1
|
Cavallari LH, Hicks JK, Patel JN, Elchynski AL, Smith DM, Bargal SA, Fleck A, Aquilante CL, Killam SR, Lemke L, Ochi T, Ramsey LB, Haidar CE, Ho T, El Rouby N, Monte AA, Allen JD, Beitelshees AL, Bishop JR, Bousman C, Campbell R, Cicali EJ, Cook KJ, Duong B, Tsermpini EE, Girdwood ST, Gregornik DB, Grimsrud KN, Lamb N, Lee JC, Lopez RO, Mazhindu TA, Morris SA, Nagy M, Nguyen J, Pasternak AL, Petry N, van Schaik RHN, Schultz A, Skaar TC, Al Alshaykh H, Stevenson JM, Stone RM, Tran NK, Tuteja S, Woodahl EL, Yuan LC, Lee CR. The Pharmacogenomics Global Research Network Implementation Working Group: global collaboration to advance pharmacogenetic implementation. Pharmacogenet Genomics 2025; 35:1-11. [PMID: 39485373 DOI: 10.1097/fpc.0000000000000547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pharmacogenetics promises to optimize treatment-related outcomes by informing optimal drug selection and dosing based on an individual's genotype in conjunction with other important clinical factors. Despite significant evidence of genetic associations with drug response, pharmacogenetic testing has not been widely implemented into clinical practice. Among the barriers to broad implementation are limited guidance for how to successfully integrate testing into clinical workflows and limited data on outcomes with pharmacogenetic implementation in clinical practice. The Pharmacogenomics Global Research Network Implementation Working Group seeks to engage institutions globally that have implemented pharmacogenetic testing into clinical practice or are in the process or planning stages of implementing testing to collectively disseminate data on implementation strategies, metrics, and health-related outcomes with the use of genotype-guided drug therapy to ultimately help advance pharmacogenetic implementation. This paper describes the goals, structure, and initial projects of the group in addition to implementation priorities across sites and future collaborative opportunities.
Collapse
Affiliation(s)
- Larisa H Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville
| | - J Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Jai N Patel
- Atrium Health Levine Cancer Institute, Charlotte
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Amanda L Elchynski
- Department of Pharmacy, Arkansas Children's Hospital, Little Rock, Arkansas
| | - D Max Smith
- MedStar Health, Columbia, Maryland
- Department of Oncology, Georgetown University Medical Center, Washington, DC
| | - Salma A Bargal
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley Fleck
- Department of Pharmacy, Richard L. Roudebush Veterans Affairs Medical Center, Veteran Health Indiana, Indianapolis, Indiana
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, Colorado
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Shayna R Killam
- L.S. Skaggs Institute for Health Innovation and Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | | | - Taichi Ochi
- Department of Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy; and University Library, University of Groningen, Groningen, The Netherlands
| | - Laura B Ramsey
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, Missouri
| | - Cyrine E Haidar
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Teresa Ho
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida
| | - Nihal El Rouby
- Department of Pharmacy, St. Elizabeth HealthCare, Edgewood, Kentucky
- Division of Pharmacy Practice and Administrative Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Andrew A Monte
- Rocky Mountain Poison & Drug Safety, Denver Health & Hospital Authority, Denver, Colorado
- University of Colorado School of Medicine, Aurora, Colorado
| | - Josiah D Allen
- Department of Pharmacy, St. Elizabeth HealthCare, Edgewood, Kentucky
| | - Amber L Beitelshees
- Department of Medicine and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology and Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chad Bousman
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Ronald Campbell
- Allegheny General Hospital, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville
| | - Kelsey J Cook
- Department of Pharmacy Education and Practice, University of Florida College of Pharmacy
- Nemours Children's Health, Jacksonville, Florida
| | - Benjamin Duong
- Precision Medicine Program, Nemours Children's Health Delaware Valley, Wilmington, Delaware, USA
| | - Evangelia Eirini Tsermpini
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Sonya Tang Girdwood
- Divisions of Hospital Medicine and Translational and Clinical Pharmacology, Cincinnati Children's Hospital
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - David B Gregornik
- Pharmacogenomics Program, Children's Minnesota, Minneapolis/St Paul, Minnesota
| | - Kristin N Grimsrud
- Department of Pathology and Laboratory Medicine, University of California Health, Sacramento, California
| | - Nathan Lamb
- Department of Pharmacy, Ann & Robert H. Lurie Children's Hospital of Chicago
| | - James C Lee
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Rocio Ortiz Lopez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| | | | - Sarah A Morris
- Atrium Health Levine Cancer Institute, Charlotte
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, North Carolina
| | - Mohamed Nagy
- Personalised Medication Management Unit, Children's Cancer Hospital Egypt 57357, Cairo, Egypt
| | - Jenny Nguyen
- Personalized Care Program, Children's Hospital Los Angeles, Los Angeles, California
| | - Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, Michigan
| | - Natasha Petry
- Sanford Imagenetics, Sanford Health, Sioux Falls, South Dakota
- Department of Pharmacy Practice, North Dakota State University, Fargo, North Dakota, USA
| | - Ron H N van Schaik
- Department of Clinical Chemistry, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - April Schultz
- Sanford Imagenetics, Sanford Health, Sioux Falls, South Dakota
- Department of Internal Medicine, University of South Dakota School of Medicine, Vermillion, South Dakota
| | - Todd C Skaar
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Hana Al Alshaykh
- Pharmaceutical Care Department, King Faisal Specialist Hospital and Research Center, College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - James M Stevenson
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rachael M Stone
- Department of Pharmacy, University of Virginia, Charlottesville, Virginia
| | - Nam K Tran
- Department of Pathology and Laboratory Medicine, University of California Health, Sacramento, California
| | - Sony Tuteja
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Erica L Woodahl
- L.S. Skaggs Institute for Health Innovation and Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana
| | - Li-Chi Yuan
- Providence Health and Services, Irvine, California
| | - Craig R Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
2
|
Shugg T, Tillman EM, Breman AM, Hodge JC, McDonald CA, Ly RC, Rowe EJ, Osei W, Smith TB, Schwartz PH, Callaghan JT, Pratt VM, Lynch S, Eadon MT, Skaar TC. Development of a Multifaceted Program for Pharmacogenetics Adoption at an Academic Medical Center: Practical Considerations and Lessons Learned. Clin Pharmacol Ther 2024; 116:914-931. [PMID: 39169556 PMCID: PMC11452286 DOI: 10.1002/cpt.3402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
In 2019, Indiana University launched the Precision Health Initiative to enhance the institutional adoption of precision medicine, including pharmacogenetics (PGx) implementation, at university-affiliated practice sites across Indiana. The overarching goal of this PGx implementation program was to facilitate the sustainable adoption of genotype-guided prescribing into routine clinical care. To accomplish this goal, we pursued the following specific objectives: (i) to integrate PGx testing into existing healthcare system processes; (ii) to implement drug-gene pairs with high-level evidence and educate providers and pharmacists on established clinical management recommendations; (iii) to engage key stakeholders, including patients to optimize the return of results for PGx testing; (iv) to reduce health disparities through the targeted inclusion of underrepresented populations; (v) and to track third-party reimbursement. This tutorial details our multifaceted PGx implementation program, including descriptions of our interventions, the critical challenges faced, and the major program successes. By describing our experience, we aim to assist other clinical teams in achieving sustainable PGx implementation in their health systems.
Collapse
Affiliation(s)
- Tyler Shugg
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Emma M. Tillman
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Amy M. Breman
- Division of Diagnostic Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jennelle C. Hodge
- Division of Diagnostic Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Christine A. McDonald
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Reynold C. Ly
- Division of Diagnostic Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth J. Rowe
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wilberforce Osei
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tayler B. Smith
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Peter H. Schwartz
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - John T. Callaghan
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Victoria M. Pratt
- Division of Diagnostic Genomics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sheryl Lynch
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Michael T. Eadon
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Todd C. Skaar
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
4
|
de Moraes FCA, de Almeida Barbosa AB, Sano VKT, Kelly FA, Burbano RMR. Pharmacogenetics of DPYD and treatment-related mortality on fluoropyrimidine chemotherapy for cancer patients: a meta-analysis and trial sequential analysis. BMC Cancer 2024; 24:1210. [PMID: 39350200 PMCID: PMC11441158 DOI: 10.1186/s12885-024-12981-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Fluoropyrimidines are chemotherapy drugs utilized to treat a variety of solid tumors. These drugs predominantly rely on the enzyme dihydropyrimidine dehydrogenase (DPD), which is encoded by the DPYD gene, for their metabolism. Genetic mutations affecting this gene can cause DPYD deficiency, disrupting pyrimidine metabolism and increasing the risk of toxicity in cancer patients treated with 5-fluorouracil. The severity and type of toxic reactions are influenced by genetic and demographic factors and, in certain instances, can result in patient mortality. Among the more than 50 identified variants of DPYD, only a subset has clinical significance, leading to the production of enzymes that are either non-functional or impaired. The study aims to examine treatment-related mortality in cancer patients undergoing fluoropyrimidine chemotherapy, comparing those with and without DPD deficiency. METHODS The meta-analysis selected and evaluated 9685 studies from Pubmed, Cochrane, Embase and Web of Science databases. Only studies examining the main DPYD variants (DPYD*2A, DPYD p.D949V, DPYD*13 and DPYD HapB3) were included. Statistical Analysis was performed using R, version 4.2.3. Data were examined using the Mantel-Haenszel method and 95% CIs. Heterogeneity was assessed with I2 statistics. RESULTS There were 36 prospective and retrospective studies included, accounting for 16,005 patients. Most studies assessed colorectal cancer, representing 86.49% of patients. Other gastrointestinal cancers were evaluated by 11 studies, breast cancer by nine studies and head and neck cancers by five studies. Four DPYD variants were identified as predictors of severe fluoropyrimidines toxicity in literature review: DPYD*2A (rs3918290), DPYD p.D949V (rs67376798), DPYD*13 (rs55886062) and DPYD Hap23 (rs56038477). All 36 studies assessed the DPYD*2A variant, while 20 assessed DPYD p.D949V, 7 assessed DPYD*13, and 9 assessed DPYDHap23. Among the 587 patients who tested positive for at least one DPYD variant, 13 died from fluoropyrimidine toxicity. Conversely, in the non-carrier group there were 14 treatment-related deaths. Carriers of DPYD variants was found to be significantly correlated with treatment-related mortality (OR = 34.86, 95% CI 13.96-87.05; p < 0.05). CONCLUSIONS This study improves our comprehension of how the DPYD gene impacts cancer patients receiving fluoropyrimidine chemotherapy. Identifying mutations associated with dihydropyrimidine dehydrogenase deficiency may help predict the likelihood of serious side effects and fatalities. This knowledge can be applied to adjust medication doses before starting treatment, thus reducing the occurrence of these critical outcomes.
Collapse
|
5
|
Tamraz B, Venook AP. DPYD Pharmacogenetics: To Opt-in or to Opt-out. JCO Oncol Pract 2024; 20:1009-1011. [PMID: 38743915 DOI: 10.1200/op.24.00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 03/29/2024] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Affiliation(s)
- Bani Tamraz
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Jacobson JO, Rompelman G, Chen A, Morrison-Ma S, Murray L, Ferzoco M, Bunnell C, Wagner AJ, Roberts D, Chan J, Block C, Rubinson D. Design and Implementation of an Opt-Out, End-to-End, Preemptive DPYD Testing Program for Patients Planned for a Systemic Fluoropyrimidine. JCO Oncol Pract 2024; 20:1115-1122. [PMID: 38608224 DOI: 10.1200/op.23.00776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE Several allelic variants of the gene DPYD encoding dihydropyrimidine dehydrogenase (DPD) are associated with impaired metabolism of the systemic fluoropyrimidine fluorouracil (5FU) and its oral prodrug, capecitabine, which elevates the risk for severe toxicity. Following a patient death related to capecitabine toxicity in which DPD deficiency was suspected, a multidisciplinary advisory panel was convened to develop an institution-wide approach to future patients planned for a systemic fluoropyrimidine. METHODS The panel selected an opt-out testing strategy which focused on developing reliable processes to collect and report test results and targeted education. An electronic health record-based automated reminder was designed to activate when a 5FU- or capecitabine-containing chemotherapy regimen was ordered for a patient without prior exposure to either agent and without a prior DPYD sequencing test result. DPYD testing was standardized across all sites of care, and a closed loop reporting system for abnormal test results was created. Before implementation, targeted education was provided to providers, pharmacists, and nurses, and a failure mode and effects analysis was performed. Program rollout was staged over a 6-month period. RESULTS At 10 months, the rate of preemptive testing increased from a baseline of 26% to a sustained rate of >90%. In the six network sites, the testing rate increased from 9% to 96%. A total of 1,043 patients have been tested preemptively; allelic variants have been identified in 43 (4.1%). Among 25 evaluable patients, dose reduction or change to a non-fluoropyrimidine-based regimen was accomplished in 96%. CONCLUSION Preemptive DPYD testing is feasible, and high rates of testing can be achieved using an opt-out, reminder-based program. We provide the details of the implementation and encourage others to emulate it.
Collapse
Affiliation(s)
| | | | - Angela Chen
- Children's Specialized Hospital, New Brunswick, NJ
| | | | | | | | - Craig Bunnell
- Dana-Farber Cancer, Boston, MA
- Harvard Medical School, Boston, MA
| | - Andrew J Wagner
- Dana-Farber Cancer, Boston, MA
- Harvard Medical School, Boston, MA
| | | | - Jennifer Chan
- Dana-Farber Cancer, Boston, MA
- Harvard Medical School, Boston, MA
| | - Caroline Block
- Dana-Farber Cancer, Boston, MA
- Harvard Medical School, Boston, MA
| | - Douglas Rubinson
- Dana-Farber Cancer, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Tracksdorf T, Smith DM, Pearse S, Cicali EJ, Aquilante CL, Scott SA, Ho TT, Patel JN, Hicks JK, Hertz DL. Strategies for DPYD testing prior to fluoropyrimidine chemotherapy in the US. Support Care Cancer 2024; 32:497. [PMID: 38980476 DOI: 10.1007/s00520-024-08674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE Patients with dihydropyrimidine dehydrogenase (DPD) deficiency are at high risk for severe and fatal toxicity from fluoropyrimidine (FP) chemotherapy. Pre-treatment DPYD testing is standard of care in many countries, but not the United States (US). This survey assessed pre-treatment DPYD testing approaches in the US to identify best practices for broader adoption. METHODS From August to October 2023, a 22-item QualtricsXM survey was sent to institutions and clinicians known to conduct pre-treatment DPYD testing and broadly distributed through relevant organizations and social networks. Responses were analyzed using descriptive analysis. RESULTS Responses from 24 unique US sites that have implemented pre-treatment DPYD testing or have a detailed implementation plan in place were analyzed. Only 33% of sites ordered DPYD testing for all FP-treated patients; at the remaining sites, patients were tested depending on disease characteristics or clinician preference. Almost 50% of sites depend on individual clinicians to remember to order testing without the assistance of electronic alerts or workflow reminders. DPYD testing was most often conducted by commercial laboratories that tested for at least the four or five DPYD variants considered clinically actionable. Approximately 90% of sites reported receiving results within 10 days of ordering. CONCLUSION Implementing DPYD testing into routine clinical practice is feasible and requires a coordinated effort among the healthcare team. These results will be used to develop best practices for the clinical adoption of DPYD testing to prevent severe and fatal toxicity in cancer patients receiving FP chemotherapy.
Collapse
Affiliation(s)
- Tabea Tracksdorf
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA
| | - D Max Smith
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
- MedStar Health, Columbia, MD, USA
| | - Skyler Pearse
- Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Emily J Cicali
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA
| | - Christina L Aquilante
- Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO, USA
- Colorado Center for Personalized Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Stuart A Scott
- Department of Pathology, Stanford University, Stanford, CA, USA
- Clinical Genomics Laboratory, Stanford Medicine, Palo Alto, CA, USA
| | - Teresa T Ho
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Jai N Patel
- Department of Cancer Pharmacology and Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - J Kevin Hicks
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | - Daniel L Hertz
- Deparment of Clinical Pharmacy, University of Michigan College of Pharmacy, 428 Church St, Room 2560C, Ann Arbor, MI, 48109-1065, USA.
| |
Collapse
|
8
|
Nguyen DG, Morris SA, Hamilton A, Kwange SO, Steuerwald N, Symanowski J, Moore DC, Hanson S, Mroz K, Lopes KE, Larck C, Musselwhite L, Kadakia KC, Koya B, Chai S, Osei-Boateng K, Kalapurakal S, Swift K, Hwang J, Patel JN. Real-World Impact of an In-House Dihydropyrimidine Dehydrogenase ( DPYD) Genotype Test on Fluoropyrimidine Dosing, Toxicities, and Hospitalizations at a Multisite Cancer Center. JCO Precis Oncol 2024; 8:e2300623. [PMID: 38935897 PMCID: PMC11371106 DOI: 10.1200/po.23.00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/07/2024] [Accepted: 04/12/2024] [Indexed: 06/29/2024] Open
Abstract
PURPOSE Fluoropyrimidine-related toxicity and mortality risk increases significantly in patients carrying certain DPYD genetic variants with standard dosing. We implemented DPYD genotyping at a multisite cancer center and evaluated its impact on dosing, toxicity, and hospitalization. METHODS In this prospective observational study, patients receiving (reactive) or planning to receive (pretreatment) fluoropyrimidine-based chemotherapy were genotyped for five DPYD variants as standard practice per provider discretion. The primary end point was the proportion of variant carriers receiving fluoropyrimidine modifications. Secondary end points included mean relative dose intensity, fluoropyrimidine-related grade 3+ toxicities, and hospitalizations. Fisher's exact test compared toxicity and hospitalization rates between pretreatment carriers, reactive carriers, and wild-type patients. Univariable and multivariable logistic regression identified factors associated with toxicity and hospitalization risk. Kaplan-Meier methods estimated time to event of first grade 3+ toxicity and hospitalization. RESULTS Of the 757 patients who received DPYD genotyping (median age 63, 54% male, 74% White, 19% Black, 88% GI malignancy), 45 (5.9%) were heterozygous carriers. Fluoropyrimidine was modified in 93% of carriers who started treatment. In 442 patients with 3-month follow-up, 64%, 31%, and 30% of reactive carriers, pretreatment carriers, and wild-type patients had grade 3+ toxicity, respectively (P = .085); 64%, 25%, and 13% were hospitalized (P < .001). Reactive carriers had 10-fold higher odds of hospitalization compared with wild-type patients (P = .001), whereas no significant difference was noted between pretreatment carriers and wild-type patients. Time-to-event of toxicity and hospitalization were significantly different between genotype groups (P < .001), with reactive carriers having the earliest onset and highest incidence. CONCLUSION DPYD genotyping prompted fluoropyrimidine modifications in most carriers. Pretreatment testing reduced toxicities and hospitalizations compared with reactive testing, thus normalizing the risk to that of wild-type patients, and should be considered standard practice.
Collapse
Affiliation(s)
- D. Grace Nguyen
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah A. Morris
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Alicia Hamilton
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Simeon O. Kwange
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Nury Steuerwald
- Molecular Biology and Genomics Core Facility, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| | - James Symanowski
- Department of Biostatistics and Data Sciences, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Donald C. Moore
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sarah Hanson
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kaitlyn Mroz
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Karine E. Lopes
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Chris Larck
- Department of Pharmacy, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Laura Musselwhite
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kunal C. Kadakia
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Brinda Koya
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Seungjean Chai
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kwabena Osei-Boateng
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Sini Kalapurakal
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Kristen Swift
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jimmy Hwang
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
- Department of Solid Tumor Oncology, Atrium Health Levine Cancer Institute, Charlotte, NC
| | - Jai N. Patel
- Department of Cancer Pharmacology & Pharmacogenomics, Atrium Health Levine Cancer Institute, Charlotte, NC
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC
| |
Collapse
|
9
|
Jacobson JO, Brooks GA. Unspoken Risks of Cancer Care. JCO Oncol Pract 2024; 20:617-620. [PMID: 38382006 DOI: 10.1200/op.23.00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Affiliation(s)
- Joseph O Jacobson
- Dana-Farber Cancer Institute, Boston, MA
- Harvard Medical School, Boston, MA
| | - Gabriel A Brooks
- Dartmouth Cancer Center/Dartmouth Hitchcock Medical Center, Lebanon, NH
- Dartmouth Geisel School of Medicine, Hanover, NH
| |
Collapse
|
10
|
Granados J, Pasternak AL, Henry NL, Sahai V, Hertz DL. Risk of Toxicity From Topical 5-Fluorouracil Treatment in Patients Carrying DPYD Variant Alleles. Clin Pharmacol Ther 2024; 115:452-456. [PMID: 38060335 PMCID: PMC10947784 DOI: 10.1002/cpt.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Patients carrying DPYD variant alleles have increased risk of severe toxicity from systemic fluoropyrimidine chemotherapy. There is a paucity of data regarding risk of toxicity from topical 5-fluorouracil (5-FU) treatment in these patients, leading to inconsistent guideline recommendations for pretreatment testing and topical 5-FU dosing. The objective of this retrospective cohort study was to investigate whether DPYD variant allele carriers have increased risk of toxicity from topical 5-FU. Treatment and toxicity data were retrospectively abstracted from the electronic medical records. Genotypes for the five DPYD variants that are associated with increased toxicity from systemic fluoropyrimidine chemotherapy (DPYD*2A, DPYD*13, DPYD p.D949V, DPYD HapB3, and DPYD p.Y186C) were collected from a genetic data repository. Incidence of grade 3+ (primary end point) and 1+ (secondary end point) toxicity was compared between DPYD variant carriers vs. wild-type patients using Fisher's exact tests. The analysis included 201 patients, 7% (14/201) of whom carried a single DPYD variant allele. No patients carried two variant alleles or experienced grade 3+ toxicity. DPYD variant allele carriers did not have a significantly higher risk of grade 1+ toxicity (21.4% vs. 10.2%, odds ratio = 2.40, 95% confidence interval: 0.10-2.53, P = 0.19). Given the low toxicity risk in patients carrying a single DPYD variant allele, there is limited potential clinical benefit of DPYD genetic testing prior to topical 5-FU. However, the risk of severe toxicity in patients with complete DPD deficiency remains unknown and topical 5-FU treatment should be avoided in these patients.
Collapse
Affiliation(s)
- Javier Granados
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
- University of Texas at Austin College of Pharmacy, Austin, TX
| | - Amy L Pasternak
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
| | - N Lynn Henry
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Vaibhav Sahai
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Daniel L Hertz
- Department of Clinical Pharmacy, University of Michigan College of Pharmacy, Ann Arbor, MI
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
11
|
Le Teuff G, Cozic N, Boyer JC, Boige V, Diasio RB, Taieb J, Meulendijks D, Palles C, Schwab M, Deenen M, Largiadèr CR, Marinaki A, Jennings BA, Wettergren Y, Di Paolo A, Gross E, Budai B, Ackland SP, van Kuilenburg ABP, McLeod HL, Milano G, Thomas F, Loriot MA, Kerr D, Schellens JHM, Laurent-Puig P, Shi Q, Pignon JP, Etienne-Grimaldi MC. Dihydropyrimidine dehydrogenase gene variants for predicting grade 4-5 fluoropyrimidine-induced toxicity: FUSAFE individual patient data meta-analysis. Br J Cancer 2024; 130:808-818. [PMID: 38225422 PMCID: PMC10912560 DOI: 10.1038/s41416-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/30/2023] [Accepted: 11/23/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Dihydropyrimidine dehydrogenase (DPD) deficiency is the main known cause of life-threatening fluoropyrimidine (FP)-induced toxicities. We conducted a meta-analysis on individual patient data to assess the contribution of deleterious DPYD variants *2A/D949V/*13/HapB3 (recommended by EMA) and clinical factors, for predicting G4-5 toxicity. METHODS Study eligibility criteria included recruitment of Caucasian patients without DPD-based FP-dose adjustment. Main endpoint was 12-week haematological or digestive G4-5 toxicity. The value of DPYD variants *2A/p.D949V/*13 merged, HapB3, and MIR27A rs895819 was evaluated using multivariable logistic models (AUC). RESULTS Among 25 eligible studies, complete clinical variables and primary endpoint were available in 15 studies (8733 patients). Twelve-week G4-5 toxicity prevalence was 7.3% (641 events). The clinical model included age, sex, body mass index, schedule of FP-administration, concomitant anticancer drugs. Adding *2A/p.D949V/*13 variants (at least one allele, prevalence 2.2%, OR 9.5 [95%CI 6.7-13.5]) significantly improved the model (p < 0.0001). The addition of HapB3 (prevalence 4.0%, 98.6% heterozygous), in spite of significant association with toxicity (OR 1.8 [95%CI 1.2-2.7]), did not improve the model. MIR27A rs895819 was not associated with toxicity, irrespective of DPYD variants. CONCLUSIONS FUSAFE meta-analysis highlights the major relevance of DPYD *2A/p.D949V/*13 combined with clinical variables to identify patients at risk of very severe FP-related toxicity.
Collapse
Affiliation(s)
- Gwénaël Le Teuff
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France.
| | - Nathalie Cozic
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | | - Valérie Boige
- Department of cancer medicine, Gustave-Roussy Cancer Campus, Paris-Saclay and Paris-Sud Universities, Villejuif, France
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
| | - Robert B Diasio
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Cancer Center, Rochester, MN, USA
| | - Julien Taieb
- Université Paris-Cité, SIRIC CARPEM, Department of Gastroenterology and Digestive Oncology, Georges Pompidou European Hospital, AP-HP, Paris, France
| | - Didier Meulendijks
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, 72074, Tübingen, Germany
| | - Maarten Deenen
- Department of Clinical Pharmacy, Catharina Hospital, Eindhoven, the Netherlands
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Bern University Hospital, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eva Gross
- LMU Munich, University Hospital, Campus Grosshadern, Munich, Germany
| | - Barna Budai
- National Institute of Oncology, Budapest, Hungary
| | - Stephen P Ackland
- College of Heath, Medicine and Wellbeing, University of Newcastle, Newcastle, NSW, Australia
| | - André B P van Kuilenburg
- Amsterdam UMC, location University of Amsterdam, Laboratory Genetic Metabolic Diseases, Meibergdreef 9, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Imaging and biomarkers, Amsterdam, The Netherlands
| | - Howard L McLeod
- Intermountain Precision Genomics, Intermountain Healthcare, St George, UT, USA
| | - Gérard Milano
- Oncopharmacology Laboratory, Centre Antoine Lacassagne, Nice, France
| | - Fabienne Thomas
- Institut Claudius Regaud, IUCT-Oncopôle and CRCT, University of Toulouse, Inserm, Toulouse, France
| | - Marie-Anne Loriot
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - David Kerr
- Nuffield Division of Clinical and Laboratory Sciences and University of Oxford, Oxford, UK
| | - Jan H M Schellens
- Department of Clinical Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, Equipe Labellisée Ligue Nationale Contre le Cancer, CNRS SNC, 5096, Paris, France
- Hôpital Européen Georges Pompidou, Hôpitaux Universitaires Paris Ouest, Paris, France
| | - Qian Shi
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Pignon
- Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Oncostat U1018 INSERM, labeled Ligue Contre le Cancer, Université Paris-Saclay, Villejuif, France
| | | |
Collapse
|
12
|
Shriver SP, Adams D, McKelvey BA, McCune JS, Miles D, Pratt VM, Ashcraft K, McLeod HL, Williams H, Fleury ME. Overcoming Barriers to Discovery and Implementation of Equitable Pharmacogenomic Testing in Oncology. J Clin Oncol 2024:JCO2301748. [PMID: 38386947 DOI: 10.1200/jco.23.01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 02/24/2024] Open
Abstract
Pharmacogenomics (PGx), the study of inherited genomic variation and drug response or safety, is a vital tool in precision medicine. In oncology, testing to identify PGx variants offers patients the opportunity for customized treatments that can minimize adverse effects and maximize the therapeutic benefits of drugs used for cancer treatment and supportive care. Because individuals of shared ancestry share specific genetic variants, PGx factors may contribute to outcome disparities across racial and ethnic categories when genetic ancestry is not taken into account or mischaracterized in PGx research, discovery, and application. Here, we examine how the current scientific understanding of the role of PGx in differential oncology safety and outcomes may be biased toward a greater understanding and more complete clinical implementation of PGx for individuals of European descent compared with other genetic ancestry groups. We discuss the implications of this bias for PGx discovery, access to care, drug labeling, and patient and provider understanding and use of PGx approaches. Testing for somatic genetic variants is now the standard of care in treatment of many solid tumors, but the integration of PGx into oncology care is still lacking despite demonstrated actionable findings from PGx testing, reduction in avoidable toxicity and death, and return on investment from testing. As the field of oncology is poised to expand and integrate germline genetic variant testing, it is vital that PGx discovery and application are equitable for all populations. Recommendations are introduced to address barriers to facilitate effective and equitable PGx application in cancer care.
Collapse
Affiliation(s)
| | | | | | - Jeannine S McCune
- City of Hope/Beckman Research Institute Department of Hematologic Malignancies Translational Sciences, Duarte, CA
| | | | | | | | | | | | | |
Collapse
|
13
|
Turner AJ, Haidar CE, Yang W, Boone EC, Offer SM, Empey PE, Haddad A, Tahir S, Scharer G, Broeckel U, Gaedigk A. Updated DPYD HapB3 haplotype structure and implications for pharmacogenomic testing. Clin Transl Sci 2024; 17:e13699. [PMID: 38129972 PMCID: PMC10777430 DOI: 10.1111/cts.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
The DPYD gene encodes dihydropyrimidine dehydrogenase, the rate-limiting enzyme for the metabolism of fluoropyrimidines 5-fluorouracil and capecitabine. Genetic variants in DPYD have been associated with altered enzyme activity, therefore accurate detection and interpretation is critical to predict metabolizer status for individualized fluoropyrimidine therapy. The most commonly observed deleterious variation is the causal variant linked to the previously described HapB3 haplotype, c.1129-5923C>G (rs75017182) in intron 10, which introduces a cryptic splice site. A benign synonymous variant in exon 11, c.1236G>A (rs56038477) is also linked to HapB3 and is commonly used for testing. Previously, these single-nucleotide polymorphisms (SNPs) have been reported to be in perfect linkage disequilibrium (LD); therefore, c.1236G>A is often utilized as a proxy for the function-altering intronic variant. Clinical genotyping of DPYD identified a patient who had c.1236G>A, but not c.1129-5923C>G, suggesting that these two SNPs may not be in perfect LD, as previously assumed. Additional individuals with c.1236G>A, but not c.1129-5923C>G, were identified in the Children's Mercy Data Warehouse and the All of Us Research Program version 7 cohort substantiating incomplete SNP linkage. Consequently, testing only c.1236G>A can generate false-positive results in some cases and lead to suboptimal dosing that may negatively impact patient therapy and prospect of survival. Our data show that DPYD genotyping should include the functional variant c.1129-5923C>G, and not the c.1236G>A proxy, to accurately predict DPD activity.
Collapse
Affiliation(s)
| | - Cyrine E. Haidar
- Department of Pharmacy and Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Wenjian Yang
- Department of Pharmacy and Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - Erin C. Boone
- Division of Clinical Pharmacology, Toxicology & Therapeutic InnovationChildren's Mercy Research Institute (CMRI)Kansas CityMissouriUSA
| | - Steven M. Offer
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Philip E. Empey
- Department of Pharmacy and TherapeuticsUniversity of Pittsburgh School of PharmacyPittsburghPennsylvaniaUSA
| | - Andrew Haddad
- Department of Pharmaceutical SciencesUniversity of Pittsburgh School of PharmacyPittsburghPennsylvaniaUSA
| | - Saba Tahir
- Medical College of Wisconsin, School of PharmacyMilwaukeeWisconsinUSA
| | | | | | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic InnovationChildren's Mercy Research Institute (CMRI)Kansas CityMissouriUSA
- School of MedicineUniversity of Missouri‐Kansas CityKansas CityMissouriUSA
| |
Collapse
|
14
|
Peruzzi E, Roncato R, De Mattia E, Bignucolo A, Swen JJ, Guchelaar HJ, Toffoli G, Cecchin E. Implementation of pre-emptive testing of a pharmacogenomic panel in clinical practice: Where do we stand? Br J Clin Pharmacol 2023. [PMID: 37926674 DOI: 10.1111/bcp.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023] Open
Abstract
Adverse drug reactions (ADRs) account for a large proportion of hospitalizations among adults and are more common in multimorbid patients, worsening clinical outcomes and burdening healthcare resources. Over the past decade, pharmacogenomics has been developed as a practical tool for optimizing treatment outcomes by mitigating the risk of ADRs. Some single-gene reactive tests are already used in clinical practice, including the DPYD test for fluoropyrimidines, which demonstrates how integrating pharmacogenomic data into routine care can improve patient safety in a cost-effective manner. The evolution from reactive single-gene testing to comprehensive pre-emptive genotyping panels holds great potential for refining drug prescribing practices. Several implementation projects have been conducted to test the feasibility of applying different genetic panels in clinical practice. Recently, the results of a large prospective randomized trial in Europe (the PREPARE study by Ubiquitous Pharmacogenomics consortium) have provided the first evidence that prospective application of a pre-emptive pharmacogenomic test panel in clinical practice, in seven European healthcare systems, is feasible and yielded a 30% reduction in the risk of developing clinically relevant toxicities. Nevertheless, some important questions remain unanswered and will hopefully be addressed by future dedicated studies. These issues include the cost-effectiveness of applying a pre-emptive genotyping panel, the role of multiple co-medications, the transferability of currently tested pharmacogenetic guidelines among patients of non-European origin and the impact of rare pharmacogenetic variants that are not detected by currently used genotyping approaches.
Collapse
Affiliation(s)
- Elena Peruzzi
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Rossana Roncato
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Elena De Mattia
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| | - Erika Cecchin
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano, Istituti di Ricovero e Cura a Carattere Scientifico, Aviano, Italy
| |
Collapse
|
15
|
Bhatt M, Peshkin BN, Kazi S, Schwartz MD, Ashai N, Swain SM, Smith DM. Pharmacogenomic testing in oncology: a health system's approach to identify oncology provider perspectives. Pharmacogenomics 2023; 24:859-870. [PMID: 37942634 DOI: 10.2217/pgs-2023-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
Aim: Identify oncology healthcare providers' attitudes toward barriers to and use cases for pharmacogenomic (PGx) testing and implications for prescribing anticancer and supportive care medications. Materials & methods: A questionnaire was designed and disseminated to 71 practicing oncology providers across the MedStar Health System. Results: 25 of 70 (36%) eligible oncology providers were included. 88% were aware of PGx testing and 72% believed PGx can improve care. Of providers who had ordered a medication with PGx implications in the past month, interest in PGx for anticancer (90-100%) and supportive care medications (>75%) was high. Providers with previous PGx education were more likely to have ordered a test (odds ratio: 7.9; 95% CI: 1.1-56; p = 0.0394). Conclusion: Oncology provider prescribing practices and interest in PGx suggest opportunities for implementation.
Collapse
Affiliation(s)
| | - Beth N Peshkin
- Cancer Prevention & Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Sadaf Kazi
- MedStar Health, Columbia, MD 21044, USA
- National Center for Human Factors in Healthcare, MedStar Health Research Institute, Washington, DC 20008, USA
| | - Marc D Schwartz
- Cancer Prevention & Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| | - Nadia Ashai
- MedStar Health, Columbia, MD 21044, USA
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| | - Sandra M Swain
- MedStar Health, Columbia, MD 21044, USA
- Department of Medicine, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA
| | - D Max Smith
- MedStar Health, Columbia, MD 21044, USA
- Cancer Prevention & Control Program, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA
| |
Collapse
|
16
|
Cascorbi I. Why is There Still Debate About Recommending DPYD-Testing Before Fluoropyrimidine Treatment? Clin Pharmacol Ther 2023; 114:733-737. [PMID: 37713298 DOI: 10.1002/cpt.3016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 09/17/2023]
Affiliation(s)
- Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
17
|
Wu A, Anderson H, Hughesman C, Young S, Lohrisch C, Ross CJD, Carleton BC. Implementation of pharmacogenetic testing in oncology: DPYD-guided dosing to prevent fluoropyrimidine toxicity in British Columbia. Front Pharmacol 2023; 14:1257745. [PMID: 37745065 PMCID: PMC10515725 DOI: 10.3389/fphar.2023.1257745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023] Open
Abstract
Background: Fluoropyrimidine toxicity is often due to variations in the gene (DPYD) encoding dihydropyrimidine dehydrogenase (DPD). DPYD genotyping can be used to adjust doses to reduce the likelihood of fluoropyrimidine toxicity while maintaining therapeutically effective drug levels. Methods: A multiplex QPCR assay was locally developed to allow genotyping for six DPYD variants. The test was offered prospectively for all patients starting on fluoropyrimidines at the BC Cancer Centre in Vancouver and then across B.C., Canada as well as retrospectively for patients suspected to have had an adverse reaction to therapy. Dose adjustments were made for variant carriers. The incidence of toxicity in the first three cycles was compared between DPYD variant allele carriers and non-variant carriers. Subsequent to an initial implementation phase, this test was made available province-wide. Results: In 9 months, 186 patients were tested and 14 were found to be heterozygous variant carriers. Fluoropyrimidine-related toxicity was higher in DPYD variant carriers. Of 127 non-variant carriers who have completed chemotherapy, 18 (14%) experienced severe (grade ≥3, Common Terminology Criteria for Adverse Events version 5.0). Of note, 22% (3 patients) of the variant carriers experienced severe toxicity even after DPYD-guided dose reductions. For one of these carriers who experienced severe thrombocytopenia within the first week, DPYD testing likely prevented lethal toxicity. In DPYD variant carriers who tolerate reduced doses, a later 25% increase led to chemotherapy discontinuation. As a result, a recommendation was made to clinicians based on available literature and expert opinion specifying that variant carriers who tolerated two cycles without toxicity can have a dose escalation of only 10%. Conclusion: DPYD-guided dose reductions were a feasible and acceptable method of preventing severe toxicity in DPYD variant carriers. Even with dose reductions, there were variant carriers who still experienced severe fluoropyrimidine toxicity, highlighting the importance of adhering to guideline-recommended dose reductions. Following the completion of the pilot phase of this study, DPYD genotyping was made available province-wide in British Columbia.
Collapse
Affiliation(s)
- Angela Wu
- Department of Experimental Medicine, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Helen Anderson
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Curtis Hughesman
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Sean Young
- Cancer Genetics and Genomics Laboratory, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Caroline Lohrisch
- Medical Oncology, BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
| | - Colin J. D. Ross
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Bruce C. Carleton
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Therapeutic Evaluation Unit, Provincial Health Services Authority, Vancouver, BC, Canada
| |
Collapse
|
18
|
Ando Y, Terada T. Consent in Pharmacogenetic Testing. J Clin Oncol 2023:JCO2300664. [PMID: 37267582 DOI: 10.1200/jco.23.00664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/12/2023] [Indexed: 06/04/2023] Open
Affiliation(s)
- Yuichi Ando
- Yuichi Ando MD, PhD, Department Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan; and Tomohiro Terada PhD, Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital. Kyoto, Japan
| | - Tomohiro Terada
- Yuichi Ando MD, PhD, Department Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan; and Tomohiro Terada PhD, Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital. Kyoto, Japan
| |
Collapse
|
19
|
Bignucolo A, De Mattia E, Roncato R, Peruzzi E, Scarabel L, D’Andrea M, Sartor F, Toffoli G, Cecchin E. Ten-year experience with pharmacogenetic testing for DPYD in a national cancer center in Italy: Lessons learned on the path to implementation. Front Pharmacol 2023; 14:1199462. [PMID: 37256229 PMCID: PMC10225682 DOI: 10.3389/fphar.2023.1199462] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/01/2023] Open
Abstract
Background: Awareness about the importance of implementing DPYD pharmacogenetics in clinical practice to prevent severe side effects related to the use of fluoropyrimidines has been raised over the years. Since 2012 at the National Cancer Institute, CRO-Aviano (Italy), a diagnostic DPYD genotyping service was set up. Purpose: This study aims to describe the evolution of DPYD diagnostic activity at our center over the last 10 years as a case example of a successful introduction of pharmacogenetic testing in clinical practice. Methods: Data related to the diagnostic activity of in-and out-patients referred to our service between January 2012 and December 2022 were retrieved from the hospital database. Results: DPYD diagnostic activity at our center has greatly evolved over the years, shifting gradually from a post-toxicity to a pre-treatment approach. Development of pharmacogenetic guidelines by national and international consortia, genotyping, and IT technology evolution have impacted DPYD testing uptake in the clinics. Our participation in a large prospective implementation study (Ubiquitous Pharmacogenomics) increased health practitioners' and patients' awareness of pharmacogenetic matters and provided additional standardized infrastructures for genotyping and reporting. Nationwide test reimbursement together with recommendations by regulatory agencies in Europe and Italy in 2020 definitely changed the clinical practice guidelines of fluoropyrimidines prescription. A dramatic increase in the number of pre-treatment DPYD genotyping and in the coverage of new fluoropyrimidine prescriptions was noticed by the last year of observation (2022). Conclusion: The long path to a successful DPYD testing implementation in the clinical practice of a National Cancer Center in Italy demonstrated that the development of pharmacogenetic guidelines and genotyping infrastructure standardization as well as capillary training and education activity for all the potential stakeholders are fundamental. However, only national health politics of test reimbursement and clear recommendations by drug regulatory agencies will definitely move the field forward.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - G. Toffoli
- Experimental and Clinical Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | | |
Collapse
|
20
|
Afolabi BL, Mazhindu T, Zedias C, Borok M, Ndlovu N, Masimirembwa C. Pharmacogenetics and Adverse Events in the Use of Fluoropyrimidine in a Cohort of Cancer Patients on Standard of Care Treatment in Zimbabwe. J Pers Med 2023; 13:jpm13040588. [PMID: 37108974 PMCID: PMC10141018 DOI: 10.3390/jpm13040588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Fluoropyrimidines are commonly used in the treatment of colorectal cancer. They are, however, associated with adverse events (AEs), of which gastrointestinal, myelosuppression and palmar-plantar erythrodysesthesia are the most common. Clinical guidelines are used for fluoropyrimidine dosing based on dihydropyrimidine dehydrogenase (DPYD) genetic polymorphism and have been shown to reduce these AEs in patients of European ancestry. This study aimed to evaluate, for the first time, the clinical applicability of these guidelines in a cohort of cancer patients on fluoropyrimidine standard of care treatment in Zimbabwe. DNA was extracted from whole blood and used for DPYD genotyping. Adverse events were monitored for six months using the Common Terminology Criteria for AEs (CTCAE) v.5.0. None of the 150 genotyped patients was a carrier of any of the pathogenic variants (DPYD*2A, DPYD*13, rs67376798, or rs75017182). However, severe AEs were high (36%) compared to those reported in the literature from other populations. There was a statistically significant association between BSA (p = 0.0074) and BMI (p = 0.0001) with severe global AEs. This study has shown the absence of the currently known actionable DPYD variants in the Zimbabwean cancer patient cohort. Therefore, the current pathogenic variants in the guidelines might not be feasible for all populations hence the call for modification of the current DPYD guidelines to include minority populations for the benefit of all diverse patients.
Collapse
|