematological malignancies, adverse reactions during clinical use, remaining challenges, and future utilization.
Collapse
Affiliation(s)
- Wen-Ying Lin
- Department of Internal Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Hsin-Hui Wang
- Department of Pediatrics, Division of Pediatric Immunology and Nephrology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Emergency and Critical Care Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Wei Chen
- Division of Radiation Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
| | - Chun-Fu Lin
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Hueng-Chuen Fan
- Department of Pediatrics, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan;
- Department of Medical Research, Tungs’ Taichung Metroharbor Hospital, Wuchi, Taichung 435403, Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
- Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 356, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan;
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan
- Correspondence: ; Tel.: +886-2-28757491; Fax: +886-2-28757588
| |
Collapse
|
50
|
Skorka K, Ostapinska K, Malesa A, Giannopoulos K. The Application of CAR-T Cells in Haematological Malignancies. Arch Immunol Ther Exp (Warsz) 2020; 68:34. [PMID: 33156409 PMCID: PMC7647970 DOI: 10.1007/s00005-020-00599-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
Chimeric antigen receptor (CAR)-T cells (CART) remain one of the most advanced and promising forms of adoptive T-cell immunotherapy. CART represent autologous, genetically engineered T lymphocytes expressing CAR, i.e. fusion proteins that combine components and features of T cells as well as antibodies providing their more effective and direct anti-tumour effect. The technology of CART construction is highly advanced in vitro and every element of their structure influence their mechanism of action in vivo. Patients with haematological malignancies are faced with the possibility of disease relapse after the implementation of conventional chemo-immunotherapy. Since the most preferable result of therapy is a partial or complete remission, cancer treatment regimens are constantly being improved and customized to individual patients. This individualization could be ensured by CART therapy. This paper characterized CART strategy in details in terms of their structure, generations, mechanism of action and published the results of clinical trials in haematological malignancies including acute lymphoblastic leukaemia, diffuse large B-cell lymphoma, chronic lymphocytic leukaemia and multiple myeloma.
Collapse
Affiliation(s)
- Katarzyna Skorka
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Katarzyna Ostapinska
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aneta Malesa
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|