1
|
Western D, Timsina J, Wang L, Wang C, Yang C, Phillips B, Wang Y, Liu M, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey AI, Morris JC, Perrin RJ, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson EN, Le Guen Y, Reus LM, Tijms B, Visser PJ, van der Lee SJ, Pijnenburg YAL, Teunissen CE, Del Campo Milan M, Alvarez I, Aguilar M, Greicius MD, Pastor P, Pulford DJ, Ibanez L, Wyss-Coray T, Sung YJ, Cruchaga C. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer's disease. Nat Genet 2024; 56:2672-2684. [PMID: 39528825 DOI: 10.1038/s41588-024-01972-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The integration of quantitative trait loci (QTLs) with disease genome-wide association studies (GWASs) has proven successful in prioritizing candidate genes at disease-associated loci. QTL mapping has been focused on multi-tissue expression QTLs or plasma protein QTLs (pQTLs). We generated a cerebrospinal fluid (CSF) pQTL atlas by measuring 6,361 proteins in 3,506 samples. We identified 3,885 associations for 1,883 proteins, including 2,885 new pQTLs, demonstrating unique genetic regulation in CSF. We identified CSF-enriched pleiotropic regions on chromosome (chr)3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron specificity and neurological development. We integrated our associations with Alzheimer's disease (AD) through proteome-wide association study (PWAS), colocalization and Mendelian randomization and identified 38 putative causal proteins, 15 of which have drugs available. Finally, we developed a proteomics-based AD prediction model that outperforms genetics-based models. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
- Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bridget Phillips
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Agustin Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Edward N Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Department of Psychiatry, Maastricht University, Maastricht, the Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Marta Del Campo Milan
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Michael D Greicius
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and the Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | | | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
2
|
Das V, Miller JH, Alladi CG, Annadurai N, De Sanctis JB, Hrubá L, Hajdúch M. Antineoplastics for treating Alzheimer's disease and dementia: Evidence from preclinical and observational studies. Med Res Rev 2024; 44:2078-2111. [PMID: 38530106 DOI: 10.1002/med.22033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
As the world population ages, there will be an increasing need for effective therapies for aging-associated neurodegenerative disorders, which remain untreatable. Dementia due to Alzheimer's disease (AD) is one of the leading neurological diseases in the aging population. Current therapeutic approaches to treat this disorder are solely symptomatic, making the need for new molecular entities acting on the causes of the disease extremely urgent. One of the potential solutions is to use compounds that are already in the market. The structures have known pharmacokinetics, pharmacodynamics, toxicity profiles, and patient data available in several countries. Several drugs have been used successfully to treat diseases different from their original purposes, such as autoimmunity and peripheral inflammation. Herein, we divulge the repurposing of drugs in the area of neurodegenerative diseases, focusing on the therapeutic potential of antineoplastics to treat dementia due to AD and dementia. We briefly touch upon the shared pathological mechanism between AD and cancer and drug repurposing strategies, with a focus on artificial intelligence. Next, we bring out the current status of research on the development of drugs, provide supporting evidence from retrospective, clinical, and preclinical studies on antineoplastic use, and bring in new areas, such as repurposing drugs for the prion-like spreading of pathologies in treating AD.
Collapse
Affiliation(s)
- Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - John H Miller
- School of Biological Sciences and Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - Charanraj Goud Alladi
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Lenka Hrubá
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital Olomouc, Olomouc, Czech Republic
- Czech Advanced Technologies and Research Institute (CATRIN), Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Keeney T, Miller A, Gilissen J, Coombs LA, Ritchie CS, McCarthy EP. Identification of older adults with Alzheimer's and related dementias among patients newly diagnosed with cancer: A comparison of methodological approaches. J Geriatr Oncol 2024; 15:101842. [PMID: 39122573 PMCID: PMC11411497 DOI: 10.1016/j.jgo.2024.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Research efforts to characterize and evaluate care delivery and outcomes for older adults with cancer and comorbid dementia are limited by varied methods used to classify Alzheimer's disease and related dementias (ADRD). The purpose of this study is to evaluate differences in demographic, clinical, and cancer characteristics of people newly diagnosed with cancer and concomitant dementia comparing two common methods to identify ADRD using administrative claims data. MATERIALS AND METHODS We conducted a retrospective cohort study using Surveillance, Epidemiology, and End Results (SEER)-Medicare data. Our sample included adults aged 66 years and older with a first primary diagnosis of lung or colorectal cancer between 2011 and 2017. For each cancer diagnosis, we constructed analytical cohorts using the Center for Medicare and Medicaid Services' Chronic Condition Warehouse (CCW) flag and the Bynum-Standard one- and three-year algorithms to capture diagnosed ADRD. We estimated ADRD prevalence using the algorithms and compared Bynum and CCW cohorts on demographic, clinical, and cancer characteristics at cancer diagnosis and survival for lung and colorectal cancer separately. RESULTS Among older adults with lung cancer, ADRD prevalence was 4.7% with the one-year Bynum, 6.5% with the three-year Bynum, and 12.5% using the CCW flag. In the colorectal cohort, ADRD prevalence was 5.6% with the one-year Bynum, 7.6% with the three-year Bynum, and 14.1% with the CCW flag. Demographic characteristics were similar across ADRD cohorts. The Bynum cohorts identified higher proportions of individuals with moderate to severe dementia (13.8% and 11.2% versus 7.1% CCW in lung cancer; 13.1% and 10.6% versus 6.8% CCW in colorectal cancer), higher frailty rates (27.4% and 22.7% versus 15.0% CCW in lung cancer; 26.4% and 22.3% versus 14.8% CCW in colorectal cancer). Median survival was lower for the Bynum cohorts compared to the CCW, regardless of cancer type. DISCUSSION Findings demonstrate that ADRD prevalence and certain clinical characteristics vary based on dementia ascertainment method and observation period used to classify individuals with ADRD. Considering differences in the cohorts of registry cases generated by the identification method used is essential when interpreting findings related to treatment, utilization, and outcomes within and across cancer cohorts.
Collapse
Affiliation(s)
- Tamra Keeney
- Mongan Institute Center for Aging and Serious Illness, Massachusetts General Hospital, Boston, MA, United States of America; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America.
| | - Angela Miller
- Mongan Institute Center for Aging and Serious Illness, Massachusetts General Hospital, Boston, MA, United States of America
| | - Joni Gilissen
- End-of-Life Care Research Group, Department of Family Medicine & Chronic Care, Vrije Universiteit Brussel, Brussels, Belgium; Department Public Health and Primary Care, Universiteit Gent, Ghent, Belgium; Research Centre Care in Connection, Karel de Grote University of Applied Sciences and Arts, Antwerp, Belgium
| | - Lorinda A Coombs
- University of North Carolina Chapel Hill School of Nursing, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States of America
| | - Christine S Ritchie
- Mongan Institute Center for Aging and Serious Illness, Massachusetts General Hospital, Boston, MA, United States of America; Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Ellen P McCarthy
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, United States of America; Division of Gerontology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
4
|
Yuan C, Liu S, Yang K, Xie F, Li Y, Guo Y, Zhao W, Zhang J, Cheng Z. Causal association between colorectal cancer and Alzheimer's disease: a bidirectional two-sample mendelian randomization study. Front Genet 2024; 14:1180905. [PMID: 38250575 PMCID: PMC10797121 DOI: 10.3389/fgene.2023.1180905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Colorectal cancer and Alzheimer's disease are both common life-threatening diseases in the elderly population. Some studies suggest a possible inverse relationship between colorectal cancer and Alzheimer's disease, but real-world research is subject to many biases. We hope to clarify the causal relationship between the two through a bidirectional two-sample Mendelian randomization study. Methods: In our study, we used genetic summary data from large-scale genome-wide association studies to investigate the relationship between colorectal cancer and Alzheimer's disease. Our primary analysis employed the inverse-variance weighted method and we also used complementary techniques, including MR-Egger, weighted median estimator, and Maximum likelihood. We applied simex adjustment to the MR-Egger results. We also utilized the MRlap package to detect potential sample overlap and its impact on the bias of the results. In addition, we performed several sensitivity and heterogeneity analyses, to ensure the reliability of our results. Results: The combined effect size results of the inverse-variance weighted method indicate that colorectal cancer may decrease the incidence of Alzheimer's disease, with an odds ratio (OR) of 0.846 (95% CI: 0.762-0.929). Similar results were observed using other methods such as MR-Egger, weighted median estimator, and Maximum likelihood. On the other hand, Alzheimer's disease may slightly increase the incidence of colorectal cancer, with an OR of 1.014 (95% CI: 1.001-1.027). However, the results of one subgroup were not significant, and the results from MRlap indicated that sample overlap introduced bias into the results. Therefore, the results of the reverse validation are not reliable. The F-statistic for all SNPs was greater than 20. Four SNPs related to the outcome were excluded using Phenoscanner website but the adjustment did not affect the overall direction of the results. The results of these statistics were further validated by MR-PRESSO, funnel plots, leave-one-out analyses, Cochran's Q, demonstrating the reliability of the findings. Conclusion: According to the findings of this Mendelian randomization study, there appears to be a causal association between colorectal cancer and Alzheimer's disease. These results could have important implications for clinical practice in terms of how colorectal cancer and Alzheimer's disease are treated. To better understand the relationship between these two diseases, more research and screening are needed in clinical settings.
Collapse
Affiliation(s)
- Chunsheng Yuan
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Saisai Liu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, China
| | - Kezhen Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Feiyu Xie
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Oncology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yinan Li
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Oncology Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medicine University, Beijing, China
| | - Yantong Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Wenjun Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Jincheng Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| | - Zhiqiang Cheng
- Department of Integrative Oncology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
5
|
Das V, Hajdúch M. Randomizing for Alzheimer's disease drug trials should consider the cancer history of participants. Brain 2023; 146:e75-e76. [PMID: 37243427 DOI: 10.1093/brain/awad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Affiliation(s)
- Viswanath Das
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marián Hajdúch
- Faculty of Medicine and Dentistry, Institute of Molecular and Translational Medicine, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
6
|
Cruchaga C, Western D, Timsina J, Wang L, Wang C, Yang C, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey A, Morris J, Perrin R, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson E, Guen YL, Alvarez I, Aguilar M, Greicius M, Pastor P, Pulford D, Ibanez L, Wyss-Coray T, Sung YJ, Phillips B. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2814616. [PMID: 37333337 PMCID: PMC10275048 DOI: 10.21203/rs.3.rs-2814616/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | | | | | | | | | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Mercè Boada
- Memory Clinic of Fundaciò ACE, Catalan Institute of Applied Neurosciences
| | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | |
Collapse
|
7
|
Kao YS, Yeh CC, Chen YF. The Relationship between Cancer and Dementia: An Updated Review. Cancers (Basel) 2023; 15:cancers15030640. [PMID: 36765598 PMCID: PMC9913793 DOI: 10.3390/cancers15030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The risk of cancer and dementia increases with age, raising complex questions about whether it is appropriate to continue cancer treatment in older patients. There is emerging research suggesting the association between cancer and dementia. However, the mechanistic underpinnings are still under investigation. Progress has already been made toward understanding the cognitive effects associated with cancer therapy. Such associations raise awareness about the need to establish better prevention methods and early screening in clinical practice. Additionally, recent studies have suggested possible therapeutic strategies for better preserving cognitive function and reducing the risk for dementia before patients start cancer treatment. We review the current literature and summarize the incidence and mechanisms of cognitive impairment in patients with lung cancer, breast cancer, head and neck cancer, gastric cancer, prostate cancer, colorectal cancer, and brain tumor/brain metastasis following different kinds of therapies. Possible risk factors are suggested to identify the early onset of cognitive changes in cancer patients and provide more insight into the pathophysiological process of dementia.
Collapse
Affiliation(s)
| | - Cheng-Chang Yeh
- Department of Oral Hygiene Care, Ching-Kuo Institute of Management and Health, Keelung 203, Taiwan
| | - Yi-Fang Chen
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung 403, Taiwan
- Correspondence:
| |
Collapse
|
8
|
Akushevich I, Yashkin A, Ukraintseva S, Yashin AI, Kravchenko J. The Construction of a Multidomain Risk Model of Alzheimer's Disease and Related Dementias. J Alzheimers Dis 2023; 96:535-550. [PMID: 37840484 PMCID: PMC10657690 DOI: 10.3233/jad-221292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) and related dementia (ADRD) risk is affected by multiple dependent risk factors; however, there is no consensus about their relative impact in the development of these disorders. OBJECTIVE To rank the effects of potentially dependent risk factors and identify an optimal parsimonious set of measures for predicting AD/ADRD risk from a larger pool of potentially correlated predictors. METHODS We used diagnosis record, survey, and genetic data from the Health and Retirement Study to assess the relative predictive strength of AD/ADRD risk factors spanning several domains: comorbidities, demographics/socioeconomics, health-related behavior, genetics, and environmental exposure. A modified stepwise-AIC-best-subset blanket algorithm was then used to select an optimal set of predictors. RESULTS The final predictive model was reduced to 10 features for AD and 19 for ADRD; concordance statistics were about 0.85 for one-year and 0.70 for ten-year follow-up. Depression, arterial hypertension, traumatic brain injury, cerebrovascular diseases, and the APOE4 proxy SNP rs769449 had the strongest individual associations with AD/ADRD risk. AD/ADRD risk-related co-morbidities provide predictive power on par with key genetic vulnerabilities. CONCLUSION Results confirm the consensus that circulatory diseases are the main comorbidities associated with AD/ADRD risk and show that clinical diagnosis records outperform comparable self-reported measures in predicting AD/ADRD risk. Model construction algorithms combined with modern data allows researchers to conserve power (especially in the study of disparities where disadvantaged groups are often grossly underrepresented) while accounting for a high proportion of AD/ADRD-risk-related population heterogeneity stemming from multiple domains.
Collapse
Affiliation(s)
- Igor Akushevich
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Arseniy Yashkin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Svetlana Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, NC, USA
| | - Julia Kravchenko
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Akushevich I, Kravchenko J, Yashkin A, Doraiswamy PM, Hill CV. Expanding the scope of health disparities research in Alzheimer's disease and related dementias: Recommendations from the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" Workshop Series. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12415. [PMID: 36935764 PMCID: PMC10020680 DOI: 10.1002/dad2.12415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Topics discussed at the "Leveraging Existing Data and Analytic Methods for Health Disparities Research Related to Aging and Alzheimer's Disease and Related Dementias" workshop, held by Duke University and the Alzheimer's Association with support from the National Institute on Aging, are summarized. Ways in which existing data resources paired with innovative applications of both novel and well-known methodologies can be used to identify the effects of multi-level societal, community, and individual determinants of race/ethnicity, sex, and geography-related health disparities in Alzheimer's disease and related dementia are proposed. Current literature on the population analyses of these health disparities is summarized with a focus on identifying existing gaps in knowledge, and ways to mitigate these gaps using data/method combinations are discussed at the workshop. Substantive and methodological directions of future research capable of advancing health disparities research related to aging are formulated.
Collapse
Affiliation(s)
- Igor Akushevich
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - Julia Kravchenko
- Duke University School of MedicineDepartment of SurgeryDurhamNorth CarolinaUSA
| | - Arseniy Yashkin
- Social Science Research InstituteBiodemography of Aging Research UnitDuke UniversityDurhamNorth CarolinaUSA
| | - P. Murali Doraiswamy
- Departments of Psychiatry and MedicineDuke University School of MedicineDurhamNorth CarolinaUSA
| | | | | |
Collapse
|
10
|
Xia S, Yu X, Chen G. Pain as a Protective Factor for Alzheimer Disease in Patients with Cancer. Cancers (Basel) 2022; 15:cancers15010248. [PMID: 36612244 PMCID: PMC9818585 DOI: 10.3390/cancers15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE Alzheimer disease (AD) and cancer have been reported to be inversely correlated in incidence, but the mechanism remains elusive. METHODS A case-control study was conducted, based on the SEER (Surveillance, Epidemiology, and End Results) Research Plus data, to evaluate 12 factors in patients with cancer. RESULTS Severe pain was related to reduced AD risk, while older age at cancer diagnosis, female, longer survival years after tumor diagnosis, more benign/borderline tumors, less cancer-directed surgery, and more chemotherapy were associated with higher AD risk. In addition, patients of different races or with different cancer sites were associated with different risks of getting AD. Cases had a higher prevalence of severe pain than controls in all race and cancer site subgroups, except for in digestive cancer, where the result was the opposite. CONCLUSIONS This study indicated pain as a novel protective factor for AD in patients with cancer. The mechanism behind it may provide new perspective on AD pathogenesis and AD-cancer association, which we discussed in our own hypothesis of the mechanism of pain action. In addition, digestive cancer pain had an opposite impact on AD risk from other cancer pains, which suggests the uniqueness of digestive system in interacting with the central nervous system.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou 310003, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Xiaobo Yu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou 310003, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310003, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Zhejiang University, Hangzhou 310003, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou 310003, China
- Correspondence: ; Tel.: +86-1380-5716-226
| |
Collapse
|
11
|
Suzuki M, Tezuka K, Handa T, Sato R, Takeuchi H, Takao M, Tano M, Uchida Y. Upregulation of ribosome complexes at the blood-brain barrier in Alzheimer's disease patients. J Cereb Blood Flow Metab 2022; 42:2134-2150. [PMID: 35766008 PMCID: PMC9580172 DOI: 10.1177/0271678x221111602] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cerebrovascular-specific molecular mechanism in Alzheimer's disease (AD) was investigated by employing comprehensive and accurate quantitative proteomics. Highly purified brain capillaries were isolated from cerebral gray and white matter of four AD and three control donors, and examined by SWATH (sequential window acquisition of all theoretical fragment ion spectra) proteomics. Of the 29 ribosomal proteins that were quantified, 28 (RPLP0, RPL4, RPL6, RPL7A, RPL8, RPL10A, RPL11, RPL12, RPL14, RPL15, RPL18, RPL23, RPL27, RPL27A, RPL31, RPL35A, RPS2, RPS3, RPS3A, RPS4X, RPS7, RPS8, RPS14, RPS16, RPS20, RPS24, RPS25, and RPSA) were significantly upregulated in AD patients. This upregulation of ribosomal protein expression occurred only in brain capillaries and not in brain parenchyma. The protein expression of protein processing and N-glycosylation-related proteins in the endoplasmic reticulum (DDOST, STT3A, MOGS, GANAB, RPN1, RPN2, SEC61B, UGGT1, LMAN2, and SSR4) were also upregulated in AD brain capillaries and was correlated with the expression of ribosomal proteins. The findings reported herein indicate that the ribosome complex, the subsequent protein processing and N-glycosylation-related processes are significantly and specifically upregulated in the brain capillaries of AD patients.
Collapse
Affiliation(s)
- Masayoshi Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kenta Tezuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takumi Handa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Risa Sato
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Hina Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masaki Takao
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan.,Department of Clinical Laboratory, National Center of Neurology and Psychiatry, National Center Hospital, Kodaira, Japan
| | - Mitsutoshi Tano
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Lim D, Jeong JH, Song J. Lipocalin 2 regulates iron homeostasis, neuroinflammation, and insulin resistance in the brains of patients with dementia: Evidence from the current literature. CNS Neurosci Ther 2021; 27:883-894. [PMID: 33945675 PMCID: PMC8265939 DOI: 10.1111/cns.13653] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
Dementia accompanied by memory loss is considered one of the most common neurodegenerative diseases worldwide, and its prevalence is gradually increasing. Known risk factors for dementia include genetic background, certain lifestyle and dietary patterns, smoking, iron overload, insulin resistance, and impaired glucose metabolism in the brain. Here, we review recent evidence on the regulatory role of lipocalin 2 (LCN2) in dementia from various perspectives. LCN2 is a neutrophil gelatinase-associated protein that influences diverse cellular processes, including the immune system, iron homeostasis, lipid metabolism, and inflammatory responses. Although its functions within the peripheral system are most widely recognized, recent findings have revealed links between LCN2 and central nervous system diseases, as well as novel roles for LCN2 in neurons and glia. Furthermore, LCN2 may modulate diverse pathological mechanisms involved in dementia. Taken together, LCN2 is a promising therapeutic target with which to address the neuropathology of dementia.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Chonnam National University, Gwangju, Korea
| |
Collapse
|