1
|
Zhu Y, Koleilat MKI, Roszik J, Kwong MK, Wang Z, Maru DM, Kopetz S, Kwong LN. A Gold Standard-Derived Modular Barcoding Approach to Cancer Transcriptomics. Cancers (Basel) 2024; 16:1886. [PMID: 38791964 PMCID: PMC11120226 DOI: 10.3390/cancers16101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
A challenge with studying cancer transcriptomes is in distilling the wealth of information down into manageable portions of information. In this resource, we develop an approach that creates and assembles cancer type-specific gene expression modules into flexible barcodes, allowing for adaptation to a wide variety of uses. Specifically, we propose that modules derived organically from high-quality gold standards such as The Cancer Genome Atlas (TCGA) can accurately capture and describe functionally related genes that are relevant to specific cancer types. We show that such modules can: (1) uncover novel gene relationships and nominate new functional memberships, (2) improve and speed up analysis of smaller or lower-resolution datasets, (3) re-create and expand known cancer subtyping schemes, (4) act as a "decoder" to bridge seemingly disparate established gene signatures, and (5) efficiently apply single-cell RNA sequencing information to other datasets. Moreover, such modules can be used in conjunction with native spreadsheet program commands to create a powerful and rapid approach to hypothesis generation and testing that is readily accessible to non-bioinformaticians. Finally, we provide tools for users to create and interpret their own modules. Overall, the flexible modular nature of the proposed barcoding provides a user-friendly approach to rapidly decoding transcriptome-wide data for research or, potentially, clinical uses.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Mohamad Karim I. Koleilat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Man Kam Kwong
- Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong, China;
| | - Zhonglin Wang
- Social Science Research Institute, Duke University, Durham, NC 27708, USA;
| | - Dipen M. Maru
- Department of Anatomical Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Lawrence N. Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.Z.); (M.K.I.K.)
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Moffat GT, Hu ZI, Meric-Bernstam F, Kong EK, Pavlick D, Ross JS, Murugesan K, Kwong L, De Armas AD, Korkut A, Javle M, Knox JJ. KRAS Allelic Variants in Biliary Tract Cancers. JAMA Netw Open 2024; 7:e249840. [PMID: 38709532 PMCID: PMC11074811 DOI: 10.1001/jamanetworkopen.2024.9840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/06/2024] [Indexed: 05/07/2024] Open
Abstract
Importance Biliary tract cancers (BTCs) contain several actionable molecular alterations, including FGFR2, IDH1, ERBB2 (formerly HER2), and KRAS. KRAS allelic variants are found in 20% to 30% of BTCs, and multiple KRAS inhibitors are currently under clinical investigation. Objectives To describe the genomic landscape, co-sequence variations, immunophenotype, genomic ancestry, and survival outcomes of KRAS-mutated BTCs and to calculate the median overall survival (mOS) for the most common allelic variants. Design, Setting, and Participants This retrospective, multicenter, pooled cohort study obtained clinical and next-generation sequencing data from multiple databases between January 1, 2017, and December 31, 2022. These databases included Princess Margaret Cancer Centre, MD Anderson Cancer Center, Foundation Medicine, American Association for Cancer Research Project GENIE, and cBioPortal for Cancer Genomics. The cohort comprised patients with BTCs who underwent genomic testing. Main Outcome and Measure The main outcome was mOS, defined as date of diagnosis to date of death, which was measured in months. Results A total of 7457 patients (n = 3773 males [50.6%]; mean [SD] age, 63 [5] years) with BTCs and genomic testing were included. Of these patients, 5813 had clinical outcome data available, in whom 1000 KRAS-mutated BTCs were identified. KRAS allelic variants were highly prevalent in perihilar cholangiocarcinoma (28.6%) and extrahepatic cholangiocarcinoma (36.1%). Thirty-six KRAS allelic variants were identified, and the prevalence rates in descending order were G12D (41%), G12V (23%), and Q61H (8%). The variant G12D had the highest mOS of 25.1 (95% CI, 22.0-33.0) months compared with 22.8 (95% CI, 19.6-31.4) months for Q61H and 17.8 (95% CI, 16.3-23.1) months for G12V variants. The majority of KRAS-mutated BTCs (98.9%) were not microsatellite instability-high and had low tumor mutational burden (ranging from a median [IQR] of 1.2 (1.2-2.5) to a mean [SD] of 3.3 [1.3]). Immune profiling through RNA sequencing of KRAS and NRAS-mutated samples showed a pattern toward a more immune-inflamed microenvironment with higher M1 macrophage activation (0.16 vs 0.12; P = .047) and interferon-γ expression compared with wild-type tumors. The G12D variant remained the most common KRAS allelic variant in all patient ancestries. Patients with admixed American ancestry had the highest proportion of G12D variant (45.0%). Conclusions and Relevance This cohort study found that KRAS allelic variants were relatively common and may be potentially actionable genomic alterations in patients with BTCs, especially perihilar cholangiocarcinoma and extrahepatic cholangiocarcinoma. The findings add to the growing data on genomic and immune landscapes of KRAS allelic variants in BTCs and are potentially of value to the planning of specific therapies for this heterogeneous patient group.
Collapse
Affiliation(s)
- Gordon Taylor Moffat
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Zishuo Ian Hu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Funda Meric-Bernstam
- Department of Developmental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Elisabeth Kathleen Kong
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Dean Pavlick
- Foundation Medicine Inc, Cambridge, Massachusetts
| | - Jeffrey S. Ross
- Foundation Medicine Inc, Cambridge, Massachusetts
- State University of New York Upstate Medical University, Syracuse
| | | | - Lawrence Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Anaemy Danner De Armas
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Anil Korkut
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer J. Knox
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
4
|
Holley JM, Stanbouly S, Pecaut MJ, Willey JS, Delp M, Mao XW. Characterization of gene expression profiles in the mouse brain after 35 days of spaceflight mission. NPJ Microgravity 2022; 8:35. [PMID: 35948598 PMCID: PMC9365836 DOI: 10.1038/s41526-022-00217-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/15/2022] [Indexed: 11/25/2022] Open
Abstract
It has been proposed that neuroinflammatory response plays an important role in the neurovascular remodeling in the brain after stress. The goal of the present study was to characterize changes in the gene expression profiles associated with neuroinflammation, neuronal function, metabolism and stress in mouse brain tissue. Ten-week old male C57BL/6 mice were launched to the International Space Station (ISS) on SpaceX-12 for a 35-day mission. Within 38 ± 4 h of splashdown, mice were returned to Earth alive. Brain tissues were collected for analysis. A novel digital color-coded barcode counting technology (NanoStringTM) was used to evaluate gene expression profiles in the spaceflight mouse brain. A set of 54 differently expressed genes (p < 0.05) significantly segregates the habitat ground control (GC) group from flight (FLT) group. Many pathways associated with cellular stress, inflammation, apoptosis, and metabolism were significantly altered by flight conditions. A decrease in the expression of genes important for oligodendrocyte differentiation and myelin sheath maintenance was observed. Moreover, mRNA expression of many genes related to anti-viral signaling, reactive oxygen species (ROS) generation, and bacterial immune response were significantly downregulated. Here we report that significantly altered immune reactions may be closely associated with spaceflight-induced stress responses and have an impact on the neuronal function.
Collapse
Affiliation(s)
- Jacob M Holley
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Seta Stanbouly
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Michael J Pecaut
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Jeffrey S Willey
- Department of Radiation Oncology, Wake Forest University, School of Medicine, Winston-Salem, NC, 27101, USA
| | - Michael Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Xiao Wen Mao
- Department of Basic Sciences, Division of Biomedical Engineering Sciences (BMES), Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.
| |
Collapse
|
5
|
Shi Y, Ma X, Shen W, Liu T, Liang L, Liu S, Shen Z, Zhang Y, Zhang P. Evaluation of the EdgeSeq Precision Immuno-Oncology Panel for Gene Expression Profiling From Clinical Formalin-Fixed Paraffin-Embedded Tumor Specimens. Front Cell Dev Biol 2022; 10:899353. [PMID: 35712667 PMCID: PMC9197216 DOI: 10.3389/fcell.2022.899353] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
Characterizing the tumor microenvironment (TME) of archived clinical tissues requires reliable gene expression profiling (GEP) of formalin-fixed paraffin-embedded (FFPE) samples. The EdgeSeq Precision Immuno-oncology Panel (PIP) is a targeted GEP assay designed for TME characterization but lacks widespread technical validation on a large cohort of clinical samples. Here, we evaluated its performance by exploring its concordance with multiple orthogonal platforms using 1,220 FFPE samples across various cancer types. Quantitative comparisons with RNA-seq and NanoString showed strong correlations at the sample level (median ρ = 0.73 and 0.81) and moderate correlations at the single-gene level (median ρ = 0.49 and 0.57). Gene signature analysis revealed high concordance with RNA-seq on widely used signatures for TME characterization and immune checkpoint inhibitor (ICI) efficacy prediction, though some genes in these signatures are not targeted by EdgeSeq PIP. From a histopathological viewpoint, the tumor/immune abundances derived from hematoxylin and eosin (H & E) staining were well recapitulated by the transcriptomic profiles assessed by EdgeSeq PIP. Furthermore, the mRNA level of PD-L1 assessed by EdgeSeq PIP was moderately correlated with the PD-L1 score (ρ = 0.65) estimated by immunohistochemistry (IHC); the mRNA level of CD8A aligned well (ρ = 0.55) with the IHC-derived abundance of CD8+ T cells. Overall, our results showed that EdgeSeq PIP generated well-correlated data with independent approaches at mRNA, protein, and histological levels, thus providing strong technical support for further using EdgeSeq PIP in biomarker studies and companion diagnostic (CDx) development.
Collapse
Affiliation(s)
- Yang Shi
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | - Wei Shen
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | | | - Silu Liu
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | | | - Yun Zhang
- BeiGene (Beijing) Co., Ltd., Beijing, China
| | - Pei Zhang
- BeiGene (Beijing) Co., Ltd., Beijing, China
| |
Collapse
|
6
|
Shohdy KS, Bareja R, Sigouros M, Wilkes DC, Dorsaint P, Manohar J, Bockelman D, Xiang JZ, Kim R, Ohara K, Eng K, Mosquera JM, Elemento O, Sboner A, Alonso A, Faltas BM. Functional comparison of exome capture-based methods for transcriptomic profiling of formalin-fixed paraffin-embedded tumors. NPJ Genom Med 2021; 6:66. [PMID: 34385467 PMCID: PMC8360986 DOI: 10.1038/s41525-021-00231-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/26/2021] [Indexed: 11/08/2022] Open
Abstract
The availability of fresh frozen (FF) tissue is a barrier for implementing RNA sequencing (RNA-seq) in the clinic. The majority of clinical samples are stored as formalin-fixed, paraffin-embedded (FFPE) tissues. Exome capture platforms have been developed for RNA-seq from FFPE samples. However, these methods have not been systematically compared. We performed transcriptomic analysis of 32 FFPE tumor samples from 11 patients using three exome capture-based methods: Agilent SureSelect V6, TWIST NGS Exome, and IDT XGen Exome Research Panel. We compared these methods to the TruSeq RNA-seq of fresh frozen (FF-TruSeq) tumor samples from the same patients. We assessed the recovery of clinically relevant biological features. The Spearman's correlation coefficients between the global expression profiles of the three capture-based methods from FFPE and matched FF-TruSeq were high (rho = 0.72-0.9, p < 0.05). A significant correlation between the expression of key immune genes between individual capture-based methods and FF-TruSeq (rho = 0.76-0.88, p < 0.05) was observed. All exome capture-based methods reliably detected outlier expression of actionable gene transcripts, including ERBB2, MET, NTRK1, and PPARG. In urothelial cancer samples, the Agilent assay was associated with the highest molecular subtype concordance with FF-TruSeq (Cohen's k = 0.7, p < 0.01). The Agilent and IDT assays detected all the clinically relevant fusions that were initially identified in FF-TruSeq. All FFPE exome capture-based methods had comparable performance and concordance with FF-TruSeq. Our findings will enable the implementation of RNA-seq in the clinic to guide precision oncology approaches.
Collapse
Affiliation(s)
- Kyrillus S Shohdy
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA
- Department of Clinical Oncology, Kasr Alainy School of Medicine, Cairo University, Cairo, Egypt
| | - Rohan Bareja
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Michael Sigouros
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David C Wilkes
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Princesca Dorsaint
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jyothi Manohar
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Bockelman
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jenny Z Xiang
- Genomic Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Rob Kim
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kentaro Ohara
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Kenneth Eng
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Juan Miguel Mosquera
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Alicia Alonso
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bishoy M Faltas
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Cui W, Xue H, Geng Y, Zhang J, Liang Y, Tian X, Wang Q. Effect of high variation in transcript expression on identifying differentially expressed genes in RNA-seq analysis. Ann Hum Genet 2021; 85:235-244. [PMID: 34341986 DOI: 10.1111/ahg.12441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022]
Abstract
Great efforts have been made on the algorithms that deal with RNA-seq data to enhance the accuracy and efficiency of differential expression (DE) analysis. However, no consensus has been reached on the proper threshold values of fold change and adjusted p-value for filtering differentially expressed genes (DEGs). It is generally believed that the more stringent the filtering threshold, the more reliable the result of a DE analysis. Nevertheless, by analyzing the impact of both adjusted p-value and fold change thresholds on DE analyses, with RNA-seq data obtained for three different cancer types from the Cancer Genome Atlas (TCGA) database, we found that, for a given sample size, the reproducibility of DE results became poorer when more stringent thresholds were applied. No matter which threshold level was applied, the overlap rates of DEGs were generally lower for small sample sizes than for large sample sizes. The raw read count analysis demonstrated that the transcript expression of the same gene in different samples, whether in tumor groups or in normal groups, showed high variations, which resulted in a drastic fluctuation in fold change values and adjustedp-values when different sets of samples were used. Overall, more stringent thresholds did not yield more reliable DEGs due to high variations in transcript expression; the reliability of DEGs obtained with small sample sizes was more susceptible to these variations. Therefore, less stringent thresholds are recommended for screening DEGs. Moreover, large sample sizes should be considered in RNA-seq experimental designs to reduce the interfering effect of variations in transcript expression on DEG identification.
Collapse
Affiliation(s)
- Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Huaru Xue
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Yifan Geng
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China.,Xuzhou Medical University, Xuzhou, P. R. China
| | - Jing Zhang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Yajun Liang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China
| | - Xuewen Tian
- Shandong Sport University, Jinan, P. R. China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, P. R. China.,Shandong Sport University, Jinan, P. R. China
| |
Collapse
|
8
|
Popeda M, Markiewicz A, Stokowy T, Szade J, Niemira M, Kretowski A, Bednarz-Knoll N, Zaczek AJ. Reduced expression of innate immunity-related genes in lymph node metastases of luminal breast cancer patients. Sci Rep 2021; 11:5097. [PMID: 33658651 PMCID: PMC7930267 DOI: 10.1038/s41598-021-84568-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/18/2021] [Indexed: 01/31/2023] Open
Abstract
Immune system plays a dual role in cancer by either targeting or supporting neoplastic cells at various stages of disease, including metastasis. Yet, the exact immune-related transcriptome profiles of primary tumours (PT) and lymph node metastases (LNM) and their evolution during luminal breast cancer (BCa) dissemination remain undiscovered. In order to identify the immune-related transcriptome changes that accompany lymphatic spread, we analysed PT-LNM pairs of luminal BCa using NanoString technology. Decrease in complement C3-one of the top-downregulated genes, in LNM was validated at the protein level using immunohistochemistry. Thirty-three of 360 analysed genes were downregulated (9%), whereas only 3 (0.8%) upregulated in LNM when compared to the corresponding PT. In LNM, reduced expression was observed in genes related to innate immunity, particularly to the complement system (C1QB, C1S, C1R, C4B, CFB, C3, SERPING1 and C3AR1). In validation cohort, complement C3 protein was less frequently expressed in LNM than in PT and it was associated with worse prognosis. To conclude, local expression of the complement system components declines during lymphatic spread of non-metastatic luminal BCa, whilst further reduction of tumoral complement C3 in LNM is indicative for poor survival. This points to context-dependent role of complement C3 in BCa dissemination.
Collapse
Affiliation(s)
- Marta Popeda
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Aleksandra Markiewicz
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Tomasz Stokowy
- Department of Clinical Science, University of Bergen, 5021, Bergen, Norway
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15-276, Bialystok, Poland
| | - Natalia Bednarz-Knoll
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland
| | - Anna J Zaczek
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdansk, 80-211, Gdansk, Poland.
| |
Collapse
|
9
|
Cui W, Xue H, Wei L, Jin J, Tian X, Wang Q. High heterogeneity undermines generalization of differential expression results in RNA-Seq analysis. Hum Genomics 2021; 15:7. [PMID: 33509298 PMCID: PMC7845028 DOI: 10.1186/s40246-021-00308-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/19/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) has been widely applied in oncology for monitoring transcriptome changes. However, the emerging problem that high variation of gene expression levels caused by tumor heterogeneity may affect the reproducibility of differential expression (DE) results has rarely been studied. Here, we investigated the reproducibility of DE results for any given number of biological replicates between 3 and 24 and explored why a great many differentially expressed genes (DEGs) were not reproducible. RESULTS Our findings demonstrate that poor reproducibility of DE results exists not only for small sample sizes, but also for relatively large sample sizes. Quite a few of the DEGs detected are specific to the samples in use, rather than genuinely differentially expressed under different conditions. Poor reproducibility of DE results is mainly caused by high variation of gene expression levels for the same gene in different samples. Even though biological variation may account for much of the high variation of gene expression levels, the effect of outlier count data also needs to be treated seriously, as outlier data severely interfere with DE analysis. CONCLUSIONS High heterogeneity exists not only in tumor tissue samples of each cancer type studied, but also in normal samples. High heterogeneity leads to poor reproducibility of DEGs, undermining generalization of differential expression results. Therefore, it is necessary to use large sample sizes (at least 10 if possible) in RNA-Seq experimental designs to reduce the impact of biological variability and DE results should be interpreted cautiously unless soundly validated.
Collapse
Affiliation(s)
- Weitong Cui
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Huaru Xue
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Lei Wei
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China
| | - Jinghua Jin
- Environmental Protection Research Institute of Light Industry, Beijing, 100089, China
| | - Xuewen Tian
- Shandong Sport University, Jinan, 250102, China
| | - Qinglu Wang
- Key Laboratory of Biomedical Engineering & Technology of Shandong High School, Qilu Medical University, Zibo, 255300, China.
| |
Collapse
|
10
|
Ginsenoside ameliorated ventilator-induced lung injury in rats. J Intensive Care 2020; 8:89. [PMID: 33292607 PMCID: PMC7682776 DOI: 10.1186/s40560-020-00509-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/15/2020] [Indexed: 11/21/2022] Open
Abstract
Background Ginsenosides have antioxidant and anti-inflammatory features. This study aimed to evaluate the biologic effects of ginsenoside Rb2 pretreatment on ventilator-induced lung injury (VILI) in rats. Methods Rats were divided into four groups with 12 rats per group: control; low tidal volume (TV), TV of 6 mL/kg, VILI, TV of 20 mL/kg, positive end-expiratory pressure of 5 cm H2O, and respiratory rate of 60 breaths per minute for 3 h at an inspiratory oxygen fraction of 0.21; and ginsenosides, treated the same as the VILI group but with 20 mg/kg intraperitoneal ginsenoside pretreatment. Morphology was observed with a microscope to confirm the VILI model. Wet-to-dry weight ratios, protein concentrations, and pro-inflammatory cytokines in the bronchoalveolar lavage fluid were measured. RNA sequencing of the lung tissues was conducted to analyze gene expression. Results High TV histologically induced VILI with alveolar edema and infiltration of inflammatory cells. Ginsenosides pretreatment significantly reduced the histologic lung injury score compared to the VILI group. Wet-to-dry weight ratios, malondialdehyde, and TNF-α in bronchoalveolar lavage fluid were significantly higher in the VILI group and ginsenoside pretreatment mitigated these effects. In the immunohistochemistry assay, ginsenoside pretreatment attenuated the TNF-α upregulation induced by VILI. We identified 823 genes differentially presented in the VILI group compared to the control group. Of the 823 genes, only 13 genes (Arrdc2, Cygb, Exnef, Lcn2, Mroh7, Nsf, Rexo2, Srp9, Tead3, Ephb6, Mvd, Sytl4, and Ube2l6) recovered to control levels in the ginsenoside group. Conclusions Ginsenosides inhibited the inflammatory and oxidative stress response in VILI. Further studies are required on the 13 genes, including LCN2.
Collapse
|
11
|
Large scale, robust, and accurate whole transcriptome profiling from clinical formalin-fixed paraffin-embedded samples. Sci Rep 2020; 10:17597. [PMID: 33077815 PMCID: PMC7572424 DOI: 10.1038/s41598-020-74483-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/30/2020] [Indexed: 01/25/2023] Open
Abstract
Transcriptome profiling can provide information of great value in clinical decision-making, yet RNA from readily available formalin-fixed paraffin-embedded (FFPE) tissue is often too degraded for quality sequencing. To assess the clinical utility of FFPE-derived RNA, we performed ribo-deplete RNA extractions on > 3200 FFPE slide samples; 25 of these had direct FFPE vs. fresh frozen (FF) replicates, 57 were sequenced in 2 different labs, 87 underwent multiple library analyses, and 16 had direct microdissected vs. macrodissected replicates. Poly-A versus ribo-depletion RNA extraction methods were compared using transcriptomes of TCGA cohort and 3116 FFPE samples. Compared to FF, FFPE transcripts coding for nuclear/cytoplasmic proteins involved in DNA packaging, replication, and protein synthesis were detected at lower rates and zinc finger family transcripts were of poorer quality. The greatest difference in extraction methods was in histone transcripts which typically lack poly-A tails. Encouragingly, the overall sequencing success rate was 81%. Exome coverage was highly concordant in direct FFPE and FF replicates, with 98% agreement in coding exon coverage and a median correlation of whole transcriptome profiles of 0.95. We provide strong rationale for clinical use of FFPE-derived RNA based on the robustness, reproducibility, and consistency of whole transcriptome profiling.
Collapse
|
12
|
Smith TAD, AbdelKarem OA, Irlam-Jones JJ, Lane B, Valentine H, Bibby BAS, Denley H, Choudhury A, West CML. Selection of endogenous control genes for normalising gene expression data derived from formalin-fixed paraffin-embedded tumour tissue. Sci Rep 2020; 10:17258. [PMID: 33057113 PMCID: PMC7560892 DOI: 10.1038/s41598-020-74380-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022] Open
Abstract
Quantitative real time polymerase chain reaction (qPCR) data are normalised using endogenous control genes. We aimed to: (1) demonstrate a pathway to identify endogenous control genes for qPCR analysis of formalin-fixed paraffin-embedded (FFPE) tissue using bladder cancer as an exemplar; and (2) examine the influence of probe length and sample age on PCR amplification and co-expression of candidate genes on apparent expression stability. RNA was extracted from prospective and retrospective samples and subject to qPCR using TaqMan human endogenous control arrays or single tube assays. Gene stability ranking was assessed using coefficient of variation (CoV), GeNorm and NormFinder. Co-expressed genes were identified from The Cancer Genome Atlas (TCGA) using the on-line gene regression analysis tool GRACE. Cycle threshold (Ct) values were lower for prospective (19.49 ± 2.53) vs retrospective (23.8 ± 3.32) tissues (p < 0.001) and shorter vs longer probes. Co-expressed genes ranked as the most stable genes in the TCGA cohort by GeNorm when analysed together but ranked lower when analysed individually omitting co-expressed genes indicating bias. Stability values were < 1.5 for the 20 candidate genes in the prospective cohort. As they consistently ranked in the top ten by CoV, GeNorm and Normfinder, UBC, RPLP0, HMBS, GUSB, and TBP are the most suitable endogenous control genes for bladder cancer qPCR.
Collapse
Affiliation(s)
- Tim A D Smith
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK.
| | - Omneya A AbdelKarem
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
- Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadra, Alexandria, Egypt
| | - Joely J Irlam-Jones
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Brian Lane
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Helen Valentine
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Becky A S Bibby
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Helen Denley
- Pathology Centre, Shrewsbury and Telford NHS Trust, Royal Shrewsbury Hospital, Shrewsbury, SY3 8XQ, UK
| | - Ananya Choudhury
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| | - Catharine M L West
- Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, Manchester Academic Health Centre, Christie Hospital NHS Found Trust, Manchester, M20 4BX, UK
| |
Collapse
|
13
|
Fischer GM, Carapeto FCL, Joon AY, Haydu LE, Chen H, Wang F, Van Arnam JS, McQuade JL, Wani K, Kirkwood JM, Thompson JF, Tetzlaff MT, Lazar AJ, Tawbi HA, Gershenwald JE, Scolyer RA, Long GV, Davies MA. Molecular and immunological associations of elevated serum lactate dehydrogenase in metastatic melanoma patients: A fresh look at an old biomarker. Cancer Med 2020; 9:8650-8661. [PMID: 33016647 PMCID: PMC7666738 DOI: 10.1002/cam4.3474] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Elevated serum lactate dehydrogenase (sLDH) is associated with poor clinical outcomes in patients with stage IV metastatic melanoma (MM). It is currently unknown if sLDH elevation correlates with distinct molecular, metabolic, or immune features of melanoma metastases. The identification of such features may identify rational therapeutic strategies for patients with elevated sLDH. Thus, we obtained sLDH levels for melanoma patients with metastases who had undergone molecular and/or immune profiling. Our analysis of multi‐omics data from independent cohorts of melanoma metastases showed that elevated sLDH was not significantly associated with differences in immune cell infiltrate, point mutations, DNA copy number variations, promoter methylation, RNA expression, or protein expression in melanoma metastases. The only significant association observed for elevated sLDH was with the number of metastatic sites of disease. Our data support that sLDH correlates with disease burden, but not specific molecular or immunological phenotypes, in metastatic melanoma.
Collapse
Affiliation(s)
- Grant M Fischer
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fernando C L Carapeto
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Aron Y Joon
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren E Haydu
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuchenchu Wang
- Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John S Van Arnam
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khalida Wani
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John M Kirkwood
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John F Thompson
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Michael T Tetzlaff
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander J Lazar
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hussein A Tawbi
- Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Gershenwald
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard A Scolyer
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal Prince Alfred Hospital, NSW Health Pathology, Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute of Australia, The University of Sydney, North Sydney, NSW, Australia.,The University of Sydney, Sydney, NSW, Australia.,Royal North Shore Hospital, Sydney, NSW, Australia
| | - Michael A Davies
- Departments of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
14
|
Target Enrichment Enables the Discovery of lncRNAs with Somatic Mutations or Altered Expression in Paraffin-Embedded Colorectal Cancer Samples. Cancers (Basel) 2020; 12:cancers12102844. [PMID: 33019720 PMCID: PMC7650602 DOI: 10.3390/cancers12102844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Alterations in long noncoding RNAs and their mutations have been increasingly recognized in tumorogenesis and cancer progression awakening especial interest as potential novel cancer biomarkers and therapeutic targets. The use of adjuvant chemotherapy in stage II colorectal cancer patients is challenging, and new biomarkers are required to identify patients with high probability of relapse. We focused on translational potential of non-coding RNAs in colorectal cancer. In this study, we aim to validate a new tool which couples target enrichment and RNAseq for transcriptomics studies of lncRNAs in formalin-fixed paraffin embedded (FFPE) tissue samples. Our results show that this new approach efficiently detects lncRNAs and differences in their expression between healthy and tumor FFPE tissues, as well as somatic mutations in expressed lncRNAs, identifying novel lncRNAs as potential candidates for colorectal cancer. This new approach could represent a promising avenue that would reduce costs and enable more efficient translational research. Abstract Long non-coding RNAs (lncRNAs) play important roles in cancer and are potential new biomarkers or targets for therapy. However, given the low and tissue-specific expression of lncRNAs, linking these molecules to particular cancer types and processes through transcriptional profiling is challenging. Formalin-fixed, paraffin-embedded (FFPE) tissues are abundant resources for research but are prone to nucleic acid degradation, thereby complicating the study of lncRNAs. Here, we designed and validated a probe-based enrichment strategy to efficiently profile lncRNA expression in FFPE samples, and we applied it for the detection of lncRNAs associated with colorectal cancer (CRC). Our approach efficiently enriched targeted lncRNAs from FFPE samples, while preserving their relative abundance, and enabled the detection of tumor-specific mutations. We identified 379 lncRNAs differentially expressed between CRC tumors and matched healthy tissues and found tumor-specific lncRNA variants. Our results show that numerous lncRNAs are differentially expressed and/or accumulate variants in CRC tumors, thereby suggesting a role in CRC progression. More generally, our approach unlocks the study of lncRNAs in FFPE samples, thus enabling the retrospective use of abundant, well documented material available in hospital biobanks.
Collapse
|
15
|
Pennock ND, Jindal S, Horton W, Sun D, Narasimhan J, Carbone L, Fei SS, Searles R, Harrington CA, Burchard J, Weinmann S, Schedin P, Xia Z. RNA-seq from archival FFPE breast cancer samples: molecular pathway fidelity and novel discovery. BMC Med Genomics 2019; 12:195. [PMID: 31856832 PMCID: PMC6924022 DOI: 10.1186/s12920-019-0643-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/08/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Formalin-fixed, paraffin-embedded (FFPE) tissues for RNA-seq have advantages over fresh frozen tissue including abundance and availability, connection to rich clinical data, and association with patient outcomes. However, FFPE-derived RNA is highly degraded and chemically modified, which impacts its utility as a faithful source for biological inquiry. METHODS True archival FFPE breast cancer cases (n = 58), stored at room temperature for 2-23 years, were utilized to identify key steps in tissue selection, RNA isolation, and library choice. Gene expression fidelity was evaluated by comparing FFPE data to public data obtained from fresh tissues, and by employing single-gene, gene set and transcription network-based regulon analyses. RESULTS We report a single 10 μm section of breast tissue yields sufficient RNA for RNA-seq, and a relationship between RNA quality and block age that was not linear. We find single-gene analysis is limiting with FFPE tissues, while targeted gene set approaches effectively distinguish ER+ from ER- breast cancers. Novel utilization of regulon analysis identified the transcription factor KDM4B to associate with ER+ disease, with KDM4B regulon activity and gene expression having prognostic significance in an independent cohort of ER+ cases. CONCLUSION Our results, which outline a robust FFPE-RNA-seq pipeline for broad use, support utilizing FFPE tissues to address key questions in the breast cancer field, including the delineation between indolent and life-threatening disease, biological stratification and molecular mechanisms of treatment resistance.
Collapse
Affiliation(s)
- Nathan D Pennock
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA
| | - Wesley Horton
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA
- Computational Biology Program, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Duanchen Sun
- Computational Biology Program, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Jayasri Narasimhan
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health & Science University, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, 97006, USA
| | - Robert Searles
- Integrated Genomics Laboratory, Knight Cancer Institute, Oregon Health & Science University Knight Cancer Institute, Portland, OR, 97239, USA
| | - Christina A Harrington
- Integrated Genomics Laboratory, Knight Cancer Institute, Oregon Health & Science University Knight Cancer Institute, Portland, OR, 97239, USA
| | - Julja Burchard
- Computational Biology Program, Oregon Health & Science University, Portland, OR, 97201, USA
| | - Sheila Weinmann
- Center for Health Research, Kaiser Permanente Northwest, Portland, OR, 97278, USA
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA.
- Knight Cancer Institute, Oregon Health & Science University, 2720 SW Moody Ave, Portland, OR, 97201, USA.
- Young Women's Breast Cancer Translational Program, University of Colorado Anschutz Medical Campus, 1665 Aurora Court, USA, Aurora, CO, 80045, USA.
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR, 97201, USA.
- Department of Molecular Microbiology and Immunology Oregon Health & Science University, Portland, OR, 97273, USA.
| |
Collapse
|
16
|
Fischer GM, Jalali A, Kircher DA, Lee WC, McQuade JL, Haydu LE, Joon AY, Reuben A, de Macedo MP, Carapeto FCL, Yang C, Srivastava A, Ambati CR, Sreekumar A, Hudgens CW, Knighton B, Deng W, Ferguson SD, Tawbi HA, Glitza IC, Gershenwald JE, Vashisht Gopal YN, Hwu P, Huse JT, Wargo JA, Futreal PA, Putluri N, Lazar AJ, DeBerardinis RJ, Marszalek JR, Zhang J, Holmen SL, Tetzlaff MT, Davies MA. Molecular Profiling Reveals Unique Immune and Metabolic Features of Melanoma Brain Metastases. Cancer Discov 2019; 9:628-645. [PMID: 30787016 PMCID: PMC6497554 DOI: 10.1158/2159-8290.cd-18-1489] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 12/24/2022]
Abstract
There is a critical need to improve our understanding of the pathogenesis of melanoma brain metastases (MBM). Thus, we performed RNA sequencing on 88 resected MBMs and 42 patient-matched extracranial metastases; tumors with sufficient tissue also underwent whole-exome sequencing, T-cell receptor sequencing, and IHC. MBMs demonstrated heterogeneity of immune infiltrates that correlated with prior radiation and post-craniotomy survival. Comparison with patient-matched extracranial metastases identified significant immunosuppression and enrichment of oxidative phosphorylation (OXPHOS) in MBMs. Gene-expression analysis of intracranial and subcutaneous xenografts, and a spontaneous MBM model, confirmed increased OXPHOS gene expression in MBMs, which was also detected by direct metabolite profiling and [U-13C]-glucose tracing in vivo. IACS-010759, an OXPHOS inhibitor currently in early-phase clinical trials, improved survival of mice bearing MAPK inhibitor-resistant intracranial melanoma xenografts and inhibited MBM formation in the spontaneous MBM model. The results provide new insights into the pathogenesis and therapeutic resistance of MBMs. SIGNIFICANCE: Improving our understanding of the pathogenesis of MBMs will facilitate the rational development and prioritization of new therapeutic strategies. This study reports the most comprehensive molecular profiling of patient-matched MBMs and extracranial metastases to date. The data provide new insights into MBM biology and therapeutic resistance.See related commentary by Egelston and Margolin, p. 581.This article is highlighted in the In This Issue feature, p. 565.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Biomarkers, Tumor/metabolism
- Brain Neoplasms/drug therapy
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/secondary
- Cohort Studies
- Disease Models, Animal
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma/drug therapy
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/pathology
- Metabolic Flux Analysis
- Metabolome
- Mice
- Mice, Inbred C57BL
- Mice, Nude
- Oxidative Phosphorylation
- Sequence Analysis, RNA/methods
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - David A Kircher
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Won-Chul Lee
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer L McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lauren E Haydu
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aron Y Joon
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Fernando C L Carapeto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chendong Yang
- Children's Medical Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anuj Srivastava
- Department of Computational Sciences, The Jackson Lab for Genomic Medicine, Farmington, Connecticut
| | - Chandrashekar R Ambati
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
- Advanced Technology Core, Alkek Center for Molecular Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Arun Sreekumar
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
- Advanced Technology Core, Alkek Center for Molecular Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Courtney W Hudgens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Barbara Knighton
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wanleng Deng
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherise D Ferguson
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hussein A Tawbi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Isabella C Glitza
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey E Gershenwald
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Y N Vashisht Gopal
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason T Huse
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nagireddy Putluri
- Department of Molecular and Cell Biology, Baylor College of Medicine, Houston, Texas
- Advanced Technology Core, Alkek Center for Molecular Discovery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Alexander J Lazar
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ralph J DeBerardinis
- Children's Medical Research Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
- Howard Hughes Medical Institute, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joseph R Marszalek
- Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sheri L Holmen
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Michael T Tetzlaff
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|