3
|
Li W, Zhang Y, Wei Y, Ling G, Zhang Y, Li Y, Guo S, Tan N, Ma L, Li W, Sun Q, Wang W, Wang Y. New insights into mitochondrial quality control in anthracycline-induced cardiotoxicity: molecular mechanisms, therapeutic targets, and natural products. Int J Biol Sci 2025; 21:507-523. [PMID: 39781459 PMCID: PMC11705644 DOI: 10.7150/ijbs.103810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/23/2024] [Indexed: 01/12/2025] Open
Abstract
Anthracyclines (ANTs) are widely used in cancer therapy, particularly for lymphoma, sarcoma, breast cancer, and childhood leukemia, and have become the cornerstone of chemotherapy for various malignancies. However, it is associated with fatal and dose-dependent cardiovascular complications, especially cardiotoxicity. Mitochondrial quality control mechanisms, encompassing mitophagy, mitochondrial dynamics, and mitochondrial biogenesis, maintain mitochondrial homeostasis in the cardiovascular system. Recent studies have highlighted that mitochondrial quality control mechanisms play considerable roles in ANTs-induced cardiotoxicity (AIC). In addition, natural products targeting mitochondrial quality control mechanisms have emerged as potential therapeutic strategies to alleviate AIC. This review summarizes the types, incidence, prevention, treatment, and pathomechanism of AIC, delves into the molecular mechanisms of mitochondrial quality control in the pathogenesis of AIC, and explores natural products that target these mechanisms, so as to provide potential targets and therapeutic drugs for address the clinical challenges in AIC prevention and treatment, where no effective medicines are available.
Collapse
Affiliation(s)
- Weili Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuqin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yawen Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yilin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shujuan Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Lin Ma
- Anhui University of Traditional Chinese Medicine, Anhui 230012, China
| | - Wei Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qianbin Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| | - Yong Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- Beijing Key Laboratory of TCM Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 100029, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing 100029, China
| |
Collapse
|
6
|
Salloum FN, Tocchetti CG, Ameri P, Ardehali H, Asnani A, de Boer RA, Burridge P, Cabrera JÁ, de Castro J, Córdoba R, Costa A, Dent S, Engelbertsen D, Fernández-Velasco M, Fradley M, Fuster JJ, Galán-Arriola C, García-Lunar I, Ghigo A, González-Neira A, Hirsch E, Ibáñez B, Kitsis RN, Konety S, Lyon AR, Martin P, Mauro AG, Mazo Vega MM, Meijers WC, Neilan TG, Rassaf T, Ricke-Hoch M, Sepulveda P, Thavendiranathan P, van der Meer P, Fuster V, Ky B, López-Fernández T. Priorities in Cardio-Oncology Basic and Translational Science: GCOS 2023 Symposium Proceedings: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2023; 5:715-731. [PMID: 38205010 PMCID: PMC10774781 DOI: 10.1016/j.jaccao.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 01/12/2024] Open
Abstract
Despite improvements in cancer survival, cancer therapy-related cardiovascular toxicity has risen to become a prominent clinical challenge. This has led to the growth of the burgeoning field of cardio-oncology, which aims to advance the cardiovascular health of cancer patients and survivors, through actionable and translatable science. In these Global Cardio-Oncology Symposium 2023 scientific symposium proceedings, we present a focused review on the mechanisms that contribute to common cardiovascular toxicities discussed at this meeting, the ongoing international collaborative efforts to improve patient outcomes, and the bidirectional challenges of translating basic research to clinical care. We acknowledge that there are many additional therapies that are of significance but were not topics of discussion at this symposium. We hope that through this symposium-based review we can highlight the knowledge gaps and clinical priorities to inform the design of future studies that aim to prevent and mitigate cardiovascular disease in cancer patients and survivors.
Collapse
Affiliation(s)
- Fadi N. Salloum
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carlo G. Tocchetti
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, Interdepartmental Center of Clinical and Translational Sciences, Interdepartmental Hypertension Research Center, Federico II University, Naples, Italy
| | - Pietro Ameri
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
| | - Aarti Asnani
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Rudolf A. de Boer
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Paul Burridge
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - José-Ángel Cabrera
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, European University of Madrid, Madrid, Spain
| | - Javier de Castro
- Medical Oncology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
| | - Raúl Córdoba
- Health Research Institute, Instituto de Investigación Sanitaria Fundación Jimenez Diaz, Fundación Jimenez Diaz University Hospital, Madrid, Spain
| | - Ambra Costa
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Susan Dent
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Daniel Engelbertsen
- Cardiovascular Research - Immune Regulation, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - María Fernández-Velasco
- Hospital La Paz Institute for Health Research, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Mike Fradley
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - José J. Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Carlos Galán-Arriola
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Inés García-Lunar
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Alessandra Ghigo
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Anna González-Neira
- Human Genotyping Unit, Spanish National Genotyping Centre, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
| | - Emilio Hirsch
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Richard N. Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, New York USA
| | - Suma Konety
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Alexander R. Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, London, United Kingdom
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
| | - Adolfo G. Mauro
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Manuel M. Mazo Vega
- Division of Advanced Technologies, Cima Universidad de Navarra, Pamplona, Spain
| | - Wouter C. Meijers
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Tomas G. Neilan
- Cardio-Oncology Program, Massachusetts General Hospital, Harvard Medical School. Boston, Massachusetts, USA
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Melanie Ricke-Hoch
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Pilar Sepulveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
| | - Paaladinesh Thavendiranathan
- Division of Cardiology, Department of Medicine, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York
| | - Bonnie Ky
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Teresa López-Fernández
- Cardiology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| | - International Cardio-Oncology Society
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Translational Medical Sciences, Center for Basic and Clinical Immunology Research, Interdepartmental Center of Clinical and Translational Sciences, Interdepartmental Hypertension Research Center, Federico II University, Naples, Italy
- Cardiac, Thoracic and Vascular Department, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
- Feinberg Cardiovascular Research Institute, Northwestern University School of Medicine, Chicago, Illinois, USA
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
- Cardiovascular Institute, Thorax Center, Department of Cardiology, Erasmus Medical Center, Rotterdam, the Netherlands
- Cardiovascular Division, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
- Cardiology Department, Hospital Universitario Quirónsalud Madrid, European University of Madrid, Madrid, Spain
- Medical Oncology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Centro de Investigación Biomédica en Red Cáncer, Madrid, Spain
- Health Research Institute, Instituto de Investigación Sanitaria Fundación Jimenez Diaz, Fundación Jimenez Diaz University Hospital, Madrid, Spain
- Duke Cancer Institute, Department of Medicine, Duke University, Durham, North Carolina, USA
- Cardiovascular Research - Immune Regulation, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Hospital La Paz Institute for Health Research, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Centro Nacional de Investigaciones Cardiovasculares, Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Madrid, Spain
- Molecular Biotechnology Center Guido Tarone, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
- Human Genotyping Unit, Spanish National Genotyping Centre, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid, Spain
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, New York, New York, USA
- Montefiore Einstein Comprehensive Cancer Center, Bronx, New York, New York USA
- Cardio-Oncology Service, Royal Brompton Hospital, London, United Kingdom
- Division of Advanced Technologies, Cima Universidad de Navarra, Pamplona, Spain
- Cardio-Oncology Program, Massachusetts General Hospital, Harvard Medical School. Boston, Massachusetts, USA
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Carlos III Institute of Health, Madrid, Spain
- Division of Cardiology, Department of Medicine, Ted Rogers Program in Cardiotoxicity Prevention, Peter Munk Cardiac Center, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario, Canada
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York
- Cardiology Department, Hospital La Paz Institute for Health Research, La Paz University Hospital, Madrid, Spain
| |
Collapse
|
7
|
Sharafeldin N, Zhou L, Singh P, Crossman DK, Wang X, Hageman L, Landier W, Blanco JG, Burridge PW, Sapkota Y, Yasui Y, Armstrong GT, Robison LL, Hudson MM, Oeffinger K, Chow EJ, Armenian SH, Weisdorf DJ, Bhatia S. Gene-Level Analysis of Anthracycline-Induced Cardiomyopathy in Cancer Survivors: A Report From COG-ALTE03N1, BMTSS, and CCSS. JACC CardioOncol 2023; 5:807-818. [PMID: 38205005 PMCID: PMC10774788 DOI: 10.1016/j.jaccao.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 01/12/2024] Open
Abstract
Background Anthracyclines are highly effective in treating cancer, albeit with increased cardiomyopathy risk. Although risk is attributed to associations with single nucleotide polymorphisms (SNPs), multiple SNPs on a gene and their interactions remain unexamined. Objectives This study examined gene-level associations with cardiomyopathy among cancer survivors using whole-exome sequencing data. Methods For discovery, 278 childhood cancer survivors (129 cases; 149 matched control subjects) from the COG (Children's Oncology Group) study ALTE03N1 were included. Logic regression (machine learning) was used to identify gene-level SNP combinations for 7,212 genes and ordinal logistic regression to estimate gene-level associations with cardiomyopathy. Models were adjusted for primary cancer, age at cancer diagnosis, sex, race/ethnicity, cumulative anthracycline dose, chest radiation, cardiovascular risk factors, and 3 principal components. Statistical significance threshold of 6.93 × 10-6 accounted for multiple testing. Three independent cancer survivor populations (COG study, BMTSS [Blood or Marrow Transplant Survivor Study] and CCSS [Childhood Cancer Survivor Study]) were used to replicate gene-level associations and examine SNP-level associations from discovery genes using ordinal logistic, conditional logistic, and Cox regression models, respectively. Results Median age at cancer diagnosis for discovery cases and control subjects was 6 years and 8 years, respectively. Gene-level association for P2RX7 (OR: 0.10; 95% CI: 0.04-0.27; P = 2.19 × 10-6) was successfully replicated (HR: 0.65; 95% CI: 0.47-0.90; P = 0.009) in the CCSS cohort. Additional signals were identified on TNIK, LRRK2, MEFV, NOBOX, and FBN3. Individual SNPs across all discovery genes, except FBN3, were replicated. Conclusions In our study, SNP sets having 1 or no copies of P2RX7 variant alleles were associated with reduced risk of cardiomyopathy, presenting a potential therapeutic target to mitigate cardiac outcomes in cancer survivors.
Collapse
Affiliation(s)
- Noha Sharafeldin
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Liting Zhou
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Purnima Singh
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xuexia Wang
- Department of Mathematics, University of North Texas, Denton, Texas, USA
| | - Lindsey Hageman
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Wendy Landier
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Javier G. Blanco
- The State University of New York at Buffalo, Buffalo, New York, USA
| | - Paul W. Burridge
- Department of Pharmacology, Northwestern University, Chicago, Illinois, USA
| | - Yadav Sapkota
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yutaka Yasui
- St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | - Eric J. Chow
- Seattle Children’s Hospital, University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Saro H. Armenian
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Daniel J. Weisdorf
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Smita Bhatia
- Institute for Cancer Outcomes and Survivorship, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Ma N, Sun Y, Kong Y, Jin Y, Yu F, Liu L, Yang L, Liu W, Gao X, Liu D, Zhang X, Li L. Comprehensive investigating of mismatch repair genes (MMR) polymorphisms in participants with chronic hepatitis B virus infection. Front Genet 2023; 14:1077297. [PMID: 36816025 PMCID: PMC9928949 DOI: 10.3389/fgene.2023.1077297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 02/04/2023] Open
Abstract
Background and aim: In this study, we focused on the relationship between single nucleotide polymorphisms in MMR genes and the occurrence and development of HBV infection. Materials and methods: A total of 3,128 participants were divided into five groups: negative control group (NeC), spontaneous clearance group (SC), chronic hepatitis B group (CHB), liver cirrhosis group (LC) and hepatocellular carcinoma group (HCC), CHB, liver cirrhosis and hepatocellular carcinoma constitute HLD. We conducted three case-control studies: NeC (840 cases) vs. HLD (1792 cases), SC (486 cases) vs. HLD (1792 cases) and CHB + LC (1,371 cases) vs. HCC (421 cases). 11 polymorphic loci in MLH1, MLH3, MSH5, PMS1 and PMS2 were involved in genotyping by Sequenom MassArray. The SNPStats performed Hardy-Weinberg equilibrium test. Linkage disequilibrium patterns were visualized using Haploview4.2. The GMDR (v0.9) was conducted to generalized multifactor dimension reduction analysis. The correlation, multiplicative interaction and additive interaction analyses were calculated by Logistic Regression through SPSS21.0. Matrix and programmed excel were also involved in the calculation of additive interaction. Results: In NeC vs. HLD group, MSH5-rs1150793(G) was a risk base to HBV susceptibility (nominal p = 0.002, OR = 1.346). We found multiplicative interaction between MLH1-rs1540354 (AA + AT) and PMS1-rs1233255 (AA) (nominal p = 0.024, OR = 1.240). There was additive interaction between PMS1-rs1233255 (AA) and PMS1-rs256554(CA + CC). In SC vs. HLD group, MLH1-rs1540354 (TT) was a risk genotype (nominal p < 0.05, OR>1). Through haplotype analysis, we found the linkage disequilibrium of three loci in MLH1. The results of GMDR showed the optimal five-locus model about the spontaneous clearance of HBV. In CHB + LC vs. HCC group, PMS2-rs12112229(A) was related to the cancerization of liver. Conclusion: We found rs1150793(G), rs1540354(T) and rs12112229(A) were significantly related to HBV susceptibility, spontaneous clearance of HBV and cancerization after infection, respectively.
Collapse
Affiliation(s)
- Ning Ma
- Department of Social Medicine and HealthCare Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yucheng Sun
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yanan Kong
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yiyao Jin
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Fengxue Yu
- Division of gastroenterology, The Second Hospital of Hebei Medical University, The Hebei Key Laboratory of Gastroenterology, Shijiazhuang, China
| | - Lianfeng Liu
- Department of Pediatrics, Shijiazhuang Maternal and Child Health Hospital, Shijiazhuang, China
| | - Lei Yang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Wenxuan Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xia Gao
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Dianwu Liu
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xiaolin Zhang
- Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China,*Correspondence: Xiaolin Zhang, ; Lu Li,
| | - Lu Li
- Department of Social Medicine and HealthCare Management, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China,*Correspondence: Xiaolin Zhang, ; Lu Li,
| |
Collapse
|