1
|
Jiang X, Gao L, Li Z, Shen Y, Lin ZH. Development and Challenges of Cyclic Peptides for Immunomodulation. Curr Protein Pept Sci 2024; 25:353-375. [PMID: 37990433 DOI: 10.2174/0113892037272528231030074158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 11/23/2023]
Abstract
Cyclic peptides are polypeptide chains formed by cyclic sequences of amide bonds between protein-derived or non-protein-derived amino acids. Compared to linear peptides, cyclic peptides offer several unique advantages, such as increased stability, stronger affinity, improved selectivity, and reduced toxicity. Cyclic peptide has been proved to have a promising application prospect in the medical field. In addition, this paper mainly describes that cyclic peptides play an important role in anti-cancer, anti-inflammatory, anti-virus, treatment of multiple sclerosis and membranous nephropathy through immunomodulation. In order to know more useful information about cyclic peptides in clinical research and drug application, this paper also summarizes cyclic peptides currently in the clinical trial stage and cyclic peptide drugs approved for marketing in the recent five years. Cyclic peptides have many advantages and great potential in treating various diseases, but there are still many challenges to be solved in the development process of cyclic peptides.
Collapse
Affiliation(s)
- Xianqiong Jiang
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Li Gao
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Zhilong Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
| | - Yan Shen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| | - Zhi-Hua Lin
- School of Pharmacy and Bioengineering, Chongqing University of Technology, 405400 Chongqing, China
- Chongqing College of Traditional Chinese Medicine, 402760
- Chongqing Key Laboratory of Medicinal Chemistry & Molecular Pharmacology, Chongqing University of Technology, Chongqing 400054, China
- Chongqing Key Laboratory of Target Based Drug Screening and Activity Evaluation, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
2
|
Domb C, Garcia JA, Barata PC, Mendiratta P, Rao S, Brown JR. Systematic review of recent advancements in antibody-drug and bicycle toxin conjugates for the treatment of urothelial cancer. Ther Adv Urol 2024; 16:17562872241249073. [PMID: 38779496 PMCID: PMC11110528 DOI: 10.1177/17562872241249073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/01/2024] [Indexed: 05/25/2024] Open
Abstract
Antibody-drug conjugates and bicycle toxin conjugates represent a tremendous advance in drug delivery technology and have shown great promise in the treatment of urothelial cancer. Previously approved systemic therapies, including chemotherapy and immunotherapy, are often impractical due to comorbidities, and outcomes for patients with advanced disease remain poor, even when receiving systemic therapy. In this setting, antibody-drug and bicycle toxin conjugates have emerged as novel treatments, dramatically altering the therapeutic landscape. These drugs harness unique designs consisting of antibody or bicycle peptide, linker, and cytotoxic payload with more targeted delivery than conventional chemotherapy, thus eliminating malignant cells while reducing systemic toxicities. Potential targets investigated in urothelial cancer include Nectin-4, TROP2, HER2, and EphA2. Initial clinical trials demonstrated efficacy in treatment of refractory advanced urothelial cancer, as well as improvement in quality of life. These initial studies led to FDA approval of two antibody-drug conjugates, enfortumab vedotin and sacituzumab govitecan. Moreover, antibody-drug and bicycle toxin conjugates are being studied in ongoing clinical trials in frontline treatment of advanced disease as well as for localized cancer. These studies highlight the potential for additional future therapies with novel targets, novel antibodies, cytotoxic and immunomodulatory payloads, and unique structural designs enhancing efficacy and safety. There is increasing evidence that combinations with other cancer therapies, especially immunotherapy, improve treatment outcomes. The combination of enfortumab vedotin and pembrolizumab was recently approved for first-line treatment of advanced urothelial carcinoma. Despite the great promise of these novel drugs, robust predictive biomarkers are needed to determine the patients who would maximally benefit. This review surveys the rationale and current state of the evidence for these new drugs and describes future directions actively being explored.
Collapse
Affiliation(s)
- Chaim Domb
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | - Jorge A. Garcia
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Pedro C. Barata
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Prateek Mendiratta
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Rao
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
| | - Jason R. Brown
- University Hospitals Seidman Cancer Center, 11100 Euclid Ave., Lakeside 1200, Mailstop LKS 5079, Cleveland, OH 44106, USA
- Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Costa L, Sousa E, Fernandes C. Cyclic Peptides in Pipeline: What Future for These Great Molecules? Pharmaceuticals (Basel) 2023; 16:996. [PMID: 37513908 PMCID: PMC10386233 DOI: 10.3390/ph16070996] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Cyclic peptides are molecules that are already used as drugs in therapies approved for various pharmacological activities, for example, as antibiotics, antifungals, anticancer, and immunosuppressants. Interest in these molecules has been growing due to the improved pharmacokinetic and pharmacodynamic properties of the cyclic structure over linear peptides and by the evolution of chemical synthesis, computational, and in vitro methods. To date, 53 cyclic peptides have been approved by different regulatory authorities, and many others are in clinical trials for a wide diversity of conditions. In this review, the potential of cyclic peptides is presented, and general aspects of their synthesis and development are discussed. Furthermore, an overview of already approved cyclic peptides is also given, and the cyclic peptides in clinical trials are summarized.
Collapse
Affiliation(s)
- Lia Costa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Zana A, Puig-Moreno C, Bocci M, Gilardoni E, Di Nitto C, Principi L, Ravazza D, Rotta G, Prodi E, De Luca R, Neri D, Cazzamalli S. A Comparative Analysis of Fibroblast Activation Protein-Targeted Small Molecule-Drug, Antibody-Drug, and Peptide-Drug Conjugates. Bioconjug Chem 2023. [PMID: 37399501 DOI: 10.1021/acs.bioconjchem.3c00244] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
We present the first in vivo comparative evaluation of chemically defined antibody-drug conjugates (ADCs), small molecule-drug conjugates (SMDCs), and peptide-drug conjugates (PDCs) targeting and activated by fibroblast activation protein (FAP) in solid tumors. Both the SMDC (OncoFAP-Gly-Pro-MMAE) and the ADC (7NP2-Gly-Pro-MMAE) candidates delivered high amounts of active payload (i.e., MMAE) selectively at the tumor site, thus producing a potent antitumor activity in a preclinical cancer model.
Collapse
Affiliation(s)
- Aureliano Zana
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Claudia Puig-Moreno
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
- Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, CH-8093 Zürich, Switzerland
| | - Matilde Bocci
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Ettore Gilardoni
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Cesare Di Nitto
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Lucrezia Principi
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Domenico Ravazza
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Giulia Rotta
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Eleonora Prodi
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Roberto De Luca
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| | - Dario Neri
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
- Swiss Federal Institute of Technology, Department of Chemistry and Applied Biosciences, CH-8093 Zürich, Switzerland
- Philogen S.p.A., 53100 Siena, Italy
| | - Samuele Cazzamalli
- Philochem AG, R&D Department, Libernstrasse 3, CH-8112 Otelfingen, Zürich, Switzerland
| |
Collapse
|
5
|
Zana A, Galbiati A, Gilardoni E, Bocci M, Millul J, Sturm T, Stucchi R, Elsayed A, Nadal L, Cirillo M, Roll W, Stegger L, Asmus I, Backhaus P, Schäfers M, Neri D, Cazzamalli S. Fibroblast Activation Protein Triggers Release of Drug Payload from Non-internalizing Small Molecule Drug Conjugates in Solid Tumors. Clin Cancer Res 2022; 28:5440-5454. [PMID: 36215129 DOI: 10.1158/1078-0432.ccr-22-1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/08/2022] [Accepted: 10/06/2022] [Indexed: 01/24/2023]
Abstract
PURPOSE Small molecule drug conjugates (SMDC) are modular anticancer prodrugs that include a tumor-targeting small organic ligand, a cleavable linker, and a potent cytotoxic agent. Most of the SMDC products that have been developed for clinical applications target internalizing tumor-associated antigens on the surface of tumor cells. We have recently described a novel non-internalizing small organic ligand (named OncoFAP) of fibroblast activation protein (FAP), a tumor-associated antigen highly expressed in the stroma of most solid human malignancies. EXPERIMENTAL DESIGN In this article, we describe a new series of OncoFAP-Drug derivatives based on monomethyl auristatin E (MMAE; a potent cytotoxic tubulin poison) and dipeptide linkers that are selectively cleaved by FAP in the tumor microenvironment. RESULTS The tumor-targeting potential of OncoFAP was confirmed in patients with cancer using nuclear medicine procedures. We used mass spectrometry methodologies to quantify the amount of prodrug delivered to tumors and normal organs, as well as the efficiency of the drug release process. Linkers previously exploited for anticancer drug conjugates were used as benchmark. We identified OncoFAP-Gly-Pro-MMAE as the best performing SMDC, which has now been prioritized for further clinical development. OncoFAP-Gly-Pro-MMAE selectively delivered more than 10% injected dose per gram of MMAE to FAP-positive tumors, with a tumor-to-kidney ratio of 16:1 at 24 hours post-injection. CONCLUSIONS The FAP-specific drug conjugates described in this article promise to be efficacious for the targeting of human malignancies. The extracellular release of potent anticancer payloads mediates durable complete remission in difficult-to-treat animal models of cancer.
Collapse
Affiliation(s)
- Aureliano Zana
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Andrea Galbiati
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Matilde Bocci
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Jacopo Millul
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Theo Sturm
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | | | - Abdullah Elsayed
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Lisa Nadal
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland
| | - Martina Cirillo
- Department of Chemistry "G. Ciamician," University of Bologna, Bologna, Italy
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Lars Stegger
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Inga Asmus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | - Philipp Backhaus
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany.,European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Dario Neri
- R&D Department, Philochem AG, Otelfingen, Zurich, Switzerland.,Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zürich, Switzerland.,Philogen S.p.A., Siena, Italy
| | | |
Collapse
|
6
|
Mudd GE, Scott H, Chen L, van Rietschoten K, Ivanova-Berndt G, Dzionek K, Brown A, Watcham S, White L, Park PU, Jeffrey P, Rigby M, Beswick P. Discovery of BT8009: A Nectin-4 Targeting Bicycle Toxin Conjugate for the Treatment of Cancer. J Med Chem 2022; 65:14337-14347. [PMID: 36204777 PMCID: PMC9661471 DOI: 10.1021/acs.jmedchem.2c00065] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Bicycle toxin conjugates
(BTCs) are a promising new class
of molecules
for targeted delivery of toxin payloads into tumors. Herein we describe
the discovery of BT8009, a Nectin-4 targeting BTC currently under
clinical evaluation. Nectin-4 is overexpressed in multiple tumor types
and is a clinically validated target for selective delivery of cytotoxic
payloads. A Nectin-4 targeting bicyclic peptide was identified by
phage display, which showed highly selective binding for Nectin-4
but suffered from low plasma stability and poor physicochemical properties.
Multiparameter chemical optimization involving introduction of non-natural
amino acids resulted in a lead Bicycle that demonstrated high affinity
for Nectin-4, good stability in biological matrices, and a much-improved
physicochemical profile. The optimized Bicycle was conjugated to the
cytotoxin Monomethyl auristatin E via a cleavable linker to give the
targeted drug conjugate BT8009, which demonstrates potent anticancer
activity in in vivo rodent models.
Collapse
Affiliation(s)
- Gemma E Mudd
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Heather Scott
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Liuhong Chen
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | | | | | - Katarzyna Dzionek
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Amy Brown
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Sophie Watcham
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Lewi White
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Peter U Park
- Bicycle Therapeutics, Inc., 4 Hartwell Place, Lexington 02421-3122, Massachusetts, United States
| | - Phil Jeffrey
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Mike Rigby
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| | - Paul Beswick
- BicycleTx Limited, B900 Babraham Research Campus, Cambridge CB22 3AT, U.K
| |
Collapse
|
7
|
Berillo D, Yeskendir A, Zharkinbekov Z, Raziyeva K, Saparov A. Peptide-Based Drug Delivery Systems. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111209. [PMID: 34833427 PMCID: PMC8617776 DOI: 10.3390/medicina57111209] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.
Collapse
Affiliation(s)
- Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany School of Pharmacy, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
- Correspondence: (D.B.); (A.S.)
| | - Adilkhan Yeskendir
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Zharylkasyn Zharkinbekov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Kamila Raziyeva
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
| | - Arman Saparov
- Department of Medicine, School of Medicine, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (A.Y.); (Z.Z.); (K.R.)
- Correspondence: (D.B.); (A.S.)
| |
Collapse
|
8
|
Lindberg J, Nilvebrant J, Nygren PÅ, Lehmann F. Progress and Future Directions with Peptide-Drug Conjugates for Targeted Cancer Therapy. Molecules 2021; 26:molecules26196042. [PMID: 34641586 PMCID: PMC8512983 DOI: 10.3390/molecules26196042] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
We review drug conjugates combining a tumor-selective moiety with a cytotoxic agent as cancer treatments. Currently, antibody-drug conjugates (ADCs) are the most common drug conjugates used clinically as cancer treatments. While providing both efficacy and favorable tolerability, ADCs have limitations due to their size and complexity. Peptides as tumor-targeting carriers in peptide-drug conjugates (PDCs) offer a number of benefits. Melphalan flufenamide (melflufen) is a highly lipophilic PDC that takes a novel approach by utilizing increased aminopeptidase activity to selectively increase the release and concentration of cytotoxic alkylating agents inside tumor cells. The only other PDC approved currently for clinical use is 177Lu-dotatate, a targeted form of radiotherapy combining a somatostatin analog with a radionuclide. It is approved as a treatment for gastroenteropancreatic neuroendocrine tumors. Results with other PDCs combining synthetic analogs of natural peptide ligands with cytotoxic agents have been mixed. The field of drug conjugates as drug delivery systems for the treatment of cancer continues to advance with the application of new technologies. Melflufen provides a paradigm for rational PDC design, with a targeted mechanism of action and the potential for deepening responses to treatment, maintaining remissions, and eradicating therapy-resistant stem cells.
Collapse
Affiliation(s)
- Jakob Lindberg
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
| | - Johan Nilvebrant
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Per-Åke Nygren
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (J.N.); (P.-Å.N.)
- SciLifeLab, SE-171 65 Solna, Sweden
| | - Fredrik Lehmann
- Oncopeptides AB, Västra Trädgårdsgatan 15, SE-111 53 Stockholm, Sweden;
- Correspondence: ; Tel.: +46-(0)861-520-40
| |
Collapse
|
9
|
Zhu YS, Tang K, Lv J. Peptide-drug conjugate-based novel molecular drug delivery system in cancer. Trends Pharmacol Sci 2021; 42:857-869. [PMID: 34334251 DOI: 10.1016/j.tips.2021.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Drug delivery systems are generally believed to comprise drugs and excipients. A peptide-drug conjugate is a single molecule that can simultaneously play multiple roles in a drug delivery system, such as in vivo drug distribution, targeted release, and bioactivity functions. This molecule can be regarded as an integrated drug delivery system, so it is called a molecular drug delivery system. In the context of cancer therapy, a peptide-drug conjugate comprises a tumor-targeting peptide, a payload, and a linker. Tumor-targeting peptides specifically identify membrane receptors on tumor cells, improve drug-targeted therapeutic effects, and reduce toxic and side effects. Payloads with bioactive functions connect to tumor-targeting peptides through linkers. In this review, we explored ongoing clinical work on peptide-drug conjugates targeting various receptors. We discuss the binding mechanisms of tumor-targeting peptides and related receptors, as well as the limiting factors for peptide-drug conjugate-based molecular drug delivery systems.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China.
| | - Kexing Tang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu Province, China
| | - Jiayi Lv
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, China
| |
Collapse
|
10
|
Deonarain MP, Yahioglu G. Current strategies for the discovery and bioconjugation of smaller, targetable drug conjugates tailored for solid tumor therapy. Expert Opin Drug Discov 2021; 16:613-624. [PMID: 33275475 DOI: 10.1080/17460441.2021.1858050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Introduction: Antibody-Drug Conjugates (ADCs) have undergone a recent resurgence with 5 product approvals over the last 2 years but for those close to the field, it's been repeated cycles of setbacks and new innovations. A new wave of innovation is in the type of format used to deliver the cytotoxic payloads, with smaller bio-molecules being designed to have more optimal penetration and elimination properties tailored for solid tumors.Areas covered: In this review, the authors cover many of the recently described smaller-format drug conjugates (including formats such as diabodies, Fabs, scFvs, domain antibodies) with an emphasis on the types of conjugation technologies used to attach the chemical linker-payload.Expert opinion: Smaller formats are highly influenced by the structure of the linker-payload, arguably more-so than larger ADCs, so careful consideration is needed where solublising and pharmacokinetic modulation is required. High-quality conjugates are being developed with in vivo tumor efficacy and tolerability properties competitive with ADCs and with a few formats already in clinical development, we expect the pipeline to expand and to reach the market.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| | - Gokhan Yahioglu
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Hertfordshire, UK.,Department of Chemistry, Imperial College London, London, UK
| |
Collapse
|
11
|
Deonarain MP, Xue Q. Tackling solid tumour therapy with small-format drug conjugates. Antib Ther 2020; 3:237-245. [PMID: 33928231 DOI: 10.1093/abt/tbaa024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
The pharmacokinetic-pharmacodynamic relationship is extremely complex and tumour drug penetration is one key parameter influencing therapeutic efficacy. In the context of antibody-drug conjugates (ADCs), which has undergone many innovation cycles and witnessed many failures, this feature is being addressed by a number of alternative technologies. Immunoglobulin-based ADCs continue to dominate the industrial landscape, but smaller formats offer the promise of more-effective cytotoxic payload delivery to solid tumours, with a higher therapeutic window afforded by the more rapid clearance. To make these smaller formats viable as delivery vehicles, a number of strategies are being employed, which will be reviewed here. These include identifying the most-appropriate size to generate the larger therapeutic window, increasing the amount of functional, cytotoxic payload delivered through conjugation or half-life extending technologies or other ways of extending the dosing without inducing toxicity.
Collapse
Affiliation(s)
- Mahendra P Deonarain
- Antikor Biopharma Ltd, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage, Hertfordshire SG12FX, UK
| | - Quinn Xue
- Essex Biotechnology Ltd, Shun Tak Centre, Room 2818, China Merchants Tower, Connaught Road Central, Hong Kong 168-200, SAR China
| |
Collapse
|