1
|
Vlachavas EI, Voutetakis K, Kosmidou V, Tsikalakis S, Roditis S, Pateas K, Kim R, Pagel K, Wolf S, Warsow G, Dimitrakopoulou-Strauss A, Zografos GN, Pintzas A, Betge J, Papadodima O, Wiemann S. Molecular and functional profiling unravels targetable vulnerabilities in colorectal cancer. Mol Oncol 2025. [PMID: 39876058 DOI: 10.1002/1878-0261.13814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/11/2024] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
Colorectal cancer (CRC) patients with microsatellite-stable (MSS) tumors are mostly treated with chemotherapy. Clinical benefits of targeted therapies depend on mutational states and tumor location. Many tumors carry mutations in KRAS proto-oncogene, GTPase (KRAS) or B-Raf proto-oncogene, serine/threonine kinase (BRAF), rendering them more resistant to therapies. We performed whole-exome sequencing and RNA-Sequencing of 28 tumors of the Athens Comprehensive Cancer Center CRC cohort, and molecularly characterized CRC patients based on their microsatellite instability (MSI) status, single-nucleotide variations (SNVs)/copy number alterations (CNAs), and pathway/transcription factor activities at the individual patient level. Variants were classified using a computational score for integrative cancer variant annotation and prioritization. Complementing this with public multi-omics datasets, we identified activation of transforming growth factor beta (TGFβ) signaling to be more strongly activated in MSS patients, whereas Janus kinase (JAK)-signal transducer and activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) molecular cascades were activated specifically in MSI tumors. We unraveled mechanisms consistently perturbed in the transcriptional and mutational circuits and identified Runt-related transcription factors (RUNX transcription factors) as putative biomarkers in CRC, given their role in the regulation of pathways involved in tumor progression and immune evasion. Assessing the immunogenicity of CRC tumors in the context of RAS/RAF mutations and MSI/MSS status revealed a critical impact that KRAS mutations have on immunogenicity, particularly in the MSS patient subgroup, with implications for diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Spyridon Tsikalakis
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Spyridon Roditis
- 3rd Surgical Department G.Gennimatas Hospital, Athens, Greece
- Surgical Department, University Hospital of North Midlands, Stoke-on-Trent, UK
| | | | | | | | - Stephan Wolf
- High-Throughput Sequencing Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Gregor Warsow
- Omics IT and Data Management Core Facility, German Cancer Research Center, Heidelberg, Germany
| | | | | | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Johannes Betge
- Junior Clinical Cooperation Unit Translational Gastrointestinal Oncology and Preclinical Models, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Medicine II, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- DKFZ-Hector Cancer Institute at University Medical Center Mannheim, Germany
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Stefan Wiemann
- Division of Molecular Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
2
|
Heczko L, Liška V, Vyčítal O, Fiala O, Šůsová S, Hlaváč V, Souček P. Targeted panel sequencing of pharmacogenes and oncodrivers in colorectal cancer patients reveals genes with prognostic significance. Hum Genomics 2024; 18:83. [PMID: 39030589 PMCID: PMC11264515 DOI: 10.1186/s40246-024-00644-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/26/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Colorectal cancer is still the second leading cause of cancer-related deaths and thus biomarkers allowing prediction of the resistance of patients to therapy and estimating their prognosis are needed. We designed a panel of 558 genes with pharmacogenomics records related to 5-fluorouracil resistance, genes important for sensitivity to other frequently used drugs, major oncodrivers, and actionable genes. We performed a target enrichment sequencing of DNA from tumors and matched blood samples of patients, and compared the results with patient prognosis stratified by systemic adjuvant chemotherapy. RESULTS The median number of detected variants per tumor sample was 18.5 with 4 classified as having a high predicted functional effect and 14.5 moderate effect. APC, TP53, and KRAS were the most frequent mutated genes (64%, 59%, and 42% of mutated samples, respectively) followed by FAT4 (23%), FBXW7, and PIK3CA (16% for both). Patients with advanced stage III had more frequently APC, TP53, or KRAS mutations than those in stages I or II. KRAS mutation counts followed an increasing trend with grade (G1 < G2 < G3). The response to adjuvant therapy was worse in carriers of frameshift mutations in APC or 12D variant in KRAS, but none of these oncodrivers had prognostic value. Carriage of somatic mutations in any of the genes ABCA13, ANK2, COL7A1, NAV3, or UNC80 had prognostic relevance for worse overall survival (OS) of all patients. In contrast, mutations in FLG, GLI3, or UNC80 were prognostic in the same direction for patients untreated, and mutations in COL6A3, LRP1B, NAV3, RYR1, RYR3, TCHH, or TENM4 for patients treated with adjuvant therapy. The first association was externally validated. From all germline variants with high or moderate predicted functional effects (median 326 per patient), > 5% frequency and positive Manhattan plot based on 3-year RFS, rs72753407 in NFACS, rs34621071 in ERBB4, and rs2444274 in RIF1 were significantly associated with RFS, OS or both. CONCLUSIONS The present study identified several putative somatic and germline genetic events with prognostic potential for colorectal cancer that should undergo functional characterization.
Collapse
Affiliation(s)
- Lucie Heczko
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
| | - Václav Liška
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondřej Vyčítal
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
- Department of Surgery, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Ondřej Fiala
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
- Department of Oncology and Radiotherapeutics, Faculty of Medicine and University Hospital in Pilsen, Charles University, Pilsen, Czech Republic
| | - Simona Šůsová
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
| | - Viktor Hlaváč
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.
| | - Pavel Souček
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, Pilsen, 323 00, Czech Republic.
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.
| |
Collapse
|
3
|
Ouchi K, Takahashi S, Sasaki K, Yoshida Y, Taniguchi S, Kasahara Y, Komine K, Imai H, Saijo K, Shirota H, Takahashi M, Ishioka C. Genome-wide DNA methylation status is a predictor of the efficacy of anti-EGFR antibodies in the second-line treatment of metastatic colorectal cancer: Translational research of the EPIC trial. Int J Colorectal Dis 2024; 39:89. [PMID: 38862615 PMCID: PMC11166830 DOI: 10.1007/s00384-024-04659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE The genome-wide DNA methylation status (GWMS) predicts of therapeutic response to anti-epidermal growth factor receptor (EGFR) antibodies in treating metastatic colorectal cancer. We verified the significance of GWMS as a predictive factor for the efficacy of anti-EGFR antibodies in the second-line treatment of metastatic colorectal cancer. METHODS Clinical data were obtained from a prospective trial database, and a genome-wide DNA methylation analysis was performed. GWMS was classified into high-methylated colorectal cancer (HMCC) and low-methylated colorectal cancer (LMCC). The patients were divided into subgroups according to the treatment arm (cetuximab plus irinotecan or irinotecan alone) and GWMS, and the clinical outcomes were compared between the subgroups. RESULTS Of the 112 patients, 58 (51.8%) were in the cetuximab plus irinotecan arm, and 54 (48.2%) were in the irinotecan arm; 47 (42.0%) were in the HMCC, and 65 (58.0%) were in the LMCC group regarding GWMS. Compared with the LMCC group, the progression-free survival (PFS) was significantly shortened in the HMCC group in the cetuximab plus irinotecan arm (median 1.4 vs. 4.1 months, p = 0.001, hazard ratio = 2.56), whereas no significant differences were observed in the irinotecan arm. A multivariate analysis showed that GWMS was an independent predictor of PFS and overall survival (OS) in the cetuximab plus irinotecan arm (p = 0.002, p = 0.005, respectively), whereas GWMS did not contribute to either PFS or OS in the irinotecan arm. CONCLUSIONS GWMS was a predictive factor for the efficacy of anti-EGFR antibodies in the second-line treatment of metastatic colorectal cancer.
Collapse
Affiliation(s)
- Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Shin Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Keiju Sasaki
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Yuya Yoshida
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Sakura Taniguchi
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Kasahara
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan.
- Department of Clinical Oncology, Graduate School of Medicine, Tohoku University, Miyagi, Japan. 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan.
- Department of Clinical Oncology, Institute of Development, Aging and Cancer, Tohoku University, Miyagi, Japan 4-1 Seiryo-Machi, Aobaku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|