1
|
Zacchi F, Abida W, Antonarakis ES, Bryce AH, Castro E, Cheng HH, Shandhu S, Mateo J. Recent and Future Developments in the Use of Poly (ADP-ribose) Polymerase Inhibitors for Prostate Cancer. Eur Urol Oncol 2024:S2588-9311(24)00273-6. [PMID: 39638687 DOI: 10.1016/j.euo.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND AND OBJECTIVE Advanced prostate cancer (PCa) is enriched for alterations in DNA damage repair genes; poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) are a class of drugs that have demonstrated effectiveness in PCa, particularly in tumors with alterations in BRCA1/2 and other homologous recombination repair (HRR) genes, acting through a synthetic lethal mechanism. To prevent or delay drug resistance, and to expand the patient population that can benefit from this class of drug, combination treatment strategies have been developed in preclinical and clinical studies. METHODS This review examines the latest developments in clinical trials testing PARPi for advanced PCa and their emerging role in earlier disease settings. Furthermore, it discusses the critical role of careful patient selection and identification of additional biomarkers to enhance treatment efficacy. KEY FINDINGS AND LIMITATIONS Two PARPi (olaparib and rucaparib) have been approved as monotherapy in metastatic castration-resistant PCa, thereby establishing the first biomarker-guided drug indications in PCa. Several combinations of PARPi with androgen receptor pathway inhibitors have now also been approved. Anemia and fatigue are the main adverse events associated with this drug class in clinical trials; gastrointestinal toxicities are common but usually manageble. CONCLUSIONS AND CLINICAL IMPLICATIONS PARPi are active against PCa with HRR mutations, especially in those with germline or somatic BRCA1/2 mutations. There is still a need to further optimize patient stratification strategies, particularly for combination approaches. Future research should focus on refining predictive biomarkers, improving treatment delivery strategies, and exploring the potential benefits of PARPi in earlier stages of the disease. PATIENT SUMMARY Here, we summarize the results from clinical trials testing different poly (ADP-ribose) polymerase inhibitors (PARPi), a novel targeted drug class, in prostate cancer. Overall, the data from these trials confirm the efficacy of this drug class in those metastatic prostate cancers that show specific gene alterations, such as mutations in the BRCA1/2 genes. Several studies combining PARPi with other standard drugs for prostate cancer suggest that there may be efficacy in larger patient populations, but some of these data still need validation in longer follow-up analyses.
Collapse
Affiliation(s)
- Francesca Zacchi
- Section of Innovation Biomedicine-Oncology Area, Department of Engineering for Innovation Medicine (DIMI), University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
| | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel S Antonarakis
- Department of Medicine, University of Minnesota, Masonic Cancer Center, Minneapolis, MN, USA
| | - Alan H Bryce
- Department of Medical Oncology and Developmental Therapeutics, City of Hope, Goodyear, AZ, USA
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Heather H Cheng
- Department of Medicine, Division of Hematology and Oncology, University of Washington, Seattle, WA, USA; Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Shahneen Shandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| |
Collapse
|
2
|
Boiarsky D, Tewari AK, Gulhan DC, Bakouny Z, Ananda G, Savignano H, Lakshminarayanan G, McClure HM, Silver R, Choueiri TK, Taplin ME, Park PJ, Berchuck JE. A panel-based mutational signature of homologous recombination deficiency associates with response to PARP inhibition in metastatic castration-resistant prostate cancer. Prostate 2024; 84:1479-1489. [PMID: 39252459 DOI: 10.1002/pros.24788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND The PARP inhibitor (PARPi) olaparib is approved for homologous recombination repair (HRR) gene-altered metastatic castration-resistant prostate cancer (mCRPC). However, there is significant heterogeneity in response to PARPi in patients with mCRPC. Better clinical biomarkers are needed to identify patients likely to benefit from PARPi. METHODS Patients with prostate adenocarcinoma and panel sequencing at Dana-Farber Cancer Institute were identified. Mutational signature analysis was performed using SigMA to characterize tumors as HRR deficient (HRD). The validity of SigMA to identify patients likely to benefit from olaparib was compared to the current FDA label (presence of a deleterious alteration in one of 14 HRR genes). RESULTS 546 patients were identified, of which 34% were HRD. Among patients with HRR gene alterations, only patients with BRCA2 two-copy loss (2CL) were more likely to be HRD compared to patients without HRR gene alterations (74% vs 31%; P = 9.1 × 10-7). 28 patients with mCRPC received olaparib, of which 13 were HRD and 9 had BRCA2 2CL. SigMA improved upon the current FDA label for predicting PSA50 (sensitivity: 100% vs 90%; specificity: 83% vs 44%; PPV: 77% vs 47%; NPV: 100% vs 89%) and rPFS > 6 months (sensitivity: both 92%; specificity: 93% vs 53%; PPV: 92% vs 63%; NPV: 93% vs 89%). On multivariate analysis, incorporating prognostic clinical factors and HR gene alterations, SigMA-predicted HRD independently associated with improved PSA-PFS (HR = 0.086, p = 0.00082) and rPFS (HR = 0.078, p = 0.0070). CONCLUSIONS SigMA-predicted HRD may better identify patients likely to benefit from olaparib as compared to the current FDA label. Larger studies are needed for further validation.
Collapse
Affiliation(s)
- Daniel Boiarsky
- Department of Medicine, Tufts Medical Center, Boston, Massachusetts, USA
| | - Alok K Tewari
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Ziad Bakouny
- Department of Medical Oncology, Memorial Sloan Kettering Cancer Center, NY, New York, USA
| | - Guruprasad Ananda
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hunter Savignano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | | | - Heather M McClure
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Rebecca Silver
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Rosalind Franklin University of Medicine and Science, Chicago, Illinois, USA
| | - Toni K Choueiri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob E Berchuck
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Saeidi H, Sarafbidabad M. PARP inhibitors in prostate cancer: clinical applications. Mol Biol Rep 2024; 51:1103. [PMID: 39476131 DOI: 10.1007/s11033-024-10034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024]
Abstract
Despite recent advancements in the treatment of metastatic castrate-resistant prostate cancer (mCRPC), this disease remains lethal. A novel family of targeted pharmaceuticals known as poly-ADP-ribose polymerase (PARP) inhibitors has been developed to treat mCRPC patients with homologous recombination repair (HRR) gene alterations. The FDA recently approved olaparib and rucaparib for treating mCRPC patients with HRR gene alterations. Ongoing trials are investigating combination therapies involving PARP inhibitors combined with radiation, chemotherapy, immunotherapy, and androgen receptor signaling inhibitors (ARSIs) to improve the effectiveness of PARP inhibitors and broaden the range of patients who can benefit from the treatment. This review provides an overview of the development of PARP inhibitors in prostate cancer and analyzes the mechanisms underlying their resistance.
Collapse
Affiliation(s)
- Hamidreza Saeidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohsen Sarafbidabad
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
4
|
Yan K, Balijepalli C, Gullapalli L, Joshy J, Kotum S, Druyts E. Efficacy and safety of interventions for metastatic castration resistant prostate cancer (mCRPC) patients progressing on androgen receptor-axis-targeted (ARAT) therapy: a systematic literature review. Curr Med Res Opin 2024; 40:1741-1752. [PMID: 39166959 DOI: 10.1080/03007995.2024.2395435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND To review the literature to outline findings from clinical trials assessing interventions for metastatic castration-resistant prostate cancer (mCRPC) in patients who have progressed on androgen receptor-axis-targeted (ARAT) therapies. METHODS A systematic literature review was performed to identify trials that assessed the efficacy and safety of interventions used in patients that progressed on prior ARAT therapies. A literature search was conducted using the OVID platform that searched the EMBASE, MEDLINE, and CENTRAL bibliographic databases. RESULTS Of the 10,114 citations identified, a total of 36 studies representing 33 unique trials were included in the review. Of the 33 trials, 21 were randomized controlled trials and 12 were single-arm trials. A total of 11 were phase III trials, 13 were phase II trials, and 2 were phase I trials. The majority of included trials were open-label (n = 29) and the remaining were double-blind (n = 4). A total of 16 trials evaluated ARAT based therapies, 7 trials evaluated taxane-based treatments, 10 trials evaluated PARP inhibitors, 8 trials evaluated immunotherapies, and 8 trials evaluated other therapies (i.e. cabozantinib, mitoxantrone, radium-223,177[Lu-177]-PNT2002,177Lu-PSMA-617, samotolisib). CONCLUSIONS This systematic review demonstrated there are limited effective treatment options in this patient population. Unlike other cancer types, immunotherapy agents appear to provide little to no benefit. Conversely, agents such as taxane-based chemotherapy (e.g. cabazitaxel) and radionuclide therapy provide the most value in this patient population. Further research is needed to explore new therapies in this disease area and to optimize existing treatment strategies with more effective combination therapies.
Collapse
Affiliation(s)
- Kevin Yan
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | | | | | - Juhi Joshy
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Sharon Kotum
- Pharmalytics Group, Vancouver, British Columbia, Canada
| | - Eric Druyts
- Pharmalytics Group, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Mitri Z, Goodyear SM, Mills G. Strategies for the prevention or reversal of PARP inhibitor resistance. Expert Rev Anticancer Ther 2024; 24:959-975. [PMID: 39145413 DOI: 10.1080/14737140.2024.2393251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Advances in our understanding of tumor biology shed light on hallmarks of cancer development and progression that include dysregulated DNA damage repair (DDR) machinery. Leveraging the underlying tumor genomic instability and tumor-specific defects in DDR, Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induced DNA damage emerges as a novel non-chemotherapy therapeutic opportunity. PARPis are currently approved in multiple tumor types, with the largest benefit seen in tumors with homologous recombination repair (HRR) deficiency, including germline and somatic mutations in BRCA1/2 genes (BRCA) and other pathway members such as PALB2 and Rad51c. AREAS COVERED This review article summarizes the current approval landscape and known and proposed mechanisms of resistance to PARPi. Further, therapeutic strategies to overcome PARPi resistance are discussed, including ongoing clinical trials. EXPERT OPINION PARPi have proven to be a safe and effective therapy and represents a cornerstone treatment across multiple solid tumor types. Elucidating innate and acquired mechanisms of resistance, coupled with the emergence of novel therapeutic options to capitalize on the activity of PARPi and prevent or reverse the acquisition of resistance, provides an opportunity to further expand the role of PARPi in cancer therapy.
Collapse
Affiliation(s)
- Zahi Mitri
- Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Shaun M Goodyear
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| | - Gordon Mills
- Developmental and Cancer Biology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
6
|
Zhu Q, Chen J, Liu H, Zhao J, Xu C, Sun G, Zeng H. The efficacy and safety of PARP inhibitors in mCRPC with HRR mutation in second-line treatment: a systematic review and bayesian network meta-analysis. BMC Cancer 2024; 24:706. [PMID: 38851712 PMCID: PMC11162002 DOI: 10.1186/s12885-024-12388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Poly (ADP- ribose) polymerase inhibitors (PARPi) has been increasingly adopted for metastatic castration-resistance prostate cancer (mCRPC) patients with homologous recombination repair deficiency (HRD). However, it is unclear which PARPi is optimal in mCRPC patients with HRD in 2nd -line setting. METHOD We conducted a systematic review of trials regarding PARPi- based therapies on mCRPC in 2nd -line setting and performed a Bayesian network meta-analysis (NMA). Radiographic progression-free survival (rPFS) was assessed as primary outcome. PSA response and adverse events (AEs) were evaluated as secondary outcomes. Subgroup analyses were performed according to specific genetic mutation. RESULTS Four RCTs comprised of 1024 patients (763 harbored homologous recombination repair (HRR) mutations) were identified for quantitative analysis. Regarding rPFS, olaparib monotherapy, rucaparib and cediranib plus olaparib showed significant improvement compared with ARAT. Olaparib plus cediranib had the highest surface under cumulative ranking curve (SUCRA) scores (87.5%) for rPFS, followed by rucaparib, olaparib and olaparib plus abiraterone acetate prednisone. For patients with BRCA 1/2 mutations, olaparib associated with the highest probability (98.1%) of improved rPFS. For patients with BRCA-2 mutations, olaparib and olaparib plus cediranib had similar efficacy. However, neither olaparib nor rucaparib showed significant superior effectiveness to androgen receptor-axis-targeted therapy (ARAT) in patients with ATM mutations. For safety, olaparib showed significantly lower ≥ 3 AE rate compared with cediranib plus olaparib (RR: 0.72, 95% CI: 0.51, 0.97), while olaparib plus cediranib was associated with the highest risk of all-grade AE. CONCLUSION PARPi-based therapy showed considerable efficacy for mCRPC patients with HRD in 2nd -line setting. However, patients should be treated accordingly based on their genetic background as well as the efficacy and safety of the selected regimen. TRIAL REGISTRATION CRD42023454079.
Collapse
Affiliation(s)
- Qiyu Zhu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Junru Chen
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Haoyang Liu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Jinge Zhao
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Chenhao Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China
| | - Guangxi Sun
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| | - Hao Zeng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, 610041, P.R. China.
| |
Collapse
|
7
|
Slootbeek PHJ, Tolmeijer SH, Mehra N, Schalken JA. Therapeutic biomarkers in metastatic castration-resistant prostate cancer: does the state matter? Crit Rev Clin Lab Sci 2024; 61:178-204. [PMID: 37882463 DOI: 10.1080/10408363.2023.2266482] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
The treatment of metastatic castration-resistant prostate cancer (mCRPC) has been fundamentally transformed by our greater understanding of its complex biological mechanisms and its entrance into the era of precision oncology. A broad aim is to use the extreme heterogeneity of mCRPC by matching already approved or new targeted therapies to the correct tumor genotype. To achieve this, tumor DNA must be obtained, sequenced, and correctly interpreted, with individual aberrations explored for their druggability, taking into account the hierarchy of driving molecular pathways. Although tumor tissue sequencing is the gold standard, tumor tissue can be challenging to obtain, and a biopsy from one metastatic site or primary tumor may not provide an accurate representation of the current genetic underpinning. Sequencing of circulating tumor DNA (ctDNA) might catalyze precision oncology in mCRPC, as it enables real-time observation of genomic changes in tumors and allows for monitoring of treatment response and identification of resistance mechanisms. Moreover, ctDNA can be used to identify mutations that may not be detected in solitary metastatic lesions and can provide a more in-depth understanding of inter- and intra-tumor heterogeneity. Finally, ctDNA abundance can serve as a prognostic biomarker in patients with mCRPC.The androgen receptor (AR)-axis is a well-established therapeutical target for prostate cancer, and through ctDNA sequencing, insights have been obtained in (temporal) resistance mechanisms that develop through castration resistance. New third-generation AR-axis inhibitors are being developed to overcome some of these resistance mechanisms. The druggability of defects in the DNA damage repair machinery has impacted the treatment landscape of mCRPC in recent years. For patients with deleterious gene aberrations in genes linked to homologous recombination, particularly BRCA1 or BRCA2, PARP inhibitors have shown efficacy compared to the standard of care armamentarium, but platinum-based chemotherapy may be equally effective. A hierarchy exists in genes associated with homologous recombination, where, besides the canonical genes in this pathway, not every other gene aberration predicts the same likelihood of response. Moreover, evidence is emerging on cross-resistance between therapies such as PARP inhibitors, platinum-based chemotherapy and even radioligand therapy that target this genotype. Mismatch repair-deficient patients can experience a beneficial response to immune checkpoint inhibitors. Activation of other cellular signaling pathways such as PI3K, cell cycle, and MAPK have shown limited success with monotherapy, but there is potential in co-targeting these pathways with combination therapy, either already witnessed or anticipated. This review outlines precision medicine in mCRPC, zooming in on the role of ctDNA, to identify genomic biomarkers that may be used to tailor molecularly targeted therapies. The most common druggable pathways and outcomes of therapies matched to these pathways are discussed.
Collapse
Affiliation(s)
- Peter H J Slootbeek
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Sofie H Tolmeijer
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Niven Mehra
- Department of Medical Oncology, Radboud university medical center, Nijmegen, The Netherland
| | - Jack A Schalken
- Department of Experimental Urology, Research Institute of Medical Innovation, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Paul AK, Melson JW, Hirani S, Muthusamy S. Systemic therapy landscape of advanced prostate cancer. Adv Cancer Res 2024; 161:367-402. [PMID: 39032954 DOI: 10.1016/bs.acr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Prostate cancer is the most commonly diagnosed cancer in American men and 2nd leading cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is the backbone of treatment for advanced prostate cancer. Over the past several decades a number of new therapeutics, such as novel androgen receptor pathway inhibitors, targeted agents and radionuclide therapies, have been introduced for the treatment of prostate cancers. These agents have been demonstrated to improve clinical outcomes of prostate cancer patients in randomized clinical trials. In addition, new therapeutic strategies, such as early intensification of ADT, novel treatment combinations, and treatment sequencing, are expected to improve outcomes further. In this clinical review, we discuss the changing treatment landscape for advanced prostate cancer with a focus on new therapeutics.
Collapse
Affiliation(s)
- Asit K Paul
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States.
| | - John W Melson
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Richmond, VA, United States
| | - Samina Hirani
- Department of Internal Medicine, Division of Hematology, Oncology and Palliative Care, Virginia Commonwealth University, Richmond, VA, United States
| | - Selvaraj Muthusamy
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
9
|
Zaman N, Kushwah AS, Badriprasad A, Chakraborty G. Unravelling the molecular basis of PARP inhibitor resistance in prostate cancer with homologous recombination repair deficiency. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:257-301. [PMID: 39396849 DOI: 10.1016/bs.ircmb.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Prostate cancer is a disease with heterogeneous characteristics, making its treatability and curability dependent on the cancer's stage. While prostate cancer is often indolent, some cases can be aggressive and evolve into metastatic castration-resistant prostate cancer (mCRPC), which is lethal. A significant subset of individuals with mCRPC exhibit germline and somatic variants in components of the DNA damage repair (DDR) pathway. Recently, PARP inhibitors (PARPi) have shown promise in treating mCRPC patients who carry deleterious alterations in BRCA2 and 13 other DDR genes that are important for the homologous recombination repair (HRR) pathway. These inhibitors function by trapping PARP, resulting in impaired PARP activity and increased DNA damage, ultimately leading to cell death through synthetic lethality. However, the response to these inhibitors only lasts for 3-4 months, after which the cancer becomes PARPi resistant. Cancer cells can develop resistance to PARPi through numerous mechanisms, such as secondary reversion mutations in DNA repair pathway genes, heightened drug efflux, loss of PARP expression, HRR reactivation, replication fork stability, and upregulation of Wnt/Catenin and ABCB1 pathways. Overcoming PARPi resistance is a critical and complex process, and there are two possible ways to sensitize the resistance. The first approach is to potentiate the PARPi agents through chemo/radiotherapy and combination therapy, while the second approach entails targeting different signaling pathways. This review article highlights the latest evidence on the resistance mechanism of PARPi in lethal prostate cancer and discusses additional therapeutic opportunities available for prostate cancer patients with DDR gene alterations who do not respond to PARPi.
Collapse
Affiliation(s)
- Nabila Zaman
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Atar Singh Kushwah
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anagha Badriprasad
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Goutam Chakraborty
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
10
|
Fan Q, Wu G, Chen M, Luo G, Wu Z, Huo H, Li H, Zheng L, Luo M. Cediranib ameliorates portal hypertensive syndrome via inhibition of VEGFR-2 signaling in cirrhotic rats. Eur J Pharmacol 2024; 964:176278. [PMID: 38158116 DOI: 10.1016/j.ejphar.2023.176278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Portal hypertension (PHT) is a syndrome caused by systemic and portal hemodynamic disturbances with the progression of cirrhosis. However, the exact mechanisms regulating angiogenesis-related responses in PHT remain unclear. Cediranib is a potent inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, exhibiting a greater affinity for VEGFR-2. Liver cirrhosis was induced by common bile duct ligation (BDL) in Sprague-Dawley rats. Sham-operated rats were controls. BDL and sham rats were randomly allocated to receive Cediranib or vehicle after BDL. On the 28th day, portal hypertension related parameters were surveyed. Cediranib treatment could significantly reduce the portal pressure (PP) in BDL rats, while it did not affect the mean arterial pressure (MAP) in sham groups and BDL groups. Cediranib treatment could significantly affect the stroke volume (SV), cardiac output (CO), cardiac index (CI), systemic vascular resistance (SVR), superior mesenteric artery (SMA) flow and SMA resistance in BDL groups and BDL with Cediranib groups. Cediranib treatment could improve the mesenteric vascular remodeling and contractility. Cediranib treatment significantly reduced mesenteric vascular density. And phospho-VEGFR-2 was significantly downregulated by Cediranib. On the other hand, phospho-endothelial Nitric Oxide Synthases (phospho-eNOS) expressions were upregulated. Cediranib not only improved splanchnic hemodynamics, extrahepatic vascular remodeling and vasodilation, but also alleviated intrahepatic fibrosis and collagen deposition significantly. Cediranib treatment could reduce intrahepatic angiogenesis between BDL-vehicle and BDL-Cediranib rats. In conclusion, Cediranib could improve extrahepatic hyperdynamic circulation by inhibiting extrahepatic angiogenesis through inhibition of the VEGFR-2 signaling pathway, portal collateral circulation formation, as well as eNOS-mediated vasodilatation and vascular remodeling, and at the same time, Cediranib improved intrahepatic fibrogenesis and angiogenesis, which together alleviate cirrhotic PHT syndrome.
Collapse
Affiliation(s)
- Qiang Fan
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangbo Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Chen
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guqing Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenghao Wu
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haizhong Huo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjie Li
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lei Zheng
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Longoria O, Beije N, de Bono JS. PARP inhibitors for prostate cancer. Semin Oncol 2024; 51:25-35. [PMID: 37783649 DOI: 10.1053/j.seminoncol.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/04/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have transformed the treatment landscape for patients with metastatic castration-resistant prostate cancer (mCRPC) and alterations in DNA damage response genes. This has also led to widespread use of genomic testing in all patients with mCRPC. The current review will give an overview of (1) the current understanding of the interplay between DNA damage response and PARP enzymes; (2) the clinical landscape of PARP inhibitors, including the combination of PARP inhibitors with other agents such as androgen-receptor signaling agents; (3) biomarkers related to PARP inhibitor response and resistance; and (4) considerations for interpreting genomic testing results and treating patients with PARP inhibitors.
Collapse
Affiliation(s)
- Ossian Longoria
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Nick Beije
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Johann S de Bono
- The Institute of Cancer Research, London, United Kingdom; The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
12
|
Cecchini M, Cleary JM, Shyr Y, Chao J, Uboha N, Cho M, Shields A, Pant S, Goff L, Spencer K, Kim E, Stein S, Kortmansky JS, Canosa S, Sklar J, Swisher EM, Radke M, Ivy P, Boerner S, Durecki DE, Hsu CY, LoRusso P, Lacy J. NCI10066: a Phase 1/2 study of olaparib in combination with ramucirumab in previously treated metastatic gastric and gastroesophageal junction adenocarcinoma. Br J Cancer 2024; 130:476-482. [PMID: 38135713 PMCID: PMC10844282 DOI: 10.1038/s41416-023-02534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Our preclinical work revealed tumour hypoxia induces homologous recombination deficiency (HRD), increasing sensitivity to Poly (ADP-ribose) polymerase inhibitors. We aimed to induce tumour hypoxia with ramucirumab thereby sensitising tumours to olaparib. PATIENTS AND METHODS This multi-institution single-arm Phase 1/2 trial enrolled patients with metastatic gastroesophageal adenocarcinoma refractory to ≥1 systemic treatment. In dose escalation, olaparib was evaluated at escalating dose levels with ramucirumab 8 mg/kg day 1 in 14-day cycles. The primary endpoint of Phase 1 was the recommended Phase 2 dose (RP2D), and in Phase 2 the primary endpoint was the overall response rate (ORR). RESULTS Fifty-one patients received ramucirumab and olaparib. The RP2D was olaparib 300 mg twice daily with ramucirumab 8 mg/kg. In evaluable patients at the RP2D the ORR was 6/43 (14%) (95% CI 4.7-25.6). The median progression-free survival (PFS) was 2.8 months (95% CI 2.3-4.2) and median overall survival (OS) was 7.3 months (95% CI 5.7-13.0). Non-statistically significant improvements in PFS and OS were observed for patients with tumours with mutations in HRD genes. CONCLUSIONS Olaparib and ramucirumab is well-tolerated with efficacy that exceeds historical controls with ramucirumab single agent for gastric cancer in a heavily pre-treated patient population.
Collapse
Affiliation(s)
- Michael Cecchini
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - James M Cleary
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, 02215, USA
| | - Yu Shyr
- Department of Biostatistics, Vanderbilt University, Nashville, TN, 37203, USA
| | - Joseph Chao
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, CA, 91010, USA
| | - Nataliya Uboha
- Department of Medicine, University of Wisconsin, Madison, WI, 53792, USA
| | - May Cho
- Department of Medicine, University of California Irvine, Irvine, CA, 92868, USA
| | - Anthony Shields
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Laura Goff
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, 37203, USA
| | - Kristen Spencer
- Department of Medicine, Perlmutter Cancer Center of NYU Langone Health and NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Edward Kim
- Department of Internal Medicine, University of California Davis, Davis, CA, 95817, USA
| | - Stacey Stein
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jeremy S Kortmansky
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Sandra Canosa
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jeffrey Sklar
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Elizabeth M Swisher
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195, USA
| | - Marc Radke
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, 98195, USA
| | - Percy Ivy
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Scott Boerner
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Diane E Durecki
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Chih-Yuan Hsu
- Department of Biostatistics, Vanderbilt University, Nashville, TN, 37203, USA
| | - Patricia LoRusso
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jill Lacy
- Department of Internal Medicine (Medical Oncology), Yale University School of Medicine, New Haven, CT, 06510, USA
| |
Collapse
|
13
|
Bourlon MT, Valdez P, Castro E. Development of PARP inhibitors in advanced prostate cancer. Ther Adv Med Oncol 2024; 16:17588359231221337. [PMID: 38205078 PMCID: PMC10777773 DOI: 10.1177/17588359231221337] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The relatively high prevalence of alterations in the homologous recombination repair (HRR) pathway described in advanced prostate cancer provides a unique opportunity to develop therapeutic strategies that take advantage of the decreased tumor ability to repair DNA damage. Poly ADP-ribose polymerase (PARP) inhibitors have been demonstrated to improve the outcomes of metastatic castration-resistant prostate cancer (mCRPC) patients with HRR defects, particularly in those with BRCA1/2 alterations. To expand the benefit of PARPi to patients without detectable HRR alterations, multiple studies are addressing potential synergies between PARP inhibition (PARPi) and androgen receptor pathway inhibitors (ARSi), radiation, radioligand therapy, chemotherapy, or immunotherapy, and these strategies are also being evaluated in the hormone-sensitive setting. In this review, we summarize the development of PARPi in prostate cancer, the potential synergies, and combinations being investigated as well as the future directions of PARPi for the management of the disease.
Collapse
Affiliation(s)
- Maria Teresa Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paola Valdez
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de Octubre, Av. Cordoba s/n, 28041, Madrid, Spain
| |
Collapse
|
14
|
Altwerger G, Ghazarian M, Glazer PM. Harnessing the effects of hypoxia-like inhibition on homology-directed DNA repair. Semin Cancer Biol 2024; 98:11-18. [PMID: 38029867 PMCID: PMC10872265 DOI: 10.1016/j.semcancer.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Hypoxia is a hallmark feature of the tumor microenvironment which can promote mutagenesis and instability. This increase in mutational burden occurs as a result of the downregulation of DNA repair systems. Deficits in the DNA damage response can be exploited to induce cytotoxicity and treat advanced stage cancers. With the advent of precision medicine, agents such as Poly (ADP-ribose) polymerase (PARP) inhibitors have been used to achieve synthetic lethality in homology directed repair (HDR) deficient cancers. However, most cancers lack these predictive biomarkers. Treatment for the HDR proficient population represents an important unmet clinical need. There has been interest in the use of anti-angiogenic agents to promote tumor hypoxia and induce deficiency in a HDR proficient background. For example, the use of cediranib to inhibit PDGFR and downregulate enzymes of the HDR pathway can be used synergistically with a PARP inhibitor. This combination can improve therapeutic responses in HDR proficient cancers. Preclinical results and Phase II and III clinical trial data support the mechanistic rationale for the efficacy of these agents in combination. Future investigations should explore the effectiveness of cediranib and other anti-angiogenic agents with a PARP inhibitor to elicit an antitumor response and sensitize cancers to immunotherapy.
Collapse
Affiliation(s)
- Gary Altwerger
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Maddie Ghazarian
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Peter M Glazer
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
15
|
Fenor de la Maza MD, Pérez Gracia JL, Miñana B, Castro E. PARP inhibitors alone or in combination for prostate cancer. Ther Adv Urol 2024; 16:17562872241272929. [PMID: 39184454 PMCID: PMC11344902 DOI: 10.1177/17562872241272929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 06/20/2024] [Indexed: 08/27/2024] Open
Abstract
DNA repair genomic aberrations in the Homologous Recombination pathway are identifiable in up to 25% of patients with advanced prostate cancer, making them more likely to benefit from treatment with poly (ADP-ribose) polymerase inhibitors (PARPi) alone or in combination with other therapies, particularly when BRCA driver genomic aberrations are documented. Although several clinical trials have demonstrated the efficacy of this approach, the validation of reliable biomarkers predictive of response still needs further improvement to refine patient selection. In this setting, the characterization of resistance mechanisms and the validation of novel biomarkers are critical to maximize clinical benefit and to develop novel treatment combinations to improve outcomes. In this review, we summarize the development of PARPi in prostate cancer as single agent as well as the efficacy of their combination with other drugs, and the future directions for their implementation in the management of advanced prostate cancer.
Collapse
Affiliation(s)
| | | | - Bernardino Miñana
- Department of Urology, Clínica Universidad de Navarra, Madrid, Spain
| | - Elena Castro
- Department of Medical Oncology, Hospital Universitario 12 de octubre, Av. Córdoba s/n, Madrid 28041, Spain
| |
Collapse
|
16
|
Iannantuono GM, Chandran E, Floudas CS, Choo-Wosoba H, Butera G, Roselli M, Gulley JL, Karzai F. Efficacy and safety of PARP inhibitors in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis of clinical trials. Cancer Treat Rev 2023; 120:102623. [PMID: 37716332 PMCID: PMC10591840 DOI: 10.1016/j.ctrv.2023.102623] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/18/2023]
Abstract
INTRODUCTION PARP inhibitors (PARPi) are a standard-of-care (SoC) treatment option for patients with metastatic castration-resistant prostate cancer (mCRPC). Several clinical trials have shown the potential of combining PARPi with other anticancer agents. Therefore, we conducted a systematic review and meta-analysis to comprehensively evaluate the efficacy and safety of PARPi in patients with metastatic prostate cancer. METHODS MEDLINE, Cochrane CENTRAL, EMBASE, CINAHL, and Web of Science were searched on March 22nd, 2023, for phase 2 or 3 clinical trials. Efficacy (progression-free survival [PFS], overall survival [OS], PSA decline >50% [PSA50], and objective response rate [ORR]) and safety outcomes were assessed in the included studies. RESULTS Seventeen clinical trials (PARPi monotherapy [n = 7], PARPi + androgen-receptor signaling inhibitors [ARSI] [n = 6], and PARPi + immune checkpoint inhibitors [ICI] [n = 4]) were included in the quantitative analyses. PARPi monotherapy improved radiographic PFS and OS over SoC in mCRPC patients with alterations in BRCA1 or BRCA2 genes but not in those with alterations in the ATM gene. Higher rates of PSA50 and ORR were reported in participants treated with PARPi + ARSI than in single-agent PARPi or PARPi + ICI. Although the rate of high-grade adverse events was similar across all groups, treatment discontinuation was higher in patients treated with PARPi-based combinations than PARPi monotherapy. CONCLUSION The efficacy of PARPi is not uniform across mCRPC patients with alterations in DNA damage repair genes, and optimal patient selection remains a clinical challenge. No unexpected safety signals for this class of agents emerged from this analysis.
Collapse
Affiliation(s)
- Giovanni Maria Iannantuono
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Elias Chandran
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Charalampos S Floudas
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gisela Butera
- Division of Library Services, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - James L Gulley
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Fatima Karzai
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
17
|
Yu X, Zhu L, Wang T, Li L, Liu J, Che G, Zhou Q. Enhancing the anti-tumor response by combining DNA damage repair inhibitors in the treatment of solid tumors. Biochim Biophys Acta Rev Cancer 2023; 1878:188910. [PMID: 37172653 DOI: 10.1016/j.bbcan.2023.188910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/12/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
The anti-cancer efficacy of anti-malignancy therapies is related to DNA damage. However, DNA damage-response mechanisms can repair DNA damage, failing anti-tumor therapy. The resistance to chemotherapy, radiotherapy, and immunotherapy remains a clinical challenge. Thus, new strategies to overcome these therapeutic resistance mechanisms are needed. DNA damage repair inhibitors (DDRis) continue to be investigated, with polyadenosine diphosphate ribose polymerase inhibitors being the most studied inhibitors. Evidence of their clinical benefits and therapeutic potential in preclinical studies is growing. In addition to their potential as a monotherapy, DDRis may play an important synergistic role with other anti-cancer therapies or in reversing acquired treatment resistance. Here we review the impact of DDRis on solid tumors and the potential value of combinations of different treatment modalities with DDRis for solid tumors.
Collapse
Affiliation(s)
- Xianzhe Yu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China; Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lingling Zhu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Ting Wang
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Lu Li
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China
| | - Jiewei Liu
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Guowei Che
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| | - Qinghua Zhou
- Lung Cancer Institute/Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, People's Republic of China.
| |
Collapse
|
18
|
Keane F, O’Connor CA, Park W, Seufferlein T, O’Reilly EM. Pancreatic Cancer: BRCA Targeted Therapy and Beyond. Cancers (Basel) 2023; 15:2955. [PMID: 37296917 PMCID: PMC10251879 DOI: 10.3390/cancers15112955] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second leading cause of cancer-related death in the US by 2030, despite accounting for only 5% of all cancer diagnoses. Germline gBRCA1/2-mutated PDAC represents a key subgroup with a favorable prognosis, due at least in part to additional approved and guideline-endorsed therapeutic options compared with an unselected PDAC cohort. The relatively recent incorporation of PARP inhibition into the treatment paradigm for such patients has resulted in renewed optimism for a biomarker-based approach to the management of this disease. However, gBRCA1/2 represents a small subgroup of patients with PDAC, and efforts to extend the indication for PARPi beyond BRCA1/2 mutations to patients with PDAC and other genomic alterations associated with deficient DNA damage repair (DDR) are ongoing, with several clinical trials underway. In addition, despite an array of approved therapeutic options for patients with BRCA1/2-associated PDAC, both primary and acquired resistance to platinum-based chemotherapies and PARPi presents a significant challenge in improving long-term outcomes. Herein, we review the current treatment landscape of PDAC for patients with BRCA1/2 and other DDR gene mutations, experimental approaches under investigation or in development, and future directions.
Collapse
Affiliation(s)
- Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
| | - Catherine A. O’Connor
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
| | - Wungki Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Thomas Seufferlein
- Department of Internal Medicine, Ulm University Hospital, 89081 Ulm, Germany;
| | - Eileen M. O’Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; (F.K.); (C.A.O.); (W.P.)
- David M. Rubenstein Center for Pancreatic Cancer Research, New York, NY 10065, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
19
|
Sorrentino C, Di Carlo E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers (Basel) 2023; 15:2885. [PMID: 37296848 PMCID: PMC10251915 DOI: 10.3390/cancers15112885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Prostate cancer is the most frequent malignant tumor in men, and, despite the great improvements in survival in patients with localized cancer, the prognosis for metastatic disease remains poor. Novel molecular targeted therapies, which block specific molecules or signaling pathways in tumor cells or in their microenvironment, have shown encouraging results in metastatic castration-resistant prostate cancer. Among these therapeutic approaches, prostate-specific membrane antigen-targeted radionuclide therapies and DNA repair inhibitors represent the most promising ones, with some therapeutic protocols already approved by the FDA, whereas therapies targeting tumor neovascularization and immune checkpoint inhibitors have not yet demonstrated clear clinical benefits. In this review, the most relevant studies and clinical trials on this topic are illustrated and discussed, together with future research directions and challenges.
Collapse
Affiliation(s)
- Carlo Sorrentino
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy;
- Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
20
|
Taylor AK, Kosoff D, Emamekhoo H, Lang JM, Kyriakopoulos CE. PARP inhibitors in metastatic prostate cancer. Front Oncol 2023; 13:1159557. [PMID: 37168382 PMCID: PMC10165068 DOI: 10.3389/fonc.2023.1159557] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Poly-ADP ribose polymerase inhibitors (PARPi) are an emerging therapeutic option for the treatment of prostate cancer. Their primary mechanism of action is via induction of synthetic lethality in cells with underlying deficiencies in homologous recombination repair (HRR). In men with metastatic castrate-resistant prostate cancer (mCRPC) and select HRR pathway alterations, PARPi treatment has been shown to induce objective tumor responses as well as improve progression free and overall survival. Presently, there are two PARPi, olaparib and rucaparib, that are FDA approved in the treatment of mCRPC. Ongoing research is focused on identifying which HRR alterations are best suited to predict response to PARPi so that these therapies can be most effectively utilized in the clinic. While resistance to PARPi remains a concern, combination therapies may represent a mechanism to overcome or delay resistance.
Collapse
Affiliation(s)
- Amy K. Taylor
- Department of Medicine, University of Wisconsin, Madison, WI, United States
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Hamid Emamekhoo
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Joshua M. Lang
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| | - Christos E. Kyriakopoulos
- Department of Medicine, University of Wisconsin, Madison, WI, United States
- University of Wisconsin Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
21
|
Marchetti A, Tassinari E, Rosellini M, Rizzo A, Massari F, Mollica V. Prostate cancer and novel pharmacological treatment options-what's new for 2022? Expert Rev Clin Pharmacol 2023; 16:231-244. [PMID: 36794353 DOI: 10.1080/17512433.2023.2181783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
INTRODUCTION Androgen deprivation therapy (ADT) plus Androgen Receptor Target Agents (ARTAs) or docetaxel are the actual standard of care in prostate cancer (PC). Several therapeutic options are available for pretreated patients: cabazitaxel, olaparib, and rucaparib for BRCA mutations, Radium-223 for selected patients with symptomatic bone metastasis, sipuleucel T, and 177 LuPSMA-617. AREAS COVERED This review the new potential therapeutic approaches and the most impacting recent published trials to provide an overview on the future management of PC. EXPERT OPINION Currently, there is a growing interest in the potential role of triplet therapies encompassing ADT, chemotherapy, and ARTAs. These strategies, explored in different settings, appeared to be particularly promising in metastatic hormone-sensitive PC. Recent trials investigating ARTAs plus poly(adenosine diphosphate-ribose) polymerase (PARPi) inhibitor provided helpful insights for patients with metastatic castration resistant disease, regardless of homologous recombination genes status. Otherwise, the publication of the complete data is awaited, and more evidence is required. In advanced settings, several combination approaches are under investigation, to date with contradictory results, such as immunotherapy plus PARPi or chemotherapy. The radionuclide 177Lu-PSMA-617 proved successful outcomes in pretreated mCRPC patients. Additional studies will better clarify the appropriate candidates to each strategy and the correct treatments' sequence.
Collapse
Affiliation(s)
- Andrea Marchetti
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Elisa Tassinari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Matteo Rosellini
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico "Don Tonino Bello," I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Francesco Massari
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Veronica Mollica
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
22
|
Inderjeeth AJ, Topp M, Sanij E, Castro E, Sandhu S. Clinical Application of Poly(ADP-ribose) Polymerase (PARP) Inhibitors in Prostate Cancer. Cancers (Basel) 2022; 14:5922. [PMID: 36497408 PMCID: PMC9736565 DOI: 10.3390/cancers14235922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022] Open
Abstract
Approximately a quarter of men with metastatic castrate resistant prostate cancer (mCRPC) have alterations in homologous recombination repair (HRR). These patients exhibit enhanced sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Leveraging the synthetic lethality between PARP inhibition and HRR deficiency, studies have established marked clinical benefit and a survival advantage from PARP inhibitors (PARPi) in mCRPC, most notably in cancers with BRCA1/2 alterations. The role of PARPi is evolving beyond patients with HRR alterations, with studies increasingly focused on exploiting synergistic effects from combination therapeutics. Strategies combining PARP inhibitors with androgen receptor pathway inhibitors, radiation, radioligand therapy, chemotherapy and immunotherapy demonstrate potential additional benefits in mCRPC and these approaches are rapidly moving into the metastatic hormone sensitive treatment paradigm. In this review we summarise the development and expanding role of PARPi in prostate cancer including biomarkers of response, the relationship between the androgen receptor and PARP, evidence for combination therapeutics and the future directions of PARPi in precision medicine for prostate cancer.
Collapse
Affiliation(s)
| | - Monique Topp
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3168, Australia
- Department of Medicine St Vincent’s Hospital, University of Melbourne, Melbourne, VIC 3065, Australia
| | - Elena Castro
- Department Medical Oncology, 12 de Octubre University Hospital, 28041 Madrid, Spain
| | - Shahneen Sandhu
- Peter MacCallum Cancer Centre, Melbourne, VIC 3065, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|