1
|
Zhang X, Xu K, Gale RP, Pan B. Strategies following failure of CAR-T-cell therapy in non-Hodgkin lymphoma. Bone Marrow Transplant 2025; 60:182-190. [PMID: 39533016 DOI: 10.1038/s41409-024-02463-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Several CD19 CAR-T-cell drugs are approved for safety and efficacy in advanced B-cell cancers with encouraging results. However, primary refractory and relapse are common. We critically analyze long-term data on efficacy of CD19 CAR-T-cell therapies in B-cell non-Hodgkin lymphomas from clinical trials with those of so-called real world data. We identify co-variates associated with efficacy, discuss mechanisms of relapse, summarize the data on the results of post-failure therapy including allotransplants, monoclonal and bi-specific antibodies, antibody-drug conjugates, immune checkpoint-inhibitors and repeat infusions of CAR-T-cells. We conclude, save for allotransplants, there are few data strongly supporting any of these interventions. Most trial are with few heterogeneously-treated subjects with diverse interventions and brief follow-up. Interventions need to be tailored to the cause(s) of CAR-T-cell failure. Prestly, there is not a convincingly safe and effective therapy of people failing initial CAR-T-cell therapy of B-cell non-Hodgkin lymphoma.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| | - Robert Peter Gale
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, England
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
2
|
Thirumalaisamy R, Vasuki S, Sindhu SM, Mothilal TM, Srimathi V, Poornima B, Bhuvaneswari M, Hariharan M. FDA-Approved Chimeric Antigen Receptor (CAR)-T Cell Therapy for Different Cancers-A Recent Perspective. Mol Biotechnol 2025; 67:469-483. [PMID: 38459361 DOI: 10.1007/s12033-024-01090-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/26/2024] [Indexed: 03/10/2024]
Abstract
Cancer is one of the most prevalent diseases in the world, and their rate of occurence has been increased in recent decades. Current review article, summarizes the novel treatment options Chimeric Antigen Receptor-T (CAR-T) cell therapy for various cancers constitute a major health and development challenge, impacting every aspect of sustainable development quoted by goal 3 good health and well-being of UN sustainable goals. WHO estimates that 70% of cancer deaths occur in low- and middle- income countries (LMICs) by 2030, LMICs are expected to bear the brunt of the expected 24.1 million new cancer cases per year. This current review article focuses and discussed about CAR-T cell therapy for various cancers against most prevalent non-communicable disease cancer disease stipulated by WHO and UN sustainable goals. Three literature databases Google scholar, Science Direct, PubMed was utilized to search and collect CAR-T cell treatment options for different cancers published articles sources in between January 2000 and December 2023. There were a total of 18,700 papers found, with 48 of them being found to be eligible focusing various cancer treatment by CAR-T cells utilized for the study. Based on the information gathered, CAR-T cell therapy treating different cancers and their merit and its advantages in heal and improve certain cancers was also discussed in this review article with their detailed molecular mechanisms. This article also gives an insight to utilize CAR-T cell treatment protocols for rejuvenating cancer patient from such ruthless cancer disease condition thereby improving life span of cancer patients and eradication of disease in some cases.
Collapse
Affiliation(s)
- R Thirumalaisamy
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India.
| | - S Vasuki
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - S M Sindhu
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
- Department of Biotechnology, PSGR Krishnammal College for Women (Autonomous), Coimbatore (Dt.), Tamil Nadu, 641004, India
| | - T M Mothilal
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - V Srimathi
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - B Poornima
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - M Bhuvaneswari
- Department of Biotechnology, Sona College Arts and Science, Salem (Dt.), Tamil Nadu, 636005, India
| | - Mohan Hariharan
- Center for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamilnadu, 602105, India
| |
Collapse
|
3
|
Stella F, Chiappella A, Magni M, Bonifazi F, De Philippis C, Musso M, Cutini I, Ljevar S, Barbui AM, Farina M, Martino M, Massaia M, Grillo G, Angelillo P, Botto B, Patriarca F, Krampera M, Arcaini L, Tisi MC, Zinzani P, Sorà F, Bramanti S, Pennisi M, Carniti C, Corradini P. Brexucabtagene autoleucel in-vivo expansion and BTKi refractoriness have a negative influence on progression-free survival in mantle cell lymphoma: Results from CART-SIE study. Br J Haematol 2025; 206:644-651. [PMID: 39710966 PMCID: PMC11829141 DOI: 10.1111/bjh.19961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Brexucabtagene autoleucel (brexu-cel) has revolutionized the treatment of patients affected by mantle cell lymphomas. In this prospective, observational multicentre study, we evaluated 106 patients, with longitudinal brexu-cel kinetics in peripheral blood monitored in 61 of them. Clinical outcomes and toxicities are consistent with previous real-world evidence studies. Notably, beyond established poor prognostic factors-such as blastoid variant and elevated lactate dehydrogenase-Bruton tyrosine-kinase inhibitors (BTKi) refractoriness and platelet count emerged as significant predictors of survival. Specifically, the 1-year overall survival was 56% in BTKi-refractory patients compared to 92% in BTKi-relapsed patients (p = 0.0001). Our study also demonstrated that in-vivo monitoring of brexu-cel expansion is feasible and correlates with progression-free survival and toxicities. Progression-free survival at 1 year was 74% in patients categorized as strong expanders, based on brexu-cel peak concentration, versus 54% in poor expanders (p = 0.02). Furthermore, in-vivo expansion helped identify a high-risk group of non-responders, those with progressive or stable disease at the 90-day post-infusion evaluation (OR = 4.7, 95% CI = 1.1-34, p = 0.04) characterized by dismal outcomes. When integrated with other clinical factors, monitoring brexu-cel expansion could assist in recognizing patients at high risk of early relapse.
Collapse
Affiliation(s)
- Federico Stella
- Hematology, School of MedicineUniversità degli Studi di MilanoMilanItaly
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Annalisa Chiappella
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Martina Magni
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero‐Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”BolognaItaly
| | - Chiara De Philippis
- Department of Oncology/HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Maurizio Musso
- Dipartimento Oncologico “La Maddalena”UOC di Oncoematologia e TMOPalermoItaly
| | - Ilaria Cutini
- SOD Terapie Cellulari e Medicina Trasfusionale, AAD Trapianto di midollo osseoOspedale CareggiFlorenceItaly
| | - Silva Ljevar
- Department of Data Science, Unit of Biostatistics for Clinical ResearchFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Anna Maria Barbui
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIIIBergamoItaly
| | - Mirko Farina
- Unit of Blood Disease and Bone Marrow Transplantation, Unit of HematologyUniversity of Brescia, ASST Spedali Civili di BresciaBresciaItaly
| | - Massimo Martino
- Hematology and Stem Cell Transplantation and Cellular Therapies Unit (CTMO), Department of Hemato‐Oncology and RadiotherapyGrande Ospedale Metropolitano “Bianchi‐Melacrino‐Morelli”Reggio CalabriaItaly
| | - Massimo Massaia
- Division of Hematology—AO S. Croce e Carle, Cuneo and Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center “Guido Tarone”University of TorinoTorinoItaly
| | - Giovanni Grillo
- Dipartimento di Ematologia e trapianto di midolloASST Grande Ospedale Metropolitano NiguardaMilanItaly
| | | | - Barbara Botto
- SC EmatologiaAOU Città della Salute e della ScienzaTorinoItaly
| | - Francesca Patriarca
- Haematology and Stem Cell Transplantation UnitAzienda Sanitaria Universitaria Friuli CentraleUdineItaly
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI)University of VeronaVeronaItaly
| | - Luca Arcaini
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Division of HematologyFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Pierluigi Zinzani
- IRCCS Azienda Ospedaliero‐Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”BolognaItaly
| | - Federica Sorà
- Sezione di Ematologia, Dipartimento di Scienze Radiologiche ed EmatologicheUniversità Cattolica del Sacro CuoreRomeItaly
| | - Stefania Bramanti
- Department of Oncology/HematologyIRCCS Humanitas Research HospitalMilanItaly
| | - Martina Pennisi
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Cristiana Carniti
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| | - Paolo Corradini
- Hematology, School of MedicineUniversità degli Studi di MilanoMilanItaly
- Division of HematologyFondazione IRCCS Istituto Nazionale dei TumoriMilanItaly
| |
Collapse
|
4
|
Khan N, Gupta M, Masamha CP. Characterization and molecular targeting of CFIm25 (NUDT21/CPSF5) mRNA using miRNAs. FASEB J 2025; 39:e70324. [PMID: 39812508 PMCID: PMC11760631 DOI: 10.1096/fj.202402184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Changes in protein levels of the mammalian cleavage factor, CFIm25, play a role in regulating pathological processes including neural dysfunction, fibrosis, and tumorigenesis. However, despite these effects, little is known about how CFIm25 (NUDT21) expression is regulated at the RNA level. A potential regulator of NUDT21 mRNA are small non-coding microRNAs (miRNAs). In general, miRNAs bind to the 3'untranslated regions (3'UTRs) and can target the bound mRNA for degradation or inhibit translation thus affecting the levels of protein in cells. Interestingly, a mechanism known as alternative polyadenylation (APA) enables mRNAs to escape miRNA regulation by generating mRNAs with 3'UTRs of different sizes. As many miRNA target sites are located within the 3'UTR, shortening the 3'UTR allows mRNAs to evade miRNAs targeting this region. The differences in the lengths and the sequence composition of the 3'UTRs may also impact the mRNA's translatability and subcellular localization. APA has been reported to regulate over 70% of protein coding genes, thus increasing the transcript repertoire. Several proteins, including mammalian cleavage factor, CFIm25 (NUDT21), have been shown to regulate APA. In this study we wanted to determine whether CFIm25 (NUDT21), itself a regulator of APA, undergoes APA to evade miRNA regulation. We used the blood cancer mantle cell lymphoma (MCL) cells as a model and showed that in these cells, NUDT21 is relatively stable with a long half-life. In addition, the NUDT21 pre-mRNA undergoes alternative APA within the same terminal exon. The three different sized NUDT21 mRNAs have different 3'UTR lengths and they each use a different canonical polyadenylation signal, AAUAAA, for 3'end cleavage and polyadenylation. Use of miRNA mimics and inhibitors showed that miR-23a, miR-222, and miR-323a play a significant role in regulating NUDT21 expression. Hence, these results suggest that NUDT21 mRNA is stable and the different 3'UTRs generated through APA of NUDT21 play an important role in evading miRNA regulation and offers insights into how levels of CFIm25 (NUDT21) may be fine-tuned as needed under different physiological and pathological conditions.
Collapse
Affiliation(s)
- Naazneen Khan
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
- Department of NeurologyIndiana UniversityIndianapolisIndianaUSA
| | - Mahesh Gupta
- Department of Pharmaceutical SciencesButler UniversityIndianapolisIndianaUSA
| | | |
Collapse
|
5
|
Ryan CE, LaCasce AS. A 3-pronged attack on TP53-mutated MCL. Blood 2025; 145:458-460. [PMID: 39883441 DOI: 10.1182/blood.2024027055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
|
6
|
Tsutsué S, Makita S, Asou H, Mathew A, Kado Y, Idehara K, Kim SW, Ainiwaer D. Real-world assessment to estimate multiple attributes related to treatment cost driver for mantle cell lymphoma in Japan by econometric modeling. BMC Health Serv Res 2025; 25:149. [PMID: 39871251 PMCID: PMC11770976 DOI: 10.1186/s12913-025-12306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025] Open
Abstract
This study was conducted using a nationwide health care database of Japan between 1 April 2008 and 30 September 2022 to evaluate the economic burden on patients with mantle cell lymphoma (MCL). Structural equation modeling (SEM) is an advanced multivariate analysis framework used to assess the relationships between observed and latent variables within predefined causal models. In this study, SEM was employed to identify cost drivers and estimate variables related to MCL treatment cost. A total of 2,838 patients having at least one confirmed diagnosis of MCL participated in this study. As for the index regimen, a combination of bendamustine rituximab was the most frequently used (n = 328), followed by rituximab combined with cyclophosphamide, doxorubicin, vincristine, and prednisolone-like regimen (n = 112), and others. The median of total health care cost (unadjusted and adjusted) were 32,228 USD and 31,918 USD, respectively. The mean (SD) of the frequency of bleeding treatment was 23 (35) per year, and that of outpatient visits was 19 (12) per year. SEM analysis revealed Bruton tyrosine kinase inhibitor-based treatment as a cost driver (β: 0.398 [0.340; 0.457], p < 0.001). Key health care resource utilization (HCRU) factors associated with an increased cost were the total length of hospitalization (β: 0.598 [0.551; 0.646], p < 0.001) and number of outpatient visits (β: 0.132 [0.083; 0.180], p < 0.001). This real-world study delivers insights for optimizing MCL care in Japan.
Collapse
Affiliation(s)
| | | | | | | | - Yuki Kado
- IQVIA Solutions Japan, G.K., Tokyo, Japan
| | | | | | | |
Collapse
|
7
|
Ghilardi G, Hasanali ZS, Susanibar-Adaniya SP, Winestone LE, Ruella M, Garfall AL. Association of age, race, and ethnicity with access, response, and toxicities from CAR-T therapy in children and adults with B-cell malignancies: a review. J Immunother Cancer 2025; 13:e009349. [PMID: 39855710 DOI: 10.1136/jitc-2024-009349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapies are now standard-of-care for several B-cell malignancies, and additional indications are being evaluated. In this review, we survey data on how outcomes after CAR-T therapies vary according to age, race, and ethnicity. We also review the representation of age, racial, and ethnic groups in key CAR-T clinical trials. We focus on B-cell acute lymphoblastic leukemia, B-cell non-Hodgkin's lymphoma, and multiple myeloma.
Collapse
Affiliation(s)
- Guido Ghilardi
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zainul S Hasanali
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sandra P Susanibar-Adaniya
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lena E Winestone
- Division of Allergy, Immunology, and BMT, Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Alfred L Garfall
- Department of Medicine and Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Ponnapalli A, Arora AK, Soubani AO. Critical care considerations of chimeric antigen receptor (CAR) T-cell therapy. Respir Med 2025; 238:107958. [PMID: 39855481 DOI: 10.1016/j.rmed.2025.107958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Chimeric Antigen Receptor (CAR) T-cell therapies represents a major advancement in the treatment of refractory hematologic malignancies, with high remission rates for relapsed B-cell lymphomas and leukemias. However, it is associated with a broad spectrum of potentially life-threatening toxicities, many of which require intensive care unit (ICU) management. Key complications include Cytokine Release Syndrome (CRS) and Immune Effector Cell-associated Neurotoxicity Syndrome (ICANS), as well as severe infections, Immune Effector Cell-associated Hematotoxicity (ICAHT), coagulopathies, and organ dysfunctions resulting from the intense inflammatory response induced by CAR T-cells. Approximately one third of patients undergoing CAR T-cell therapy require ICU admission. Among those patients, CRS is the leading indication. ICANS and sepsis are other major causes of admission to the ICU. This review provides a comprehensive overview of ICU considerations for managing CAR T-cell-related toxicities, covering criteria for ICU admission, approaches to grading and treating complications, and interdisciplinary recommendations to optimize patient outcomes. Enhanced awareness and early intervention are critical in reducing ICU mortality and improving overall survival in patients receiving CAR T-cell therapy.
Collapse
Affiliation(s)
- Anoosha Ponnapalli
- Division of Pulmonary, Critical Care and Sleep Medicinea, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avneet Kaur Arora
- Division of Pulmonary, Critical Care and Sleep Medicinea, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ayman O Soubani
- Division of Pulmonary, Critical Care and Sleep Medicinea, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
9
|
Phillips TJ, Carlo-Stella C, Morschhauser F, Bachy E, Crump M, Trněný M, Bartlett NL, Zaucha J, Wrobel T, Offner F, Humphrey K, Relf J, Filézac de L'Etang A, Carlile DJ, Byrne B, Qayum N, Lundberg L, Dickinson M. Glofitamab in Relapsed/Refractory Mantle Cell Lymphoma: Results From a Phase I/II Study. J Clin Oncol 2025; 43:318-328. [PMID: 39365960 PMCID: PMC11771347 DOI: 10.1200/jco.23.02470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/25/2024] [Accepted: 08/21/2024] [Indexed: 10/06/2024] Open
Abstract
PURPOSE Patients with relapsed/refractory (R/R) mantle cell lymphoma (MCL) have a poor prognosis. The phase I/II NP30179 study (ClinicalTrials.gov identifier: NCT03075696) evaluated glofitamab monotherapy in patients with R/R B-cell lymphomas, with obinutuzumab pretreatment (Gpt) to mitigate the risk of cytokine release syndrome (CRS) with glofitamab. We present data for patients with R/R MCL. METHODS Eligible patients with R/R MCL (at least one previous therapy) received Gpt (1,000 or 2,000 mg) 7 days before the first glofitamab dose (single dose or split over 2 days if required). Glofitamab step-up dosing was administered once a day on days 8 (2.5 mg) and 15 (10 mg) of cycle 1, with a target dose of 16 or 30 mg once every 3 weeks from cycle 2 day 1 onward, for 12 cycles. Efficacy end points included investigator-assessed complete response (CR) rate, overall response rate (ORR), and duration of CR. RESULTS Of 61 enrolled patients, 60 were evaluable for safety and efficacy. Patients had received a median of two previous therapies (range, 1-5). CR rate and ORR were 78.3% (95% CI, 65.8 to 87.9) and 85.0% (95% CI, 73.4 to 92.9), respectively. In patients who had received previous treatment with a Bruton tyrosine kinase inhibitor (n = 31), CR rate was 71.0% (95% CI, 52.0 to 85.8) and ORR was 74.2% (95% CI, 55.4 to 88.1). CRS after glofitamab administration occurred in 70.0% of patients, with a lower incidence in the 2,000 mg (63.6% [grade ≥2, 22.7%]) versus 1,000 mg (87.5%; grade ≥2, 62.5%) Gpt cohort. Four adverse events led to glofitamab withdrawal (all infections). CONCLUSION Fixed-duration glofitamab induced high CR rates in heavily pretreated patients with R/R MCL; the safety profile was manageable with appropriate support.
Collapse
MESH Headings
- Humans
- Lymphoma, Mantle-Cell/drug therapy
- Lymphoma, Mantle-Cell/pathology
- Male
- Aged
- Middle Aged
- Female
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Adult
- Neoplasm Recurrence, Local/drug therapy
Collapse
Affiliation(s)
- Tycel Jovelle Phillips
- University of Michigan Medical School, Ann Arbor, MI
- Current address: City of Hope National Medical Center, Duarte, CA
| | - Carmelo Carlo-Stella
- Department of Biomedical Sciences, Humanitas University and IRCCS Humanitas Research Hospital, Milano, Italy
| | | | - Emmanuel Bachy
- Hospices Civils de Lyon and Université Claude Bernard, Pierre-Bénite, France
| | - Michael Crump
- Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Marek Trněný
- First Faculty of Medicine, Charles University, General Hospital, Prague, Czech Republic
| | | | - Jan Zaucha
- Medical University of Gdańsk, Gdańsk, Poland
| | | | - Fritz Offner
- Department of Hematology, Universitair Ziekenhuis, Gent, Belgium
| | | | - James Relf
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | | | - Ben Byrne
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | - Naseer Qayum
- Roche Products Ltd, Welwyn Garden City, United Kingdom
| | | | - Michael Dickinson
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
10
|
Hatashima A, Shadman M, Raghunathan V. Chimeric Antigen Receptor-T Cells in the Modern Era of Chronic Lymphocytic Leukemia Treatment. Cancers (Basel) 2025; 17:268. [PMID: 39858050 PMCID: PMC11763375 DOI: 10.3390/cancers17020268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis. Chimeric antigen receptor (CAR)-T cells have transformed the treatment of relapsed/refractory B-cell malignancies. Although the earliest success of CAR-T cell therapy was in CLL, the clinical application of this modality has lagged until the recent approval of the first CAR-T cell product for CLL. In this review, we describe the current treatment options for upfront and subsequent therapies and the unmet need for novel agents highlighted by the burgeoning role and challenges of CAR-T cell therapy.
Collapse
Affiliation(s)
- Alycia Hatashima
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Mazyar Shadman
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Vikram Raghunathan
- Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA
- Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
11
|
Danilov AV, Sauter C, Phillips T, Coombs CC, Ip A, Wang Y, Rhodes J, Leslie L, Barrientos J, Saeed H, Strati P, Barta SK, Shadman M. Perspectives on Current Challenges and Emerging Approaches for Lymphoma Management From the First Bridging the Gaps in Leukemia, Lymphoma, and Multiple Myeloma Conference. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00016-3. [PMID: 39919997 DOI: 10.1016/j.clml.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 02/09/2025]
Abstract
Recent years have brought a much-needed paradigm shift to the management and treatment of mature B-cell lymphomas. Pathophysiologic and clinical heterogeneity within the various subtypes have historically contributed to treatment challenges and differences in outcomes. Novel genomic tools and therapeutic modalities give promise for improved patient outcomes, but are also making treatment planning increasingly complex. To bridge the gaps between therapeutic advancements and clinical practice, an assembly of multidisciplinary hematologic oncology faculty convened to deliberate on the prevailing challenges, knowledge gaps, and controversies in B-cell lymphoma and chronic lymphocytic leukemia management. Many controversies and questions were identified regarding treatment selection, sequencing, and high-risk subtypes. There is a need for head-to-head trials in this therapeutic area to help answer some of these questions. The insights explored and the gaps in knowledge identified by this panel will inform a follow-up conference in 2025 that will employ the modified Delphi method to develop and publish formal consensus recommendations that can provide actionable guidance to practicing clinicians.
Collapse
Affiliation(s)
- Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA.
| | - Craig Sauter
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH
| | - Tycel Phillips
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA
| | | | - Andrew Ip
- Hackensack Meridian School of Medicine, John Theurer Cancer Center, Hackensack, NJ
| | - Yucai Wang
- Department of Hematology, Mayo Clinic, Rochester, MN
| | - Joanna Rhodes
- Department of Medicine, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ
| | - Lori Leslie
- John Theurer Cancer Center, Hackensack University Medical Center, Hackensack, NJ
| | | | - Hayder Saeed
- Moffitt Malignant Hematology, Moffitt Cancer Center, Tampa, FL
| | - Paolo Strati
- Department of Lymphoma - Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stefan K Barta
- Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Mazyar Shadman
- Hematologic Malignancies, Fred Hutch Cancer Center, Seattle, WA
| |
Collapse
|
12
|
Iacoboni G, Morschhauser F. Building the future management of follicular lymphoma with T-cell-redirecting strategies. Blood 2025; 145:170-175. [PMID: 39541577 DOI: 10.1182/blood.2024025699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
ABSTRACT Follicular lymphoma (FL) usually requires multiple lines of therapy, and disease control remains largely insufficient with conventional chemoimmunotherapy. Several T-cell-redirecting strategies recently approved in the relapsed/refractory setting have the potential to improve outcomes and change the treatment algorithm in FL. This review focuses on the role of chimeric antigen receptor T cells and bispecific antibodies in FL, paying special attention to sequencing approaches and future directions.
Collapse
Affiliation(s)
- Gloria Iacoboni
- Department of Hematology, Vall d'Hebron University Hospital, Experimental Hematology, Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Franck Morschhauser
- Department of Hematology, Centre Hospitalier Universitaire de Lille, Groupe de Recherche sur les Formes Injectables et les Technologies Associées, Lille, France
| |
Collapse
|
13
|
Kattamuri L, Mohan Lal B, Vojjala N, Jain M, Sharma K, Jain S, Al Hadidi S. Safety and efficacy of CAR-T cell therapy in patients with autoimmune diseases: a systematic review. Rheumatol Int 2025; 45:18. [PMID: 39754644 DOI: 10.1007/s00296-024-05772-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of various hematological malignancies. Recently, CAR-T has been used in refractory auto-immune diseases with initial encouraging results. In this systematic review, we examined the safety and efficacy of CAR-T in patients with refractory auto-immune diseases. PubMed/Medline, EMBASE, Web of Science, and Scopus search revealed 1552 articles, of which 24 were included for the final analysis. 80 patients with autoimmune diseases received CAR-T cell therapy, of which 52 patients had systemic lupus erythematosus, 16 patients had systemic sclerosis, 7 patients had idiopathic inflammatory myopathies, 2 patient had anti-phospholipid antibody syndrome, 2 patients had rheumatoid arthritis, and 1 patient had Sjogren's disease. 44 patients got CD-19 CAR-T and 36 patients got BCMA/CD-19 compound CAR-T. All the patients achieved an immunosuppression-free state at the last follow-up. Of the 47 patients with follow-up data, 79 patients developed cytokine release syndrome (CRS) and 4 patients developed neurotoxicity. None of the patients had fatal adverse events with CAR-T cell therapy. CAR-T appears to be safe and effective in patients with refractory autoimmune diseases. Future studies are crucial to further validate these findings, explore long-term outcomes, and refine the treatment protocols to enhance efficacy and safety.
Collapse
Affiliation(s)
- Lakshmi Kattamuri
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Bhavesh Mohan Lal
- Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Nikhil Vojjala
- Department of Internal Medicine, Trinity Health Oakland/Wayne State University School of Medicine, Michigan, 48341, USA
| | - Mansi Jain
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Kunal Sharma
- Department of Internal Medicine, Texas Tech University Health Sciences Center, El Paso, TX, 79905, USA
| | - Siddharth Jain
- Department of Internal Medicine, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Samer Al Hadidi
- Division of Hematology-Oncology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
14
|
Steinhardt MJ, Einsele H, Waldschmidt JM. Advances in CD19-targeting CAR-T cell therapies for multiple myeloma. Expert Opin Biol Ther 2025; 25:21-25. [PMID: 39670821 DOI: 10.1080/14712598.2024.2443093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Emerging evidence suggests that, while CD19 is primarily expressed on immature B-cell precursors, it is also present on drug-resistant plasma cells that have been postulated to function as multiple myeloma (MM) stem cells, driving the progression of relapsing disease. Targeting CD19 with chimeric antigen receptor (CAR) T cells offers a promising strategy for addressing this residual disease burden, potentially leading to more durable treatments and enhanced relapse prevention. AREAS COVERED This review examines the molecular basis of CD19-targeted CAR-T therapy in MM, highlighting its potential, key challenges, and efficacy and safety in early clinical trials for relapsed/refractory and newly diagnosed MM. EXPERT OPINION CD19 expression in MM correlates with poor prognosis and may be significantly underestimated, particularly following debulking therapy, as demonstrated by advanced visualization technologies like single molecule-sensitive direct stochastic optical reconstruction microscopy (dSTORM). Early-phase trials using CD19-directed CAR-T as post-transplant consolidation show promise in prolonging progression-free survival. Multi-target approaches, e.g. the bispecific BCMA×CD19 CAR-T product GC012F, are advancing through clinical development with encouraging safety and efficacy data. However, randomized controlled trials will be necessary to confirm the role and positioning of CD19-directed CAR-T cells within the current MM treatment landscape.
Collapse
Affiliation(s)
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany
| | | |
Collapse
|
15
|
Barraclough A, Tang C, Lasica M, Smyth E, Cirillo M, Mutsando H, Cheah CY, Ku M. Diagnosis and management of mantle cell lymphoma: a consensus practice statement from the Australasian Lymphoma Alliance. Intern Med J 2025; 55:117-129. [PMID: 39578957 DOI: 10.1111/imj.16561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 10/13/2024] [Indexed: 11/24/2024]
Abstract
Mantle cell lymphoma (MCL) is a clinically heterogeneous B-cell neoplasm with unique clinicopathological features, accounting for 5% of all non-Hodgkin lymphoma. Although for many chemoimmunotherapy can lead to durable remissions, those with poor baseline prognostic factors, namely blastoid morphology, TP53 aberrancy and Ki67 >30%, will have less durable responses to conventional therapies. With this in mind, clinical trials have focused on novel targeted therapies to improve outcomes. This review details the recent advances in the understanding of MCL biology and outlines the recommended diagnostic strategies and evidence-based approaches to treatment.
Collapse
Affiliation(s)
- Allison Barraclough
- Department of Haematology, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Catherine Tang
- Department of Haematology, Gosford Hospital, Gosford, New South Wales, Australia
- School of Medicine and Public Health, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Masa Lasica
- Department of Haematology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Elizabeth Smyth
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Melita Cirillo
- Department of Haematology, Royal Perth Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Howard Mutsando
- Cancer Services, Toowoomba Hospital, Toowoomba, Queensland, Australia
- Toowoomba Rural Clinical School, University of Queensland, Toowoomba, Queensland, Australia
| | - Chan Y Cheah
- Department of Haematology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
- Medical School, University of Western Australia, Perth, Western Australia, Australia
| | - Matthew Ku
- Department of Haematology, St Vincent's Hospital Melbourne, Melbourne, Victoria, Australia
- University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
16
|
De Philippis C, Giacomel A, Pensato U, Pinton C, Taurino D, Mannina D, Mariotti J, Sarina B, Marcheselli S, Timofeeva I, Capizzuto R, Santoro A, Bramanti S. Late-onset relapsing neurotoxicity after Brexucabtagene autoleucel associated with high chimeric antigen receptor T cells in cerebrospinal fluid. Cytotherapy 2025; 27:25-28. [PMID: 39152952 DOI: 10.1016/j.jcyt.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND AIMS Mounting evidence suggests that persistent cell expansion is the main driver for both efficacy and toxicity of chimeric antigen receptor (CAR) T-cell therapy. Hereby, we describe a case of delayed recurrent neurotoxicity associated with late CAR T-cells re-expansion. CASE DESCRIPTION A 44-year-old man suffering from mantle cell lymphoma received brexu-cel. After infusion, he developed grade 2 cytokine release syndrome. On day +11, grade 3 neurotoxicity was reported and high-dose methylprednisolone was started with a complete resolution of neurological manifestations. On day +30, he experienced a late-onset CAR T-cell toxicity associated with CAR T-cell re-expansion. The patient was treated with tocilizumab and dexamethasone, with resolution of symptoms. On day +58, he was readmitted for new onset of neurotoxicity. Notably, a new CAR T-cell expansion was observed, with an unexpectedly elevated cerebrospinal fluid/blood ratio. The patient was promptly treated with dexamethasone and then escalated to high-dose methylprednisolone and anakinra, with resolution of his neurologic condition noted. CONCLUSIONS CAR T-cell-related neurotoxicity usually has an early monophasic course. To our knowledge, this is the first case of late-onset, recurrent neurotoxicity. Moreover, an elevated level of cerebrospinal fluid CAR T cells was observed, which may suggest that the delayed neurotoxicity was primarily caused by the brain infiltration of CAR T cells rather than driven by cytokine-mediated neuroinflammation.
Collapse
Affiliation(s)
| | - Arianna Giacomel
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Milan, Italy; IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Pinton
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Daniela Taurino
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Daniele Mannina
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Jacopo Mariotti
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Barbara Sarina
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | | | - Inna Timofeeva
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Rossana Capizzuto
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| | - Armando Santoro
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Stefania Bramanti
- IRCCS Humanitas Research Hospital, Humanitas Cancer Center, Milan, Italy
| |
Collapse
|
17
|
Goyco Vera D, Waghela H, Nuh M, Pan J, Lulla P. Approved CAR-T therapies have reproducible efficacy and safety in clinical practice. Hum Vaccin Immunother 2024; 20:2378543. [PMID: 39104200 PMCID: PMC11305028 DOI: 10.1080/21645515.2024.2378543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 07/07/2024] [Indexed: 08/07/2024] Open
Abstract
CAR-T cell therapy has established itself as a highly effective treatment for hematological malignancies. There are currently six commercial CAR-T products that have been FDA approved for diseases such as B-ALL, LBCL, MCL, FL, MM, and CLL/SLL. "Real-world" studies allow us to evaluate outcomes from the general population to determine their efficacy and safety compared to those who were included in the original trials. Based on several well conducted "Real-world" studies that represent diverse populations, we report that outcomes from the original trials that led to the approval of these therapies are comparable to those in practice.
Collapse
Affiliation(s)
- Daniel Goyco Vera
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hiral Waghela
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mohamed Nuh
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Jonathan Pan
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Premal Lulla
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
18
|
Padzińska-Pruszyńska IB, Taciak B, Kiraga Ł, Smolarska A, Górczak M, Kucharzewska P, Kubiak M, Szeliga J, Matejuk A, Król M. Targeting Cancer: Microenvironment and Immunotherapy Innovations. Int J Mol Sci 2024; 25:13569. [PMID: 39769334 PMCID: PMC11679359 DOI: 10.3390/ijms252413569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
In 2024, the United States was projected to experience 2 million new cancer diagnoses and approximately 611,720 cancer-related deaths, reflecting a broader global trend in which cancer cases are anticipated to exceed 35 million by 2050. This increasing burden highlights ongoing challenges in cancer treatment despite significant advances that have reduced cancer mortality by 31% since 1991. Key obstacles include the disease's inherent heterogeneity and complexity, such as treatment resistance, cancer stem cells, and the multifaceted tumor microenvironment (TME). The TME-comprising various tumor and immune cells, blood vessels, and biochemical factors-plays a crucial role in tumor growth and resistance to therapies. Recent innovations in cancer treatment, particularly in the field of immuno-oncology, have leveraged insights into TME interactions. An emerging example is the FDA-approved therapy using tumor-infiltrating lymphocytes (TILs), demonstrating the potential of cell-based approaches in solid tumors. However, TIL therapy is just one of many strategies being explored. This review provides a comprehensive overview of the emerging field of immuno-oncology, focusing on how novel therapies targeting or harnessing components of the TME could enhance treatment efficacy and address persistent challenges in cancer care.
Collapse
Affiliation(s)
- Irena Barbara Padzińska-Pruszyńska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Bartłomiej Taciak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Łukasz Kiraga
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences, 02-787 Warsaw, Poland;
| | - Anna Smolarska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Górczak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Paulina Kucharzewska
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Małgorzata Kubiak
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Jacek Szeliga
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| | - Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, 65-046 Zielona Góra, Poland;
| | - Magdalena Król
- Center of Cellular Immunotherapies, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (I.B.P.-P.); (B.T.); (A.S.); (M.G.); (P.K.); (M.K.); (J.S.)
| |
Collapse
|
19
|
Brudno JN, Maus MV, Hinrichs CS. CAR T Cells and T-Cell Therapies for Cancer: A Translational Science Review. JAMA 2024; 332:1924-1935. [PMID: 39495525 PMCID: PMC11808657 DOI: 10.1001/jama.2024.19462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Importance Chimeric antigen receptor (CAR) T cells are T lymphocytes that are genetically engineered to express a synthetic receptor that recognizes a tumor cell surface antigen and causes the T cell to kill the tumor cell. CAR T treatments improve overall survival for patients with large B-cell lymphoma and progression-free survival for patients with multiple myeloma. Observations Six CAR T-cell products are approved by the US Food and Drug Administration (FDA) for 6 hematologic malignancies: B-cell acute lymphoblastic leukemia, large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, chronic lymphocytic leukemia, and multiple myeloma. Compared with standard chemotherapy followed by stem cell transplant, CAR T cells improved 4-year overall survival in patients with large B-cell lymphoma (54.6% vs 46.0%). Patients with pediatric acute lymphoblastic leukemia achieved durable remission after CAR T-cell therapy. At 3-year follow-up, 48% of patients were alive and relapse free. In people with multiple myeloma treated previously with 1 to 4 types of non-CAR T-cell therapy, CAR T-cell therapy prolonged treatment-free remissions compared with standard treatments (in 1 trial, CAR T-cell therapy was associated with progression-free survival of 13.3 months compared with 4.4 months with standard therapy). CAR T-cell therapy is associated with reversible acute toxicities, such as cytokine release syndrome in approximately 40% to 95% of patients, and neurologic disorders in approximately 15% to 65%. New CAR T-cell therapies in development aim to increase efficacy, decrease adverse effects, and treat other types of cancer. No CAR T-cell therapies are FDA approved for solid tumors, but recently, 2 other T lymphocyte-based treatments gained approvals: 1 for melanoma and 1 for synovial cell sarcoma. Additional cellular therapies have attained responses for certain solid tumors, including pediatric neuroblastoma, synovial cell sarcoma, melanoma, and human papillomavirus-associated cancers. A common adverse effect occurring with these T lymphocyte-based therapies is capillary leak syndrome, which is characterized by fluid retention, pulmonary edema, and kidney dysfunction. Conclusions and Relevance CAR T-cell therapy is an FDA-approved therapy that has improved progression-free survival for multiple myeloma, improved overall survival for large B-cell lymphoma, and attained high rates of cancer remission for other hematologic malignancies such as acute lymphoblastic leukemia, follicular lymphoma, and mantle cell lymphoma. Recently approved T lymphocyte-based therapies demonstrated the potential for improved outcomes in solid tumor malignancies.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/therapeutic use
- Receptors, Chimeric Antigen/therapeutic use
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Hematologic Neoplasms/immunology
- Hematologic Neoplasms/mortality
- Hematologic Neoplasms/therapy
Collapse
Affiliation(s)
- Jennifer N Brudno
- Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Marcela V Maus
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick
| |
Collapse
|
20
|
Epstein-Peterson ZD. T-cell-based therapies for treating relapsed or refractory mantle cell lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:48-53. [PMID: 39644075 PMCID: PMC11665742 DOI: 10.1182/hematology.2024000657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
While targeted therapies such as Bruton's tyrosine kinase and BCL2 inhibitors have fundamentally changed the treatment of mantle cell lymphoma (MCL), not all patients respond to these therapies, and responses are finite and can be fleeting, especially with high-risk MCL. As patients progress through successive therapies, the clinical course is characterized by shortening response times,1 frequent disease acceleration, and limited survival outcomes. Recently, the sensitivity of MCL to novel immune-based therapies is being realized with favorable results, as chimeric antigen receptor-modified T cells and bispecific T-cell-engaging antibodies are being investigated and implemented into practice for patients. However, critical issues remain to understand the role of these agents in routine practice. In this review, we discuss the current landscape regarding these agents, examine our approach to incorporating them into practice, and consider unanswered questions that we must ultimately address to improve outcomes for patients.
Collapse
Affiliation(s)
- Zachary D. Epstein-Peterson
- Lymphoma Service, Division of Hematologic Malignancies, New York, NY
- Cellular Therapy Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
21
|
Sawalha Y, Maddocks K. Your chemo is no good here: management of high-risk MCL. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:34-41. [PMID: 39644043 DOI: 10.1182/hematology.2024000658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Historically considered a lymphoma with limited treatment options and poor outcomes, the treatment landscape in mantle cell lymphoma (MCL) has evolved remarkably in the last decade. Chemoimmunotherapy (CIT) remains the primary frontline treatment for most patients with MCL, typically with an intensive approach in younger and fit patients. The role of consolidative autologous stem cell transplantation remains controversial, with recent data further questioning its benefit. Novel agents have shown promising results in recent frontline clinical trials and challenge the current paradigm in MCL, particularly in high-risk patients who generally have poor outcomes with CIT. Risk stratification is key to incorporating novel agents in the frontline treatment of MCL, identifying patients who do not benefit from or could be spared CIT, guiding treatment intensity and duration, and improving overall outcomes, including safety and quality of life. The MCL International Prognostic Index and Ki-67 play an important role in identifying patients with high-risk MCL. TP53 aberrations, particularly mutations, currently identify patients with the highest risk, limited benefit from CIT, and greatest need for novel therapies. Other genetic aberrations and biological clusters are being identified but currently have limited clinical utility.
Collapse
Affiliation(s)
- Yazeed Sawalha
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Kami Maddocks
- Department of Internal Medicine, Division of Hematology, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH
| |
Collapse
|
22
|
Sainatham C, Yadav D, Dilli Babu A, Tallapalli JR, Kanagala SG, Filippov E, Murillo Chavez F, Ahmed N, Lutfi F. The current socioeconomic and regulatory landscape of immune effector cell therapies. Front Med (Lausanne) 2024; 11:1462307. [PMID: 39697210 PMCID: PMC11652178 DOI: 10.3389/fmed.2024.1462307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Immune cell effector therapies, including chimeric antigen receptor (CAR)-T cells, T-cell receptor (TCR) T cells, natural killer (NK) cells, and macrophage-based therapies, represent a transformative approach to cancer treatment, harnessing the immune system to target and eradicate malignant cells. CAR-T cell therapy, the most established among these, involves engineering T cells to express CARs specific to cancer cell antigens, showing remarkable efficacy in hematologic malignancies like leukemias, B-cell lymphomas, and multiple myeloma. Similarly, TCR-modified therapies, which reprogram T cells to recognize intracellular tumor antigens presented by major histocompatibility complex (MHC) molecules, offer promise for a range of solid tumors. NK-cell therapies leverage NK cells' innate cytotoxicity, providing an allogeneic approach that avoids some of the immune-related complications associated with T-cell-based therapies. Macrophage-based therapies, still in early stages of the development, focus on reprogramming macrophages to stimulate an immune response against cancer cells in the tumor microenvironment. Despite their promise, socioeconomic and regulatory challenges hinder the accessibility and scalability of immune cell effector therapies. These treatments are costly, with CAR-T therapies currently exceeding $400,000 per patient, creating significant disparities in access based on socioeconomic status and geographic location. The high manufacturing costs stem from the personalized, labor-intensive processes of harvesting, modifying, and expanding patients' cells. Moreover, complex logistics for manufacturing and delivering these therapies limit their reach, particularly in low-resource settings. Regulatory pathways further complicate the landscape. In the United States., the Food and Drug Administrations' (FDA) accelerated approval processes for cell-based therapies facilitate innovation but do not address cost-related barriers. In Europe, the European Medicines Agency (EMA) offers adaptive pathways, yet decentralized reimbursement systems create uneven access across member states. Additionally, differing regulatory standards for manufacturing and quality control worldwide pose hurdles for global harmonization and access. To expand the reach of immune effector cell therapies, a multipronged approach is needed-streamlined regulatory frameworks, policies to reduce treatment costs, and international collaborations to standardize manufacturing. Addressing these socioeconomic and regulatory obstacles is essential to make these life-saving therapies accessible to a broader patient population worldwide. We present a literature review on the current landscape of immune effector cell therapies and barriers of access to currently approved standard of care therapy at various levels.
Collapse
Affiliation(s)
- Chiranjeevi Sainatham
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Devvrat Yadav
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Aravind Dilli Babu
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Jayanth Reddy Tallapalli
- Division of Infectious Diseases, Department of Internal Medicine, University of South Florida, Tampa, FL, United States
| | - Sai Gautham Kanagala
- Department of Internal Medicine, New York Medical College/Metropolitan Hospital Center, New York, NY, United States
| | - Evgenii Filippov
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Franco Murillo Chavez
- Department of Internal Medicine, Sinai Hospital of Baltimore, Baltimore, MD, United States
| | - Nausheen Ahmed
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Forat Lutfi
- Department of Hematologic Malignancies and Cellular Therapeutics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
23
|
Cartagena J, Deshpande A, Rosenthal A, Tsang M, Hilal T, Rimsza L, Kurzrock R, Munoz J. Measurable Residual Disease in Mantle Cell Lymphoma: The Unbearable Lightness of Being Undetectable. Curr Oncol Rep 2024; 26:1664-1674. [PMID: 39641852 DOI: 10.1007/s11912-024-01620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE OF REVIEW This paper evaluates the benefits and limitations of detecting measurable residual disease (MRD) in mantle cell lymphoma (MCL) and assesses its prognostic value. It also aims to highlight the importance of detecting low MRD levels post-treatment and their application in clinical practice. RECENT FINDINGS Recent studies show that MRD levels predict relapse and survival outcomes in hematologic neoplasms, including MCL. RT-qPCR is currently the most used method due to its high reproducibility and sensitivity. Ideal MRD detection should be highly sensitive, cost-effective, and applicable to a wide demographic of patients. This paper concludes that MRD detection has prognostic value in MCL but faces limitations in sensitivity and specificity. Further research is needed to establish the significance of low MRD levels before integrating these methods into clinical practice. Improved MRD detection technologies and understanding their impact on clinical outcomes will guide better patient management in MCL.
Collapse
Affiliation(s)
- Julio Cartagena
- University of Puerto Rico School of Medicine, San Juan, PR, USA
| | | | - Allison Rosenthal
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Mazie Tsang
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Talal Hilal
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Lisa Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Razelle Kurzrock
- Michels Rare Cancers Research Laboratories, Froedtert and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Javier Munoz
- Department of Hematology and Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| |
Collapse
|
24
|
Stanchina MD, Montoya S, Danilov AV, Castillo JJ, Alencar AJ, Chavez JC, Cheah CY, Chiattone C, Wang Y, Thompson M, Ghia P, Taylor J, Alderuccio JP. Navigating the changing landscape of BTK-targeted therapies for B cell lymphomas and chronic lymphocytic leukaemia. Nat Rev Clin Oncol 2024; 21:867-887. [PMID: 39487228 DOI: 10.1038/s41571-024-00956-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
The B cell receptor (BCR) signalling pathway has an integral role in the pathogenesis of many B cell malignancies, including chronic lymphocytic leukaemia, mantle cell lymphoma, diffuse large B cell lymphoma and Waldenström macroglobulinaemia. Bruton tyrosine kinase (BTK) is a key node mediating signal transduction downstream of the BCR. The advent of BTK inhibitors has revolutionized the treatment landscape of B cell malignancies, with these agents often replacing highly intensive and toxic chemoimmunotherapy regimens as the standard of care. In this Review, we discuss the pivotal trials that have led to the approval of various covalent BTK inhibitors, the current treatment indications for these agents and mechanisms of resistance. In addition, we discuss novel BTK-targeted therapies, including covalent, as well as non-covalent, BTK inhibitors, BTK degraders and combination doublet and triplet regimens, to provide insights on the best current treatment paradigms in the frontline setting and at disease relapse.
Collapse
Affiliation(s)
- Michele D Stanchina
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Skye Montoya
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexey V Danilov
- Division of Lymphoma, Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Jorge J Castillo
- Bing Center for Waldenström Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Alvaro J Alencar
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Julio C Chavez
- Department of Malignant Hematology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Chan Y Cheah
- Division of Haematology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Linear Clinical Research, Nedlands, Western Australia, Australia
| | - Carlos Chiattone
- Hematology and Oncology Discipline, Hospital Samaritano-Higienópolis, São Paulo, Brazil
| | - Yucai Wang
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Meghan Thompson
- Leukaemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paolo Ghia
- Division of Experimental Oncology, IRCSS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Justin Taylor
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo Alderuccio
- Division of Hematology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
25
|
Chen DH, O'Reilly M, Cheok KP, Low R, Puranik R, Clark S, Walker JM, Manisty C, Ghosh AK, Roddie C. CD19-targeting chimeric antigen receptor T-cell therapy is safe and effective for intra-cardiac B cell non-Hodgkin lymphoma. EJHAEM 2024; 5:1283-1289. [PMID: 39691274 PMCID: PMC11647700 DOI: 10.1002/jha2.1020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 12/19/2024]
Abstract
Introduction Chimeric antigen receptor T-cell (CAR-T) therapy is highly effective in B-cell blood cancers, but there is limited data on its safety and efficacy in intra-cardiac lymphoma, due to the potential risks of cardiotoxicity and pseudo-progression. Discussion We discuss four high-risk cases that were managed with a multi-disciplinary approach, including baseline cardiac risk assessment and surveillance with multimodal cardiac imaging and serum cardiac biomarkers, elective supportive care in the intensive care unit, and early treatment of cytokine release syndrome. Conclusion CAR-T therapy can be effective and safe in the treatment of B-cell blood cancers with intra-cardiac disease.
Collapse
Affiliation(s)
- Daniel H Chen
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- Hatter Cardiovascular Institute University College of London London UK
- Prince of Wales & St George Hospitals South East Sydney Local Health District Sydney Australia
| | - Maeve O'Reilly
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- University College London Cancer Institute University College London London UK
| | - Kathleen P Cheok
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- University College London Cancer Institute University College London London UK
| | - Ryan Low
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
| | - Rajesh Puranik
- Royal Prince Alfred Hospital Sydney Australia
- Charles Perkins Centre University of Sydney Sydney Australia
| | - Samuel Clark
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
| | - John Malcolm Walker
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- Hatter Cardiovascular Institute University College of London London UK
| | - Charlotte Manisty
- Barts Heart Centre St Bartholomew's Hospital Barts Health NHS Trust London UK
| | - Arjun K Ghosh
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- Hatter Cardiovascular Institute University College of London London UK
- Barts Heart Centre St Bartholomew's Hospital Barts Health NHS Trust London UK
| | - Claire Roddie
- University College Hospital University College London Hospitals NHS Foundation Trust London UK
- University College London Cancer Institute University College London London UK
| |
Collapse
|
26
|
Deschênes-Simard X, Pennisi M, Perales MA, Shah GL, Zelenetz AD, Yahalome G J, Imber BS, Santomasso BD, Dahi PB. Severe toxicity, but long-term persistence of CAR T cells after immune checkpoint inhibitors in large B-cell lymphoma. Leuk Lymphoma 2024:1-6. [PMID: 39565041 DOI: 10.1080/10428194.2024.2430703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Affiliation(s)
- Xavier Deschênes-Simard
- Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, University of Montreal, Montréal, Quebec, Canada
| | - Martina Pennisi
- Department of Hematology, Fondazione IRCCS Istituto Nazionale deiTumori, Milan, Italy
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gunjan L Shah
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Andrew D Zelenetz
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Brandon S Imber
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Early Drug Development Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bianca D Santomasso
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Parastoo B Dahi
- Adult Bone Marrow Transplant Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
27
|
Grégoire C, Coutinho de Oliveira B, Caimi PF, Caers J, Melenhorst JJ. Chimeric antigen receptor T-cell therapy for haematological malignancies: Insights from fundamental and translational research to bedside practice. Br J Haematol 2024; 205:1699-1713. [PMID: 39262037 DOI: 10.1111/bjh.19751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of lymphoid malignancies, leading to the approval of CD19-CAR T cells for B-cell lymphomas and acute leukaemia, and more recently, B-cell maturation antigen-CAR T cells for multiple myeloma. The long-term follow-up of patients treated in the early clinical trials demonstrates the possibility for long-term remission, suggesting a cure. This is associated with a low incidence of significant long-term side effects and a rapid improvement in the quality of life for responders. In contrast, other types of immunotherapies require prolonged treatments or carry the risk of long-term side effects impairing the quality of life. Despite impressive results, some patients still experience treatment failure or ultimately relapse, underscoring the imperative to improve CAR T-cell therapies and gain a better understanding of their determinants of efficacy to maximize positive outcomes. While the next-generation of CAR T cells will undoubtingly be more potent, there are already opportunities for optimization when utilizing the currently available CAR T cells. This review article aims to summarize the current evidence from clinical, translational and fundamental research, providing clinicians with insights to enhance their understanding and use of CAR T cells.
Collapse
Affiliation(s)
- Céline Grégoire
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Beatriz Coutinho de Oliveira
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paolo F Caimi
- Department of Hematology and Oncology, Cleveland Clinic Taussig Cancer Institute, Cleveland, Ohio, USA
| | - Jo Caers
- Department of Clinical Hematology and Laboratory of Hematology (GIGA I3), University Hospital Center of Liège and University of Liège, Liège, Belgium
| | - Jan Joseph Melenhorst
- Center for ImmunoTherapy and Precision Immuno-Oncology (CITI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
28
|
Zhang JR, Wu SY, Jain P, Ok CY, Yan F, Chen W, Oriabure O, Dabaja B, Gunther J, Fang P, Pinnix C, Wang ML, Gaulin C. Characteristics, treatment, and outcomes of mantle cell lymphoma with cutaneous involvement: a decade-long study at MD Anderson cancer center. Leuk Lymphoma 2024; 65:1729-1732. [PMID: 38972059 DOI: 10.1080/10428194.2024.2374457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Jared R Zhang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Susan Y Wu
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Preetesh Jain
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chi Young Ok
- Department of Hematopathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangfang Yan
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wendy Chen
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Onyeka Oriabure
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bouthaina Dabaja
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jillian Gunther
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Penny Fang
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chelsea Pinnix
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael L Wang
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles Gaulin
- Department of Lymphoma/Myeloma, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
29
|
Arunachalam AK, Grégoire C, Coutinho de Oliveira B, Melenhorst JJ. Advancing CAR T-cell therapies: Preclinical insights and clinical translation for hematological malignancies. Blood Rev 2024; 68:101241. [PMID: 39289094 DOI: 10.1016/j.blre.2024.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved significant success in achieving durable and potentially curative responses in patients with hematological malignancies. CARs are tailored fusion proteins that direct T cells to a specific antigen on tumor cells thereby eliciting a targeted immune response. The approval of several CD19-targeted CAR T-cell therapies has resulted in a notable surge in clinical trials involving CAR T cell therapies for hematological malignancies. Despite advancements in understanding response mechanisms, resistance patterns, and adverse events associated with CAR T-cell therapy, the translation of these insights into robust clinical efficacy has shown modest outcomes in both clinical trials and real-world scenarios. Therefore, the assessment of CAR T-cell functionality through rigorous preclinical studies plays a pivotal role in refining therapeutic strategies for clinical applications. This review provides an overview of the various in vitro and animal models used to assess the functionality of CAR T-cells. We discuss the findings from preclinical research involving approved CAR T-cell products, along with the implications derived from recent preclinical studies aiming to optimize the functionality of CAR T-cells. The review underscores the importance of robust preclinical evaluations and the need for models that accurately replicate human disease to bridge the gap between preclinical success and clinical efficacy.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Animals
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Translational Research, Biomedical
- Disease Models, Animal
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- Arun K Arunachalam
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Céline Grégoire
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Beatriz Coutinho de Oliveira
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America
| | - Jan Joseph Melenhorst
- Cell Therapy & Immuno-Engineering Program, Center for Immunotherapy and Precision Immuno-Oncology, Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, United States of America.
| |
Collapse
|
30
|
Donzelli L, Antonacci M, Zhdanovskaya N, Petrucci L, Di Palma M, Martelli M, Di Rocco A. Lymphocyte recovery after bendamustine therapy in patients with mantle cell lymphoma. Results of a retrospective analysis and prognostic impact in the CAR-T era. Ann Hematol 2024; 103:4637-4642. [PMID: 39212720 DOI: 10.1007/s00277-024-05962-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Bendamustine in combination with rituximab (BR) or with rituximab and cytarabine (R-BAC) is the standard first-line immunochemotherapy in mantle cell lymphoma (MCL) for elderly patients and patients ineligible for intensive regimens or autologous transplantation. As bendamustine causes prolonged lymphopenia and the literature lacks evidence of its persistence in patients with MCL, this retrospective analysis aims to estimate the lymphocyte recovery time, also in view of potential immunotherapy with CAR-T cells. Data were collected from 44 consecutive MCL patients who received bendamustine (BR or R-BAC) as first-line therapy at the Hematology Unit of Sapienza University Hospital between May 2011 and April 2022. Twenty patients (45%) were treated with R-BAC and 24 (55%) with BR. At baseline, the median lymphocyte count was 1795/µl (range: 370-11730/µL). One month after the end of therapy, it was 450/µl (range: 50-3300/µl) and 3 months after 768/µl (range: 260-1650/µl). After 6 and 9 months, we observed a gradual increase in median lymphocyte count of 900/µl (range: 370-2560/µl and 130-2770/µl, respectively). After 12 months median lymphocyte count was 1256/µl (range: 240-4140/µl). Median lymphocyte count at 1, 3, 6, and 9 months post-treatment was significantly lower than baseline but showed recovery by the 12 months. This finding is crucial for MCL patients considering CAR-T cell therapy, suggesting a minimum 9-month interval between bendamustine administration and leukapheresis.
Collapse
Affiliation(s)
- Livia Donzelli
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | - M Antonacci
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - N Zhdanovskaya
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - L Petrucci
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - M Di Palma
- Hematology Unit, AORN Sant'Anna e San Sebastiano, Caserta, Italy
| | - M Martelli
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| | - A Di Rocco
- Hematology Unit, Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
31
|
Sureda A, Lugtenburg PJ, Kersten MJ, Subklewe M, Spanjaart A, Shah NN, Kerbauy LN, Roddie C, Pennings ERA, Mahuad C, Poon M, Hendricks CL, Kamdar M, Jacobson C. Cellular therapy in lymphoma. Hematol Oncol 2024; 42:e3200. [PMID: 37382086 DOI: 10.1002/hon.3200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/07/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
CD19-directed chimeric antigen receptor (CAR) T-cell therapy has had a dramatic impact on the natural history and survival of patients with high-risk B-cell non-Hodgkin lymphoma. Accompanying this success has been the development of new fields of medicine and investigation into toxicity risks and mitigation therapies, mechanisms of resistance and the development of novel and next generation products and strategies in order to address relapse, and issues related to global access and health care economics. This article is a survey of each of these areas as it pertains to the rapidly evolving field of CAR T-cell therapy, written by an International community of lymphoma experts, who also happen to be women.
Collapse
Affiliation(s)
- Anna Sureda
- Clinical Hematology Department, Institut Catala d'Oncologia - Hospitalet, Institut d'Investigatcions Biomediques de Bellvitge (IDIBELL), Universitat de Barcelona, Barcelona, Spain
| | | | - Marie José Kersten
- Department of Hematology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Marion Subklewe
- Department of Medicine III, University Hospital, LMU, Munich, Germany
- Laboratory for Translational Cancer Immunology, LMU Gene Center, Munich, Germany
| | - Anne Spanjaart
- Department of Hematology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Lucila N Kerbauy
- Departments of Stem Cell Transplantation and Hemotherapy/Cellular Therapy, Hospital Israelita Albert Einstein, Sao Paolo, Brazil
| | - Clarie Roddie
- Research Department of Haematology, Cancer Institute, University College London, London, UK
| | - Elise R A Pennings
- Department of Hematology, Amsterdam Universitair Medische Centra, Amsterdam, The Netherlands
| | - Carolina Mahuad
- Hematology Service, Department of Internal Medicine, Deutsches Hospital, Buenos Aires, Argentina
| | - Michelle Poon
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Candice L Hendricks
- Institute for Cellular and Molecular Medicine, Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Caron Jacobson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
32
|
Wu JJ, Wade SW, Itani T, Castaigne JG, Kloos I, Peng W, Kanters S, Zoratti MJ, Dreyling M, Shah B, Wang M. Unmet needs in relapsed/refractory mantle cell lymphoma (r/r MCL) post-covalent Bruton tyrosine kinase inhibitor (BTKi): a systematic literature review and meta-analysis. Leuk Lymphoma 2024; 65:1609-1622. [PMID: 38975903 DOI: 10.1080/10428194.2024.2369653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024]
Abstract
To quantify the clinical unmet need of r/r MCL patients who progress on a covalent Bruton tyrosine kinase inhibitor (BTKi), we conducted a systematic review to identify studies that reported overall survival (OS), progression-free survival (PFS), or response outcomes of patients who received a chemo(immunotherapy) ± targeted agent standard therapy (STx) or brexucabtagene autoleucel (brexu-cel) in the post-BTKi setting. Twenty-six studies (23 observational; three trials) reporting outcomes from 2005 to 2022 were included. Using two-stage frequentist meta-analyses, the estimated median PFS/OS for patients treated with an STx was 7.6 months (95% CI: 3.9-14.6) and 9.1 months (95% CI: 7.3-11.3), respectively. The estimated objective response rate (ORR) was 45% (95% CI: 34-57%). For patients treated with brexu-cel, the estimated median PFS/OS was 14.9 months (95% CI: 10.5-21.0) and 32.1 months (95% CI: 25.2-41.2), with a pooled ORR of 89% (95% CI: 86-91%). Our findings highlight a significant unmet need for patients whose disease progresses on a covalent BTKi.
Collapse
Affiliation(s)
- James J Wu
- Kite, A Gilead Company, Santa Monica, CA, USA
| | - Sally W Wade
- Wade Outcomes Research & Consulting, Salt Lake City, UT, USA
| | | | | | | | - Weimin Peng
- Kite, A Gilead Company, Santa Monica, CA, USA
| | | | | | | | | | - Michael Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
33
|
Weiss JM, Phillips TJ. SOHO State of the Art Updates and Next Questions | The Current State of CAR T-Cell Therapy and Bispecific Antibodies in Mantle Cell Lymphoma. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024:S2152-2650(24)02380-2. [PMID: 39523133 DOI: 10.1016/j.clml.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024]
Abstract
MCL remains incurable, and patients who relapse post BTK inhibitors have poor outcomes. BsAbs and CAR T cell therapy are novel strategies to treat patients with R/R MCL. These therapies exhibit favorable outcomes and side effect profiles in a previously dismal space. This review looks to detail the current data available for BsAbs and CAR T cell therapy in R/R MCL, and how are current treatment paradigm is shifting to incorporate these novel agents.
Collapse
Affiliation(s)
- Jonathan M Weiss
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI
| | - Tycel J Phillips
- Department of Hematology and Hematopoietic Cell Transplantation, Division of Lymphoma, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
34
|
Tix T, Alhomoud M, Shouval R, Cliff ERS, Perales MA, Cordas dos Santos DM, Rejeski K. Second Primary Malignancies after CAR T-Cell Therapy: A Systematic Review and Meta-analysis of 5,517 Lymphoma and Myeloma Patients. Clin Cancer Res 2024; 30:4690-4700. [PMID: 39256908 PMCID: PMC11546643 DOI: 10.1158/1078-0432.ccr-24-1798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy is a potent immunotherapy for hematologic malignancies, but patients can develop long-term adverse events, including second primary malignancies (SPM) that impact morbidity and mortality. To delineate the frequency and subtypes of SPMs following CAR-T in lymphoma and myeloma, we performed a systematic review and meta-analysis. EXPERIMENTAL DESIGN A literature search was conducted in the MEDLINE, Embase, and Cochrane CENTRAL databases. Following the extraction of SPM cases and assignment of malignant origin, we analyzed SPM point estimates using random effects models. RESULTS We identified 326 SPMs across 5,517 patients from 18 clinical trials and 7 real-world studies. With a median follow-up of 21.7 months, the overall SPM point estimate was 6.0% (95% confidence interval, 4.8%-7.4%). SPM estimates were associated with treatment setting (clinical trials > real-world studies), duration of follow-up, and number of prior treatment lines, which were each confirmed as independent study-level risk factors of SPM in a meta-regression model. A subgroup meta-analysis of the four trials that randomized CAR-T versus standard-of-care revealed a similar risk of SPM with either treatment strategy (P = 0.92). In a distribution analysis of SPM subtypes, hematologic malignancies were the most common entity (37%), followed by solid tumors (27%) and non-melanoma skin cancers (16%). T-cell malignancies represented a small minority of events (1.5%). We noted disease- and product-specific variations in SPM distribution. CONCLUSIONS These data raise awareness of SPM as a clinically relevant long-term adverse event in patients receiving CAR T-cell therapy. However, our findings do not indicate that SPM frequency is higher with CAR-T versus previous standard-of-care strategies.
Collapse
Affiliation(s)
- Tobias Tix
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mohammad Alhomoud
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Edward R. Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program on Regulation, Therapeutics and Law, Brigham and Women’s Hospital, Boston, MA
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David M. Cordas dos Santos
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA
| | - Kai Rejeski
- Department of Medicine III – Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- German Cancer Consortium (DKTK), Partner Site Munich, a partnership between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany
| |
Collapse
|
35
|
Wang JF, Wang Y. Evaluating pirtobrutinib for the treatment of relapsed or refractory mantle cell lymphoma. Expert Rev Hematol 2024; 17:651-659. [PMID: 39109468 DOI: 10.1080/17474086.2024.2389993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Mantle cell lymphoma (MCL) is an uncommon non-Hodgkin lymphoma that is generally considered incurable. Covalent BTK inhibitors (cBTKi) are the cornerstone of treatment for relapsed or refractory (R/R) MCL, but treatment options are limited and prognosis is poor after cBTKi failure. Pirtobrutinib is a non-covalent BTK inhibitor that has demonstrated excellent efficacy and safety and represents an important new treatment in the evolving treatment landscape of R/R MCL. AREAS COVERED This review will provide an overview of the therapeutic landscape of R/R MCL, characteristics of pirtobrutinib, and efficacy and safety data of pirtobrutinib in R/R MCL from pivotal clinical trials. PubMed and major hematology conference proceedings were searched to identify relevant studies involving pirtobrutinib. EXPERT OPINION For patients with R/R MCL that has progressed after treatment with cBTKi, pirtobrutinib is an important and efficacious treatment that confers favorable outcomes. In the post-cBTKi setting, when chimeric antigen receptor (CAR) T-cell therapy is not available or feasible, pirtobrutinib is the preferred treatment for R/R MCL. How to sequence or combine pirtobrutinib with CAR T-cell therapy and other available or emerging therapies requires further investigation. Future studies should also explore the role of pirtobrutinib in earlier lines of therapy for MCL.
Collapse
Affiliation(s)
| | - Yucai Wang
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
36
|
Barone A, Chiappella A, Casadei B, Bramanti S, Ljevar S, Chiusolo P, Di Rocco A, Tisi MC, Barbui AM, Farina M, Brunello L, Di Chio MC, Novo M, Musso M, Olivieri J, Trotta GE, Dodero A, Aiello A, Corradini P. Secondary primary malignancies after CD-19 directed CAR-T-cell therapy in lymphomas: A report from the Italian CART-SIE study. Br J Haematol 2024; 205:1356-1360. [PMID: 38877876 DOI: 10.1111/bjh.19590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 10/18/2024]
Abstract
Secondary primary malignancies (SPM) have been reported after anti-BCMA or anti-CD19 chimeric antigen receptor (CAR)-T-cell therapies. While the cytotoxic effect of antecedent therapies, including chemotherapy and radiotherapy, has been well established, few data are available on risk related to CAR-T immunotherapies. The study aimed to analyse the incidence of SPM in 651 patients enrolled in the Italian prospective observational CART-SIE study. SPMs were documented in 4.3% (28/651), and the most frequent SPMs were haematological malignancies. In conclusion, the frequency of SPMs in our cohort of heavily pretreated patients receiving CAR-T was relatively low and consistent with previous studies.
Collapse
Affiliation(s)
| | - Annalisa Chiappella
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Stefania Bramanti
- IRCCS Humanitas Research Hospital, Transplantation Unit Department of Oncology and Haematology, Rozzano, Italy
| | - Silva Ljevar
- Unit of Biostatistics for Clinical Research, Department of Data Science, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Patrizia Chiusolo
- Dipartimento di Scienze Microbiologiche Ed Ematologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Sezione di Ematologia, Dipartimento di Scienze Radiologiche Ed Ematologiche, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alice Di Rocco
- Department of Translational and Precision Medicine, 'Sapienza' University of Rome, Rome, Italy
| | | | - Anna Maria Barbui
- Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Mirko Farina
- Unit of Hematology, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Lucia Brunello
- SCDU Ematologia AOU SS Antonio e Biagio e Cesare Arrigo Alessandria Italy, Alessandria, Italy
| | - Maria Chiara Di Chio
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Mattia Novo
- Division of Hematology, AOU Città Della Salute e Della Scienza di Torino, Torino, Italy
| | - Maurizio Musso
- UOC di Oncoematologia e TMO Dipartimento Oncologico La Maddalena Palermo, Palermo, Italy
| | - Jacopo Olivieri
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "Carlo Melzi", Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | - Gentiana Elena Trotta
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Ematologia, Dipartimento di Biomedicina e Prevenzione, Università Degli Studi di Roma Tor Vergata, Rome, Italy
| | - Anna Dodero
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Antonella Aiello
- Division of Pathology, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Paolo Corradini
- Chair of Hematology, University of Milan, Milan, Italy
- Division of Hematology and Stem Cell Transplantation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| |
Collapse
|
37
|
Haydu JE, Abramson JS. The rules of T-cell engagement: current state of CAR T cells and bispecific antibodies in B-cell lymphomas. Blood Adv 2024; 8:4700-4710. [PMID: 39042891 PMCID: PMC11413679 DOI: 10.1182/bloodadvances.2021004535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024] Open
Abstract
ABSTRACT T-cell engaging-therapies have transformed the treatment landscape of relapsed and refractory B-cell non-Hodgkin lymphomas by offering highly effective treatments for patients with historically limited therapeutic options. This review focuses on the advances in chimeric antigen receptor-modified T cells and bispecific antibodies, first providing an overview of each product type, followed by exploring the primary data for currently available products in large B-cell lymphoma, follicular lymphoma, and mantle cell lymphoma. This review also highlights key logistical and sequencing considerations across diseases and product types that can affect clinical decision-making.
Collapse
Affiliation(s)
- J. Erika Haydu
- Center for Lymphoma, Mass General Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| | - Jeremy S. Abramson
- Center for Lymphoma, Mass General Cancer Center, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
38
|
Wan H, Weng S, Sheng S, Kuang Z, Wang Q, Hu L. Chimeric antigen receptor T-cell therapy in relapsed or refractory mantle cell lymphoma: a systematic review and meta-analysis. Front Immunol 2024; 15:1435127. [PMID: 39308870 PMCID: PMC11412868 DOI: 10.3389/fimmu.2024.1435127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Background Chimeric antigen receptor (CAR) T-cell therapy (CAR-T therapy) has demonstrated significant efficacy in the ZUMA-2 study. After regulatory approvals, several clinical trials and real-world studies on CAR-T therapy for relapsed or refractory mantle cell lymphoma (R/R MCL) were conducted. However, data on clinical safety and efficacy are inconsistent. In this study, we aimed to conduct a systematic analysis of the effectiveness and safety of CAR-T therapy across a wider and more representative cohort of patients with R/R MCL. Methods We performed a systematic review and meta-analysis of studies on patients with R/R MCL who received CAR-T cell therapy. Data were extracted and consolidated, with primary focus on the evaluation of safety and efficacy outcome measures. This study has not been registered with PROSPERO. Results This meta-analysis identified and included 16 studies with 984 patients. The pooled estimate for overall response rate (ORR) was 89%; complete remission (CR) rate was 74%. The 6-month and 12-month progression-free survival (PFS) rates were 69% and 53%, respectively, while the overall survival (OS) rates were 80% and 69%, respectively. Cytokine release syndrome (CRS) of grade 3 or higher was observed in 8% of patients, whereas neurotoxicity of grade 3 or higher was observed in 22% of patients. The risk of bias was assessed as low in 9 studies and moderate in 7 studies. Conclusion CAR-T therapy exhibited promising efficacy and manageable adverse reactions in patients with R/R MCL.
Collapse
Affiliation(s)
| | | | | | | | - Qingming Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology,
The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Linhui Hu
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology,
The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
39
|
Cordas Dos Santos DM, Tix T, Shouval R, Gafter-Gvili A, Alberge JB, Cliff ERS, Theurich S, von Bergwelt-Baildon M, Ghobrial IM, Subklewe M, Perales MA, Rejeski K. A systematic review and meta-analysis of nonrelapse mortality after CAR T cell therapy. Nat Med 2024; 30:2667-2678. [PMID: 38977912 PMCID: PMC11765209 DOI: 10.1038/s41591-024-03084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Although chimeric antigen receptor (CAR) T cell therapy represents a transformative immunotherapy, it is also associated with distinct toxicities that contribute to morbidity and mortality. In this systematic review and meta-analysis, we searched MEDLINE, Embase and CINAHL (Cochrane) for reports of nonrelapse mortality (NRM) after CAR T cell therapy in lymphoma and multiple myeloma up to March 2024. After extraction of causes and numbers of death, we analyzed NRM point estimates using random-effect models. We identified 7,604 patients across 18 clinical trials and 28 real-world studies. NRM point estimates varied across disease entities and were highest in patients with mantle-cell lymphoma (10.6%), followed by multiple myeloma (8.0%), large B cell lymphoma (6.1%) and indolent lymphoma (5.7%). Entity-specific meta-regression models for large B cell lymphoma and multiple myeloma revealed that axicabtagene ciloleucel and ciltacabtagene autoleucel were independently associated with increased NRM point estimates, respectively. Of 574 reported nonrelapse deaths, over half were attributed to infections (50.9%), followed by other malignancies (7.8%) and cardiovascular/respiratory events (7.3%). Conversely, the CAR T cell-specific side effects, immune effector cell-associated neurotoxicity syndrome/neurotoxicity, cytokine release syndrome and hemophagocytic lymphohistiocytosis, represented only a minority of nonrelapse deaths (cumulatively 11.5%). Our findings underline the critical importance of infectious complications after CAR T cell therapy and support the comprehensive reporting of NRM, including specific causes and long-term outcomes.
Collapse
Affiliation(s)
- David M Cordas Dos Santos
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Tobias Tix
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roni Shouval
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Anat Gafter-Gvili
- Department of Medicine A and Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Beilinson Hospital, Petah-Tikva, Israel
- Tel Aviv University, Tel Aviv, Israel
| | - Jean-Baptiste Alberge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Edward R Scheffer Cliff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Program on Regulation, Therapeutics and Law, Brigham and Women's Hospital, Boston, MA, USA
| | - Sebastian Theurich
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Marion Subklewe
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium, Partner Site Munich, Munich, Germany
| | - Miguel-Angel Perales
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Kai Rejeski
- Department of Medicine III-Hematology/Oncology, LMU University Hospital, LMU Munich, Munich, Germany.
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
- German Cancer Consortium, Partner Site Munich, Munich, Germany.
| |
Collapse
|
40
|
Feng Y, Wu L, Gu T, Hu Y, Huang H. How can we improve the successful identification of patients suitable for CAR-T cell therapy? Expert Rev Mol Diagn 2024; 24:777-792. [PMID: 39258858 DOI: 10.1080/14737159.2024.2399152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
INTRODUCTION In recent years, chimeric antigen receptor T (CAR-T) cell therapy has resulted in a breakthrough in the treatment of patients with refractory or relapsed hematological malignancies. However, the identification of patients suitable for CAR-T cell therapy needs to be improved. AREAS COVERED CAR-T cell therapy has demonstrated excellent efficacy in hematological malignancies; however, views on determining when to apply CAR-T cells in terms of the evaluation of patient characteristics remain controversial. EXPERT OPINION We reviewed the current feasibility and challenges of CAR-T cell therapy in the most common hematological malignancies and classified them according to the disease type and treatment priority, to guide clinicians and researchers in applying and investigating CAR-T cells furtherly.
Collapse
Affiliation(s)
- Youqin Feng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Longyuan Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Tianning Gu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - Yongxian Hu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, Zhejiang, China
| |
Collapse
|
41
|
Tun AM, Patel RD, St-Pierre F, Ouchveridze E, Niu A, Thordardottir T, Obasi J, Rosenthal A, Pophali PA, Fenske TS, Karmali R, Ahmed S, Johnston PB. Anti-CD19 chimeric antigen receptor T-cell therapy in older patients with relapsed or refractory large B-cell lymphoma: A multicenter study. Am J Hematol 2024; 99:1712-1720. [PMID: 38837403 DOI: 10.1002/ajh.27381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy, despite being a potentially curative therapy in relapsed or refractory (RR) large B-cell lymphoma (LBCL), remains underutilized in older patients due to limited clinical data. We therefore studied the safety and efficacy of CAR-T therapy in older patients with RR LBCL in the real-world setting. Patients aged ≥65 years with RR LBCL, treated with anti-CD19 CAR-T therapy at 7 US institutions were included in this multicenter, retrospective, observational study. In total, 226 patients were included. Median age at infusion was 71 years (range 65-89). Best objective and complete response rates were 86% and 62%, respectively. Median follow-up after infusion was 18.3 months. The median progression-free survival (PFS) was 6.9 months, with 6- and 12-month PFS estimates of 54% and 44%, respectively. The nonrelapse mortality (NRM) rate was 10.9% at day 180, primarily due to infections, and not impacted by the age groups. Grade ≥3 cytokine release syndrome and neurotoxicity occurred in 7% and 26%, respectively. In univariate analysis, no significant difference in PFS was seen regardless of the age groups or CAR-T type, whereas ECOG PS ≥2, elevated LDH, bulky disease, advanced stage, extranodal involvement, the need for bridging therapy, and prior bendamustine exposure were associated with shorter PFS. These findings support the use of CAR-T in older patients, including those aged ≥80 years. The age at CAR-T therapy did not influence safety, survival, and NRM outcomes. Older patients should not be excluded from receiving CAR-T therapy solely based on their chronological age.
Collapse
Affiliation(s)
- Aung M Tun
- Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas, Kansas City, Kansas, USA
| | - Romil D Patel
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Frederique St-Pierre
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Evguenia Ouchveridze
- Division of Hematologic Malignancies and Cellular Therapeutics, The University of Kansas, Kansas City, Kansas, USA
| | - Alex Niu
- Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| | - Thorunn Thordardottir
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Jennifer Obasi
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Allison Rosenthal
- Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | - Priyanka A Pophali
- Division of Hematology, Medical Oncology and Palliative Care, Department of Medicine, University of Wisconsin Carbone Cancer Center, Madison, Wisconsin, USA
| | - Timothy S Fenske
- Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Reem Karmali
- Division of Hematology/Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Sairah Ahmed
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
42
|
Ryan CE, Kumar A. Dismantling relapsed/refractory mantle cell lymphoma. Blood Rev 2024; 67:101221. [PMID: 38906740 DOI: 10.1016/j.blre.2024.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/23/2024]
Abstract
Despite recent therapeutic advancements in the general field of non-Hodgkin lymphoma, effective treatment of relapsed or refractory (R/R) mantle cell lymphoma (MCL) remains a challenge. The development of Bruton tyrosine kinase (BTK) inhibitors has revolutionized the field and these agents are now the mainstay of R/R MCL management. However, BTK inhibitors are not curative, and as they are increasingly being incorporated into frontline regimens, the shifting treatment landscape for R/R disease presents new challenges. Here we review data for commonly employed treatment strategies including BTK inhibitors, the BCL2-inhibitor venetoclax, lenalidomide-based regimens, and chimeric antigen receptor T-cell therapy. We additionally review data for promising novel agents including antibody-drug conjugates and bispecific antibodies before highlighting some emerging targeted agents that continue to bring promise for improved outcomes in R/R MCL.
Collapse
Affiliation(s)
- Christine E Ryan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Anita Kumar
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
43
|
Martin LJ, Whitmore JB, Shen RR, Neumann F. T-cell malignancies with anti-CD19 chimeric antigen receptor T-cell therapy. Blood Adv 2024; 8:4144-4148. [PMID: 38861341 PMCID: PMC11345381 DOI: 10.1182/bloodadvances.2024013248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
|
44
|
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies. Mol Ther 2024; 32:2444-2460. [PMID: 38822527 PMCID: PMC11405165 DOI: 10.1016/j.ymthe.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
In recent years, the therapeutic landscape for hematological malignancies has markedly advanced, particularly since the inaugural approval of autologous chimeric antigen receptor T cell (CAR-T) therapy in 2017 for relapsed/refractory acute lymphoblastic leukemia (ALL). Autologous CAR-T therapy involves the genetic modification of a patient's T cells to specifically identify and attack cancer cells, while bispecific antibodies (BsAbs) function by binding to both cancer cells and immune cells simultaneously, thereby triggering an immune response against the tumor. The subsequent approval of various CAR-T therapies and BsAbs have revolutionized the treatment of multiple hematological malignancies, highlighting high response rates and a subset of patients achieving prolonged disease control. This review explores the mechanisms underlying autologous CAR-T therapies and BsAbs, focusing on their clinical application in multiple myeloma, ALL, and non-Hodgkin lymphoma. We provide comprehensive insights into their individual efficacy, limitations concerning broad application, and the potential of combination therapies. These upcoming strategies aim to propel the field forward, paving the way for safer and more effective therapeutic interventions in hematological malignancies.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/therapeutic use
- Hematologic Neoplasms/therapy
- Hematologic Neoplasms/immunology
- Immunotherapy, Adoptive/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Combined Modality Therapy
Collapse
Affiliation(s)
- Samer Al Hadidi
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA
| | - Masataka Suzuki
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
45
|
Chen PH, Raghunandan R, Morrow JS, Katz SG. Finding Your CAR: The Road Ahead for Engineered T Cells. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1409-1423. [PMID: 38697513 PMCID: PMC11284763 DOI: 10.1016/j.ajpath.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/08/2024] [Accepted: 04/02/2024] [Indexed: 05/05/2024]
Abstract
Adoptive cellular therapy using chimeric antigen receptors (CARs) has transformed immunotherapy by engineering T cells to target specific antigens on tumor cells. As the field continues to advance, pathology laboratories will play increasingly essential roles in the complicated multi-step process of CAR T-cell therapy. These include detection of targetable tumor antigens by flow cytometry or immunohistochemistry at the time of disease diagnosis and the isolation and infusion of CAR T cells. Additional roles include: i) detecting antigen loss or heterogeneity that renders resistance to CAR T cells as well as identifying alternative targetable antigens on tumor cells, ii) monitoring the phenotype, persistence, and tumor infiltration properties of CAR T cells and the tumor microenvironment for factors that predict CAR T-cell therapy success, and iii) evaluating side effects and biomarkers of CAR T-cell cytotoxicity such as cytokine release syndrome. This review highlights existing technologies that are applicable to monitoring CAR T-cell persistence, target antigen identification, and loss. Also discussed are emerging technologies that address new challenges such as how to put a brake on CAR T cells. Although pathology laboratories have already provided companion diagnostic tests important in immunotherapy (eg, programmed death-ligand 1, microsatellite instability, and human epidermal growth factor receptor 2 testing), it draws attention to the exciting new translational research opportunities in adoptive cellular therapy.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Rianna Raghunandan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Jon S Morrow
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Samuel G Katz
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
46
|
Peng X, Zhang X, Zhao M, Chang D, Yang L, Mei H, Zhang R. Coagulation abnormalities associated with CAR-T-cell therapy in haematological malignancies: A review. Br J Haematol 2024; 205:420-428. [PMID: 38887101 DOI: 10.1111/bjh.19583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/27/2024] [Indexed: 06/20/2024]
Abstract
Chimeric antigen receptor (CAR)-T-cell therapy has demonstrated considerable efficacy and safety in the treatment of patients with relapsed/refractory haematological malignancies. Owing to significant advances, CAR-T-cell therapeutic modality has undergone substantial shifts in its clinical application. Coagulation abnormalities, which are prevalent complications in CAR-T-cell therapy, can range in severity from simple abnormalities in coagulation parameters to serious haemorrhage or disseminated intravascular coagulation associated with life-threatening multiorgan dysfunction. Nonetheless, there is a lack of a comprehensive overview concerning the coagulation abnormalities associated with CAR-T-cell therapy. With an aim to attract heightened clinical focus and to enhance the safety of CAR-T-cell therapy, this review presents the characteristics of the coagulation abnormalities associated with CAR-T-cell therapy, including clinical manifestations, coagulation parameters, pathogenesis, risk factors and their influence on treatment efficacy in patients receiving CAR-T-cell infusion. Due to limited data, these conclusions may undergo changes as more experience accumulates.
Collapse
Affiliation(s)
- Xiaojuan Peng
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, ShanXi, China
| | - Xialin Zhang
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, ShanXi, China
| | - Meiling Zhao
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, ShanXi, China
| | - Doudou Chang
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, ShanXi, China
| | - Linhua Yang
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, ShanXi, China
| | - Heng Mei
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ruijuan Zhang
- Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, ShanXi, China
| |
Collapse
|
47
|
Ip A, Della Pia A, Goy AH. SOHO State of the Art Updates and Next Questions: Treatment Evolution of Mantle Cell Lymphoma: Navigating the Different Entities and Biological Heterogeneity of Mantle Cell Lymphoma in 2024. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:491-505. [PMID: 38493059 DOI: 10.1016/j.clml.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 03/18/2024]
Abstract
Progress in mantle cell lymphoma (MCL) has led to significant improvement in outcomes of patients even in the real world (RW) setting albeit to a lesser degree. In parallel to the demonstration of benefit using combination therapy with rituximab plus high-dose cytarabine (R-AraC) as well as dose intensive therapy-autologous stem cell transplantation (DIT-ASCT) consolidation and maintenance, it became clear over the last 2 decades that MCL is a highly heterogenous disease at the molecular level, explaining differences observed in clinical behavior and response to therapy. While clinical prognostic factors and models have helped stratify patients with distinct outcomes, they failed to help guide therapy. The identification of molecular high-risk (HR) features, in particular, but not only, p53 aberrations (including mutations and deletions [del]), as well as complex karyotype (CK), has allowed to identify subsets of patients with poorer outcomes (median overall survival [OS] <2 years) regardless of conventional therapies used. The constant pattern of relapse seen in MCL has fueled sustained and productive efforts, with 7 novel agents approved in the United States (US), showing high and durable efficacy even in HR and chemo-refractory patients and likely curing a subset of patients in the relapsed or refractory (R/R) setting. Progress in diagnostics, in particular next-generation sequencing (NGS), which is accessible in routine practice nowadays, can help recognize patients with HR features, well beyond MIPI or Ki-67 prognostication, although the impact on decision making is still unclear. The era of integrating novel agents into our prior standard of care (SOC) has begun with a confirmed benefit, for example, ibrutinib (Ib) in the TRIANGLE study, defining the first new potential SOC in younger patients in over 30 years. Expanding on novel agents, either in combination, sequentially or to replace chemotherapy altogether, using biological doublets or triplets has led to a median progression-free survival (PFS) in excess of 72 months, certainly competitive with prior SOC and will continue to reshape the management of MCL patients. Achieving minimal residual disease negative (MRD-ve) status is becoming a new endpoint in MCL, and customizing maintenance and/or de-escalation/consolidation strategies is within reach, although it will require prospective, built-in MRD-based approaches, with the goal of eliminating subclinical disease and not simply delaying time to relapse. Taking into account the biological diversity of MCL is now feasible in routine clinical practice and has already helped recognize what not to do for HR patients (i.e., avoid intensive induction chemotherapy and/or ASCT for p53 mutated patients) as well as identify promising novel options. Ongoing and future work will help expand on these dedicated approaches, to further improve the management and outcomes of all MCL patients.
Collapse
Affiliation(s)
- Andrew Ip
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Alexandra Della Pia
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ
| | - Andre H Goy
- Lymphoma Division, John Theurer Cancer Center at Hackensack Meridian Health, Hackensack, NJ.
| |
Collapse
|
48
|
López C, Silkenstedt E, Dreyling M, Beà S. Biological and clinical determinants shaping heterogeneity in mantle cell lymphoma. Blood Adv 2024; 8:3652-3664. [PMID: 38748869 PMCID: PMC11284685 DOI: 10.1182/bloodadvances.2023011763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/03/2024] [Indexed: 07/12/2024] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is an uncommon mature B-cell lymphoma that presents a clinical spectrum ranging from indolent to aggressive disease, with challenges in disease management and prognostication. MCL is characterized by significant genomic instability, affecting various cellular processes, including cell cycle regulation, cell survival, DNA damage response and telomere maintenance, NOTCH and NF-κB/ B-cell receptor pathways, and chromatin modification. Recent molecular and next-generation sequencing studies unveiled a broad genetic diversity among the 2 molecular subsets, conventional MCL (cMCL) and leukemic nonnodal MCL (nnMCL), which may partially explain their clinical heterogeneity. Some asymptomatic and genetically stable nnMCL not requiring treatment at diagnosis may eventually progress clinically. Overall, the high proliferation of tumor cells, blastoid morphology, TP53 and/or CDKN2A/B inactivation, and high genetic complexity influence treatment outcome in cases treated with standard regimens. Emerging targeted and immunotherapeutic strategies are promising for refractory or relapsed cases and a few genetic and nongenetic determinants of refractoriness have been reported. This review summarizes the recent advances in MCL biology, focusing on molecular insights, prognostic markers, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Cristina López
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| | - Elisabeth Silkenstedt
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Martin Dreyling
- Department of Medicine III, Ludwig-Maximilians-University Munich University Hospital, Munich, Germany
| | - Sílvia Beà
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer, Madrid, Spain
- Departament de Fonaments Clínics, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Zhou D, Zhu X, Xiao Y. CAR-T cell combination therapies in hematologic malignancies. Exp Hematol Oncol 2024; 13:69. [PMID: 39026380 PMCID: PMC11264744 DOI: 10.1186/s40164-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/06/2024] [Indexed: 07/20/2024] Open
Abstract
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors through different mechanisms, improving patient response and survival rates.
Collapse
Affiliation(s)
- Delian Zhou
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiaojian Zhu
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Yi Xiao
- 1Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
50
|
Yang P, Luo L, Liu SZ, Li CY, Chen YT, Zhang W, Liu H, Xiao XB, Jing HM. [A multicenter retrospective study discussion on maintenance treatment strategies for mantle cell lymphoma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2024; 45:660-665. [PMID: 39231770 PMCID: PMC11388122 DOI: 10.3760/cma.j.cn121090-20240118-00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Indexed: 09/06/2024]
Abstract
Objective: This study aims to explore the survival advantages of different maintenance strategies for MCL. Methods: Clinical data of 693 newly diagnosed MCL patients in multi-centers admitted from April 1999 to December 2019 were collected. 309 cases received maintenance treatment. The characteristics of patients in different maintenance treatment groups were summarized and Kaplan-Meier survival and prognosis analysis were conducted. Results: The overall 3-year and 5-year progression-free survival (PFS) rates were (73.5±2.9) % and (53.6±4.3) %, respectively. The 3-year and 5-year overall survival (OS) rates were (94.2±1.5) % and (82.7±3.2) %, respectively. The clinical features of different maintenance treatment groups were generally consistent. The 3-year PFS rates of rituximab maintenance, lenalidomide maintenance, BTK inhibitor maintenance and dual-drug maintenance were (70.4±4.1) %, (69.1±7.6) %, (86.9±5.0) %, and (80.4±5.1) %, respectively. Corresponding 3-year OS rates were (92.9±2.4) %, (97.3±2.7) %, (97.9±2.1) %, and (95.3±2.7) %, respectively. There were no significant difference in different groups (P=0.632, 0.313). Survival analysis identified the MCL International Prognostic Index (MIPI) high-risk group and achieving complete remission before maintenance treatment as independent risk factors for PFS. The MIPI high-risk group, high-dose cytarabine application, treatment lines, and early disease progression (POD24) emerged as independent risk factors for OS. Conclusion: Comparing the different maintenance strategies of MCL, the result showed that BTK inhibitors (BTKi) maintenance demonstrated preliminary advantages in survival. Meanwhile, high-risk group according to MIPI and incomplete remission before maintenance treatment were significant factors related to disease progression.
Collapse
Affiliation(s)
- P Yang
- Peking University Third Hospital, Beijing 100191, China
| | - L Luo
- Peking University Third Hospital, Beijing 100191, China
| | - S Z Liu
- Peking University Third Hospital, Beijing 100191, China
| | - C Y Li
- Peking University Third Hospital, Beijing 100191, China
| | - Y T Chen
- Peking University Third Hospital, Beijing 100191, China
| | - W Zhang
- Peking Union Medical College Hospital, Beijing 100730, China
| | - H Liu
- Beijing Hospital, Beijing 100730, China
| | - X B Xiao
- The 5th Medical Center of PLA General Hospital, Beijing 100039, China
| | - H M Jing
- Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|