1
|
Nishimoto M, Fujita K, Ri A, Fujimoto S, Oguma Y, Toyoda S, Hashimoto M, Kikuchi T, Adomi S, Saito Y, Mori Y, Minami T, Nozawa M, Yoshimura K, Hosono M, Uemura H. Gleason Pattern 5 May Be a Prognostic Factor in Radium-223 Treatment. CANCER DIAGNOSIS & PROGNOSIS 2024; 4:441-446. [PMID: 38962543 PMCID: PMC11215439 DOI: 10.21873/cdp.10345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 07/05/2024]
Abstract
Background/Aim Radium-223 treatment reduces the risk of death in patients with metastatic castration-resistant prostate cancer (CRPC). This study analyzed the prognostic factors in patients treated with radium-223 dichloride. Patients and Methods Patients who received radium-223 dichloride were retrospectively analyzed. Prostate-specific antigen (PSA) response and alkaline phosphatase (ALP) decline rates were analyzed. Overall survival (OS) was evaluated using Kaplan-Meier curves, and prognostic factors for OS were assessed using Cox proportional hazards analysis. Results Fifty-six patients were included in the study. The five-year OS rate in patients after diagnosis of CRPC was 62.2% [95% confidence interval (CI)=27.55-112.45], while the five-year OS rate in patients at the initiation of radium-223 treatment was 21.3% (95%CI=17.20-36.79). Six patients (11.1%) had a >50% PSA decline rate, and 10 (17.9%) had a >50% ALP decline rate. Cox proportional hazards analysis showed that PSA levels at the initiation of radium-223 treatment [hazard ratio (HR)=1.00; 95%CI=1.00-1.00; p=0.0054] and Gleason Pattern (GP) 5 (HR=5.42; 95%CI=1.08-27.27; p=0.0400) were associated with OS. Patients with GP 5 had a significantly poorer prognosis compared with patients with a GP ≤4. Early administration of radium-223 as a first- or second-line treatment was not associated with OS compared with late administration of radium-223 as a third-line or later treatment. Conclusion GP 5 and high PSA levels at radium-223 initiation were associated with worse OS. Radium-223 as first- or second-line treatment was not associated with OS. Therefore, a treatment strategy for CRPC based on GP 5 is needed.
Collapse
Affiliation(s)
| | - Kazutoshi Fujita
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Aritoshi Ri
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Saizo Fujimoto
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasuo Oguma
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shingo Toyoda
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Mamoru Hashimoto
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takashi Kikuchi
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Shogo Adomi
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yoshitaka Saito
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Yasunori Mori
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Takafumi Minami
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Masahiro Nozawa
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Kazuhiro Yoshimura
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Makoto Hosono
- Department of Radiation Oncology, Faculty of Medicine, Kindai University, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Faculty of Medicine, Kindai University, Osaka, Japan
| |
Collapse
|
2
|
Sasaki T, Ebara S, Tatenuma T, Ikehata Y, Nakayama A, Kawase M, Toide M, Yoneda T, Sakaguchi K, Teishima J, Makiyama K, Kitamura H, Saito K, Koie T, Koga F, Urakami S, Inoue T. Prognostic factors among patients with pathological Grade Group 5 prostate cancer based on robot-associated radical prostatectomy specimens from a large Japanese cohort (MSUG94). World J Urol 2024; 42:152. [PMID: 38483586 DOI: 10.1007/s00345-024-04864-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
PURPOSE There are no definitive prognostic factors for patients with pathological Grade Group 5 (pGG 5) prostate cancer (PCa) undergoing robot-associated radical prostatectomy (RARP). This study aimed to explore the prognostic factors among patients with pGG 5 PCa in a large Japanese cohort (MSUG94). METHODS This retrospective, multi-institutional cohort study was conducted between 2012 and 2021 at ten centers in Japan and included 3195 patients. Patients with clinically metastatic PCa (cN1 or cM1) and those receiving neoadjuvant and/or adjuvant therapy were excluded. Finally, 217 patients with pGG5 PCa were analyzed. RESULTS The median follow-up period was 28.0 months. The 3- and 5-year biochemical recurrence-free survival (BCRFS) rates of the overall population were 66.1% and 57.7%, respectively. The optimal threshold value (47.2%) for the percentage of positive cancer cores (PPCC) with any GG by systematic biopsy was chosen based on receiver operating characteristic curve analysis. Univariate analysis revealed that the prostate-specific antigen level at diagnosis, pT, pN, positive surgical margins (PSMs), lymphovascular invasion, and PPCC were independent prognostic factors for BCRFS. A multivariate analysis revealed that PSMs and PPCC were independent prognostic factors for BCRFS. Using these two predictors, we stratified BCRFS, metastasis-free survival (MFS), and castration-resistant PCa-free survival (CRPC-FS) among patients with pGG 5 PCa. CONCLUSION The combination of PSMs and PPCC may be an important predictor of BCRFS, MFS, and CRPC-FS in patients with pGG 5 PCa undergoing RARP.
Collapse
Affiliation(s)
- Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Shin Ebara
- Department of Urology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
| | | | | | - Akinori Nakayama
- Department of Urology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Makoto Kawase
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masahiro Toide
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Tatsuaki Yoneda
- Department of Urology, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | | | - Jun Teishima
- Department of Urology, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | | | - Kazutaka Saito
- Department of Urology, Dokkyo Medical University Saitama Medical Center, Saitama, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | | | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
3
|
Zhang D, Xu X, Wei Y, Chen X, Li G, Lu Z, Zhang X, Ren X, Wang S, Qin C. Prognostic Role of DNA Damage Response Genes Mutations and their Association With the Sensitivity of Olaparib in Prostate Cancer Patients. Cancer Control 2022; 29:10732748221129451. [PMID: 36283420 PMCID: PMC9608002 DOI: 10.1177/10732748221129451] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective Evidence shows that gene mutation is a significant proportion of genetic factors associated with prostate cancer. The DNA damage response (DDR) is a signal cascade network that aims to maintain genomic integrity in cells. This comprehensive study was performed to determine the link between different DNA damage response gene mutations and prostate cancer. Materials and methods A systematic literature search was performed using PubMed, Web of Science, and Embase. Papers published up to February 1, 2022 were retrieved. The DDR gene mutations associated with prostate cancer were identified by referring to relevant research and review articles. Data of prostate cancer patients from multiple PCa cohorts were obtained from cBioPortal. The OR or HR and 95% CIs were calculated using both fixed-effects models (FEMs) and random-effects models (REMs). Results Seventy-four studies were included in this research, and the frequency of 13 DDR genes was examined. Through the analysis of 33 articles that focused on the risk estimates of DDR genes between normal people and PCa patients, DDR genes were found to be more common in prostate cancer patients (OR = 3.6293 95% CI [2.4992; 5.2705]). Also, patients in the mutated group had a worse OS and DFS outcome than those in the unmutated group (P < .05). Of the 13 DDR genes, the frequency of 9 DDR genes in prostate cancer was less than 1%, and despite differences in race, BRCA2 was the potential gene with the highest frequency (REM Frequency = .0400, 95% CI .0324 - .0541). The findings suggest that mutations in genes such as ATR, BLM, and MLH1 in PCa patients may increase the sensitivity of Olaparib, a PARP inhibitor. Conclusion These results demonstrate that mutation in any DDR pathway results in a poor prognosis for PCa patients. Furthermore, mutations in ATR, BLM, and MLH1 or the expression of POLR2L, PMS1, FANCE, and other genes significantly influence Olaparib sensitivity, which may be underlying therapeutic targets in the future.
Collapse
Affiliation(s)
- Dong Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinchi Xu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yuang Wei
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinglin Chen
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Guangyao Li
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhongwen Lu
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xu Zhang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaohan Ren
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Shangqian Wang
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Chao Qin
- The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China,Chao Qin, The State Key Lab of Reproductive, Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China. ; Shangqian Wang, The State Key Lab of Reproductive; Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
4
|
Kaur HB, Vidotto T, Mendes AA, Salles DC, Isaacs WB, Antonarakis ES, Lotan TL. Association between pathogenic germline mutations in BRCA2 and ATM and tumor-infiltrating lymphocytes in primary prostate cancer. Cancer Immunol Immunother 2022; 71:943-951. [PMID: 34533610 PMCID: PMC9254167 DOI: 10.1007/s00262-021-03050-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 01/15/2023]
Abstract
Pathogenic mutations in homologous recombination (HR) DNA repair genes may be associated with increased tumor mutational burden and numbers of tumor-infiltrating lymphocytes (TIL). Though HR-deficient prostate tumors have been anecdotally associated with improved responses to immunotherapy, it is unclear whether HR mutations or HR deficiency (HRD) scores predict for increased T-cell densities in this cancer. We evaluated 17 primary prostate tumors from patients with pathogenic germline BRCA2 mutations (gBRCA2) and 21 primary prostate tumors from patients with pathogenic germline ATM (gATM) mutations, which were compared to 19 control tumors lacking HR gene mutations, as well as the TCGA prostate cancer cohort. HRD score was estimated by targeted sequencing (gBRCA2 and gATM) or by SNP microarray (TCGA). Tumor-associated T-cell densities were assessed using validated automated digital image analysis of CD8 and FOXP3 immunostaining (gBRCA2 or gATM) or by methylCIBERSORT (TCGA). CD8 + and FOXP3 + T-cell densities were significantly correlated with each other in gBRCA2 and gATM cases. There was no significant difference between CD8 + or FOXP3 + TIL densities in gBRCA2 or gATM cases compared to controls. In the TCGA cohort, HRD score was associated with predicted CD8 + and FOXP3 + TILs. Associations were also seen for HRD score and TIL density among the germline-mutated cases. In contrast to mismatch repair-deficient primary prostate tumors, cancers from germline BRCA2 or ATM mutation carriers do not appear to be associated with elevated TIL density. However, measures of genomic scarring, such as HRD score, may be associated with increased tumor-infiltrating T-cells.
Collapse
Affiliation(s)
- Harsimar B Kaur
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thiago Vidotto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Adrianna A Mendes
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, CRB2, Room 316, 1550 Orleans Street, Baltimore, MD, 21287, USA.
| |
Collapse
|
5
|
Pantazopoulos H, Diop MK, Grosset AA, Rouleau-Gagné F, Al-Saleh A, Boblea T, Trudel D. Intraductal Carcinoma of the Prostate as a Cause of Prostate Cancer Metastasis: A Molecular Portrait. Cancers (Basel) 2022; 14:820. [PMID: 35159086 PMCID: PMC8834356 DOI: 10.3390/cancers14030820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/01/2023] Open
Abstract
Intraductal carcinoma of the prostate (IDC-P) is one of the most aggressive types of prostate cancer (PCa). IDC-P is identified in approximately 20% of PCa patients and is associated with recurrence, metastasis, and PCa-specific death. The main feature of this histological variant is the colonization of benign glands by PCa cells. Although IDC-P is a well-recognized independent parameter for metastasis, mechanisms by which IDC-P cells can spread and colonize other tissues are not fully known. In this review, we discuss the molecular portraits of IDC-P determined by immunohistochemistry and genomic approaches and highlight the areas in which more research is needed.
Collapse
Affiliation(s)
- Helen Pantazopoulos
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Mame-Kany Diop
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Andrée-Anne Grosset
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Frédérique Rouleau-Gagné
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Afnan Al-Saleh
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Teodora Boblea
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
| | - Dominique Trudel
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), 900 Saint-Denis, Montreal, QC H2X 0A9, Canada; (H.P.); (M.-K.D.); (A.-A.G.); (F.R.-G.); (A.A.-S.); (T.B.)
- Institut du Cancer de Montréal, 900 Saint-Denis, Montreal, QC H2X 0A9, Canada
- Department of Pathology and Cellular Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Department of Pathology, Centre Hospitalier de l’Université de Montréal (CHUM), 1051 Sanguinet, Montreal, QC H2X 0C1, Canada
| |
Collapse
|
6
|
Homologous recombination deficiency (HRD) score in germline BRCA2- versus ATM-altered prostate cancer. Mod Pathol 2021; 34:1185-1193. [PMID: 33462368 PMCID: PMC8154637 DOI: 10.1038/s41379-020-00731-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 01/28/2023]
Abstract
The homologous recombination deficiency (HRD) score integrates three DNA-based measures of genomic instability, and has been understudied in prostate cancer. Given the recent FDA approval of two PARP inhibitors for prostate cancer, HRD score analysis could help to refine treatment selection. We assessed HRD score (defined as the sum of loss-of-heterozygosity, telomeric allelic imbalance, and large-scale state transitions) in three cohorts of primary prostate cancer, including a Johns Hopkins University (JHU) cohort with germline mutations in BRCA2, ATM, or CHEK2 (n = 64), the TCGA cohort (n = 391), and the PROGENE cohort (n = 102). In the JHU cohort, tumors with germline BRCA2 mutations had higher HRD scores (median = 27) than those with germline ATM or CHEK2 mutations (median = 16.5 [p = 0.029] and 9 [p < 0.001], respectively). For TCGA tumors without underlying HR pathway mutations, the median HRD score was 11, significantly lower than ovarian carcinoma lacking BRCA1/2 mutations (median = 28). In the absence of HR gene mutations, the median HRD score was unexpectedly higher among prostate cancers with TP53 mutations versus those without (17 vs. 11; p = 0.015); this finding was confirmed in the PROGENE cohort (24 vs. 16; p = 0.001). Finally, among eight BRCA2-altered patients who received olaparib, progression-free survival trended longer in those with HRD scores above versus below the median (14.9 vs. 9.9 months). We conclude that HRD scores are low in primary prostate cancer and higher in cases with germline BRCA2 or somatic TP53 mutations. Germline BRCA2-altered cases have significantly higher HRD scores than germline ATM-altered or CHEK2-altered cases, consistent with the lower efficacy of PARP inhibitors among the latter.
Collapse
|
7
|
[Molecular pathology of urogenital tumors : Recommendations from the 2019 International Society of Urological Pathology (ISUP) Consensus Conference]. DER PATHOLOGE 2021; 42:310-318. [PMID: 33398501 PMCID: PMC8084837 DOI: 10.1007/s00292-020-00888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/07/2020] [Indexed: 11/21/2022]
Abstract
Das zunehmende Verständnis molekularer Grundlagen von Tumoren sowie der Fortschritt in der Diversifizierung der onkologischen Therapien versprechen individualisierte Therapieoptionen, welche bislang jedoch nur ansatzweise in die Therapieplanung von urologischen Tumoren eingegangen sind. Daher hat die Internationale Gesellschaft für Urologische Pathologie (ISUP) im März 2019 eine Konsenskonferenz zur Erarbeitung evidenzbasierter Handlungsempfehlungen zur molekularpathologischen Diagnostik beim Urothelkarzinom, Nierenzellkarzinom, Prostatakarzinom, Peniskarzinom und testikulären Keimzelltumoren durchgeführt. Die auf dieser Konsenskonferenz erarbeiteten Empfehlungen sind kürzlich in 5 separaten Manuskripten veröffentlich worden und werden in der vorliegenden Arbeit zusammengefasst. Im Rahmen der Konferenzvorbereitung wurde eine umfassende Umfrage zur derzeitigen Praxis molekularer Testungen bei urogenitalen Tumoren unter den Mitgliedern der ISUP durchgeführt. Auf der Konferenz wurden die Ergebnisse und die entsprechenden Hintergrundinformationen durch 5 Arbeitsgruppen präsentiert und Handlungsempfehlungen für die Diagnostik erarbeitet. Eine Übereinstimmung von 66 % der Konferenzteilnehmer wurde als Konsens definiert.
Collapse
|
8
|
Kaur H, Salles DC, Murali S, Hicks JL, Nguyen M, Pritchard CC, De Marzo AM, Lanchbury JS, Trock BJ, Isaacs WB, Timms KM, Antonarakis ES, Lotan TL. Genomic and Clinicopathologic Characterization of ATM-deficient Prostate Cancer. Clin Cancer Res 2020; 26:4869-4881. [PMID: 32694154 PMCID: PMC7501149 DOI: 10.1158/1078-0432.ccr-20-0764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE The ATM (ataxia telangiectasia mutated) gene is mutated in a subset of prostate cancers, and ATM mutation may confer specific therapeutic vulnerabilities, although ATM-deficient prostate cancers have not been well-characterized. EXPERIMENTAL DESIGN We genetically validated a clinical grade IHC assay to detect ATM protein loss and examined the frequency of ATM loss among tumors with pathogenic germline ATM mutations and genetically unselected primary prostate carcinomas using tissue microarrays (TMAs). Immunostaining results were correlated with targeted somatic genomic sequencing and clinical outcomes. RESULTS ATM protein loss was found in 13% (7/52) of primary Gleason pattern 5 cancers with available sequencing data and was 100% sensitive for biallelic ATM inactivation. In a separate cohort with pathogenic germline ATM mutations, 74% (14/19) had ATM protein loss of which 70% (7/10) of evaluable cases had genomic evidence of biallelic inactivation, compared with zero of four of cases with intact ATM expression. By TMA screening, ATM loss was identified in 3% (25/831) of evaluable primary tumors, more commonly in grade group 5 (17/181; 9%) compared with all other grades (8/650; 1%; P < 0.0001). Of those with available sequencing, 80% (4/5) with homogeneous ATM protein loss and 50% (6/12) with heterogeneous ATM protein loss had detectable pathogenic ATM alterations. In surgically treated patients, ATM loss was not significantly associated with clinical outcomes in random-effects Cox models after adjusting for clinicopathologic variables. CONCLUSIONS ATM loss is enriched among high-grade prostate cancers. Optimal evaluation of ATM status requires both genomic and IHC studies and will guide development of molecularly targeted therapies.
Collapse
Affiliation(s)
- Harsimar Kaur
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Bruce J Trock
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
9
|
Telomere lengths differ significantly between small-cell neuroendocrine prostate carcinoma and adenocarcinoma of the prostate. Hum Pathol 2020; 101:70-79. [PMID: 32389660 DOI: 10.1016/j.humpath.2020.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 01/05/2023]
Abstract
Small-cell neuroendocrine carcinoma (SCNC) of the prostate is an aggressive subtype with frequent TP53 mutation and RB1 inactivation; however, the molecular phenotype remains an area of investigation. Here, we compared telomere lengths in prostatic SCNC and usual-type prostatic adenocarcinoma (AdCa). We studied 32 cases of prostatic SCNC (including 11 cases with concurrent AdCa) and 347 cases of usual-type AdCa on tissue microarrays. Telomere lengths in tumor cells were qualitatively compared with those in normal cells using a telomere-specific fluorescence in situ hybridization assay. ERG, PTEN, and TP53 status were assessed in a proportion of cases using genetically validated immunohistochemistry protocols. Clinicopathological and molecular characteristics of cases were compared between the telomere groups using the chi-square test.A significantly higher proportion of prostatic SCNC cases (50%, 16/32) showed normal/long telomeres compared with AdCa cases (11%, 39/347; P < 0.0001). In 82% (9/11) of cases with concurrent SCNC and AdCa, the paired components were concordant for telomere length status. Among AdCa cases, the proportion of cases with normal/long telomeres significantly increased with increasing tumor grade group (P = 0.01) and pathologic stage (P = 0.02). Cases with normal/long telomeres were more likely to be ERG positive (P = 0.04) and to have TP53 missense mutation (P = 0.01) than cases with short telomeres.Normal or long telomere lengths are significantly more common in prostatic SCNC than in AdCa and are similar between concurrent SCNC and AdCa tumors, supporting a common origin. Among AdCa cases, longer telomere lengths are significantly associated with high-risk pathologic and molecular features.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The present article highlights the most common DNA repair gene mutations, using specific examples of individual genes or gene classes, and reviews the epidemiology and treatment implications for each one [with particular emphasis on poly-ADP-ribose polymerase (PARP) inhibition and PD-1 blockade]. RECENT FINDINGS Genetic and genomic testing have an increasingly important role in the oncology clinic. For patients with prostate cancer, germline genetic testing is now recommended for all men with high-risk and metastatic disease, and somatic multigene tumor testing is recommended for men with metastatic castration-resistant disease. The most common mutations that are present in men with advanced prostate cancer are in genes coordinating DNA repair and the DNA damage response. SUMMARY Although much of what is discussed currently remains investigational, it is clear that genomically-targeted treatments will become increasingly important for patients with prostate cancer in the near future and beyond.
Collapse
Affiliation(s)
- Catherine H Marshall
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|