1
|
Sears TJ, Pagadala MS, Castro A, Lee KH, Kong J, Tanaka K, Lippman SM, Zanetti M, Carter H. Integrated Germline and Somatic Features Reveal Divergent Immune Pathways Driving Response to Immune Checkpoint Blockade. Cancer Immunol Res 2024; 12:1780-1795. [PMID: 39255339 PMCID: PMC11612627 DOI: 10.1158/2326-6066.cir-24-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment; however, the mechanisms determining patient response remain poorly understood. Here, we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher infiltration of T-follicular helper cells had responses even in the presence of defects in the MHC class-I (MHC-I). Further investigation uncovered different ICB responses in tumors when responses were reliant on MHC-I versus MHC-II neoantigens. Despite similar response rates, MHC II-reliant responses were associated with significantly longer durable clinical benefits (discovery: median overall survival of 63.6 vs. 34.5 months; P = 0.0074; validation: median overall survival of 37.5 vs. 33.1 months; P = 0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC II-reliant but not MHC I-reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.
Collapse
Affiliation(s)
- Timothy J. Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
| | - Meghana S. Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, California
| | - Andrea Castro
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, United Kingdom
| | - Ko-han Lee
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
| | - JungHo Kong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, California
| | - Kairi Tanaka
- School of Biological Sciences, University of California San Diego, La Jolla, California
| | - Scott M. Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, California
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, California
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, California
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, California
- Moores Cancer Center, University of California San Diego, La Jolla, California
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
2
|
Skoulidis F, Araujo HA, Do MT, Qian Y, Sun X, Cobo AG, Le JT, Montesion M, Palmer R, Jahchan N, Juan JM, Min C, Yu Y, Pan X, Arbour KC, Vokes N, Schmidt ST, Molkentine D, Owen DH, Memmott R, Patil PD, Marmarelis ME, Awad MM, Murray JC, Hellyer JA, Gainor JF, Dimou A, Bestvina CM, Shu CA, Riess JW, Blakely CM, Pecot CV, Mezquita L, Tabbó F, Scheffler M, Digumarthy S, Mooradian MJ, Sacher AG, Lau SCM, Saltos AN, Rotow J, Johnson RP, Liu C, Stewart T, Goldberg SB, Killam J, Walther Z, Schalper K, Davies KD, Woodcock MG, Anagnostou V, Marrone KA, Forde PM, Ricciuti B, Venkatraman D, Van Allen EM, Cummings AL, Goldman JW, Shaish H, Kier M, Katz S, Aggarwal C, Ni Y, Azok JT, Segal J, Ritterhouse L, Neal JW, Lacroix L, Elamin YY, Negrao MV, Le X, Lam VK, Lewis WE, Kemp HN, Carter B, Roth JA, Swisher S, Lee R, Zhou T, Poteete A, Kong Y, Takehara T, Paula AG, Parra Cuentas ER, Behrens C, Wistuba II, Zhang J, Blumenschein GR, Gay C, Byers LA, Gibbons DL, Tsao A, Lee JJ, Bivona TG, Camidge DR, Gray JE, Lieghl N, Levy B, Brahmer JR, Garassino MC, Gandara DR, Garon EB, Rizvi NA, Scagliotti GV, Wolf J, Planchard D, Besse B, Herbst RS, Wakelee HA, Pennell NA, Shaw AT, Jänne PA, Carbone DP, Hellmann MD, Rudin CM, Albacker L, Mann H, Zhu Z, Lai Z, Stewart R, Peters S, Johnson ML, Wong KK, Huang A, Winslow MM, Rosen MJ, Winters IP, Papadimitrakopoulou VA, Cascone T, Jewsbury P, Heymach JV. CTLA4 blockade abrogates KEAP1/STK11-related resistance to PD-(L)1 inhibitors. Nature 2024; 635:462-471. [PMID: 39385035 PMCID: PMC11560846 DOI: 10.1038/s41586-024-07943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 08/13/2024] [Indexed: 10/11/2024]
Abstract
For patients with advanced non-small-cell lung cancer (NSCLC), dual immune checkpoint blockade (ICB) with CTLA4 inhibitors and PD-1 or PD-L1 inhibitors (hereafter, PD-(L)1 inhibitors) is associated with higher rates of anti-tumour activity and immune-related toxicities, when compared with treatment with PD-(L)1 inhibitors alone. However, there are currently no validated biomarkers to identify which patients will benefit from dual ICB1,2. Here we show that patients with NSCLC who have mutations in the STK11 and/or KEAP1 tumour suppressor genes derived clinical benefit from dual ICB with the PD-L1 inhibitor durvalumab and the CTLA4 inhibitor tremelimumab, but not from durvalumab alone, when added to chemotherapy in the randomized phase III POSEIDON trial3. Unbiased genetic screens identified loss of both of these tumour suppressor genes as independent drivers of resistance to PD-(L)1 inhibition, and showed that loss of Keap1 was the strongest genomic predictor of dual ICB efficacy-a finding that was confirmed in several mouse models of Kras-driven NSCLC. In both mouse models and patients, KEAP1 and STK11 alterations were associated with an adverse tumour microenvironment, which was characterized by a preponderance of suppressive myeloid cells and the depletion of CD8+ cytotoxic T cells, but relative sparing of CD4+ effector subsets. Dual ICB potently engaged CD4+ effector cells and reprogrammed the tumour myeloid cell compartment towards inducible nitric oxide synthase (iNOS)-expressing tumoricidal phenotypes that-together with CD4+ and CD8+ T cells-contributed to anti-tumour efficacy. These data support the use of chemo-immunotherapy with dual ICB to mitigate resistance to PD-(L)1 inhibition in patients with NSCLC who have STK11 and/or KEAP1 alterations.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Male
- Mice
- AMP-Activated Protein Kinase Kinases/genetics
- AMP-Activated Protein Kinase Kinases/metabolism
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Clinical Trials, Phase III as Topic
- CTLA-4 Antigen/antagonists & inhibitors
- CTLA-4 Antigen/metabolism
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Kelch-Like ECH-Associated Protein 1/genetics
- Kelch-Like ECH-Associated Protein 1/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Mutation
- Nitric Oxide Synthase Type II/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Genes, Tumor Suppressor
Collapse
Affiliation(s)
- Ferdinandos Skoulidis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Haniel A Araujo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minh Truong Do
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Qian
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Sun
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Galan Cobo
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John T Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, MA, USA
| | | | - Kathryn C Arbour
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natalie Vokes
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephanie T Schmidt
- Department of Genomic Medicine and the Institute for Data Science in Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Molkentine
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dwight H Owen
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Regan Memmott
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | - Pradnya D Patil
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Melina E Marmarelis
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph C Murray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | - Jonathan W Riess
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | | | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Laura Mezquita
- Department of Medical Oncology, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | - Matthias Scheffler
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | - Subba Digumarthy
- Department of Radiology, Massachussetts General Hospital, Boston, MA, USA
| | | | | | - Sally C M Lau
- Department of Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | - Andreas N Saltos
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Julia Rotow
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rocio Perez Johnson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Corinne Liu
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tyler Stewart
- Division of Hematology-Oncology, University of California San Diego, La Jolla, CA, USA
| | | | | | - Zenta Walther
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurt Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kurtis D Davies
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Mark G Woodcock
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Valsamo Anagnostou
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen A Marrone
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Patrick M Forde
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Deepti Venkatraman
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Eliezer M Van Allen
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy L Cummings
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Jonathan W Goldman
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | - Melanie Kier
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharyn Katz
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Charu Aggarwal
- Division of Hematology and Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Ni
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joseph T Azok
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeremy Segal
- Department of Pathology, University of Chicago, Chicago, USA
| | | | - Joel W Neal
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Yasir Y Elamin
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent K Lam
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Whitney E Lewis
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haley N Kemp
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brett Carter
- Department of Thoracic Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Stephen Swisher
- Department of Thoracic and Cardiovascular Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Richard Lee
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Teng Zhou
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alissa Poteete
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yifan Kong
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomohiro Takehara
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alvaro Guimaraes Paula
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra Cuentas
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carmen Behrens
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George R Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carl Gay
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lauren A Byers
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Don L Gibbons
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Tsao
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Jack Lee
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Trever G Bivona
- University of California San Francisco, San Francisco, CA, USA
| | | | - Jhannelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Natasha Lieghl
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Benjamin Levy
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julie R Brahmer
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - David R Gandara
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Edward B Garon
- David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | | | | | - Jürgen Wolf
- Department of Internal Medicine, Center for Integrated Oncology, University Hospital Cologne, Cologne, Germany
| | | | | | | | | | | | - Alice T Shaw
- Novartis Institute for Biomedical Research, Cambridge, MA, USA
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David P Carbone
- Division of Medical Oncology, Ohio State University-James Comprehensive Cancer Center, Columbus, OH, USA
| | | | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | - Solange Peters
- Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | - Melissa L Johnson
- Sarah Cannon Research Institute, Tennessee Oncology, Nashville, TN, USA
| | - Kwok K Wong
- Division of Hematology & Medical Oncology, NYU Langone Perlmutter Cancer Center, New York, NY, USA
| | | | - Monte M Winslow
- D2G Oncology, Mountain View, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | | | | | - Tina Cascone
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - John V Heymach
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
3
|
Zhao Y, Li X, Zhou C, Peng H, Zheng Z, Chen J, Ding W. A review of cancer data fusion methods based on deep learning. INFORMATION FUSION 2024; 108:102361. [DOI: 10.1016/j.inffus.2024.102361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
4
|
Rajagopal D, MacLeod E, Corogeanu D, Vessillier S. Immune-related adverse events of antibody-based biological medicines in cancer therapy. J Cell Mol Med 2024; 28:e18470. [PMID: 38963257 PMCID: PMC11223167 DOI: 10.1111/jcmm.18470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
Recombinant antibodies (Abs) are an integral modality for the treatment of multiple tumour malignancies. Since the Food and Drug Administration (FDA) approval of rituximab as the first monoclonal antibody (mAb) for cancer treatment, several mAbs and antibody (Ab)-based therapies have been approved for the treatment of solid tumour malignancies and other cancers. These Abs function by either blocking oncogenic pathways or angiogenesis, modulating immune response, or by delivering a conjugated drug. The use of Ab-based therapy in cancer patients who could benefit from the treatment, however, is still limited by associated toxicity profiles which may stem from biological features and processes related to target binding, alongside biochemical and/or biophysical characteristics of the therapeutic Ab. A significant immune-related adverse event (irAE) associated with Ab-based therapies is cytokine release syndrome (CRS), characterized by the development of fever, rash and even marked, life-threatening hypotension, and acute inflammation with secondary to systemic uncontrolled increase in a range of pro-inflammatory cytokines. Here, we review irAEs associated with specific classes of approved, Ab-based novel cancer immunotherapeutics, namely immune checkpoint (IC)-targeting Abs, bispecific Abs (BsAbs) and Ab-drug-conjugates (ADCs), highlighting the significance of harmonization in preclinical assay development for safety assessment of Ab-based biotherapeutics as an approach to support and refine clinical translation.
Collapse
Affiliation(s)
- Deepa Rajagopal
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| | - Elliot MacLeod
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
Gilead Sciences, Winchester HouseOxfordUK
| | - Diana Corogeanu
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
- Present address:
East Sussex Healthcare NHS Trust, Conquest HospitalEast SussexUK
| | - Sandrine Vessillier
- Immunotherapy, Biotherapeutics and Advanced Therapies Division, Science, Research, and Innovation Group, Medicines and Healthcare products Regulatory Agency (MHRA)HertfordshireUK
| |
Collapse
|
5
|
Hernando-Calvo A, Rossi A, Vieito M, Voest E, Garralda E. Agnostic drug development revisited. Cancer Treat Rev 2024; 128:102747. [PMID: 38763053 DOI: 10.1016/j.ctrv.2024.102747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/20/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
The advent of molecular profiling and the generalization of next generation sequencing in oncology has enabled the identification of patients who could benefit from targeted agents. Since the tumor-agnostic approval of pembrolizumab for patients with MSI-High tumors in 2017, different molecularly-guided therapeutics have been awarded approvals and progressively incorporated in the treatment landscape across multiple tumor types. As the number of tumor-agnostic targets considered druggable expands in the clinic, novel challenges will reshape the drug development field involving all the stakeholders in oncology. In this review, we provide an overview of current tumor-agnostic approvals and discuss promising candidate therapeutics for tumor-agnostic designation and challenges for their broad implementation.
Collapse
Affiliation(s)
- Alberto Hernando-Calvo
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Alice Rossi
- Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Maria Vieito
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain
| | - Emile Voest
- Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, Amsterdam, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Elena Garralda
- Department of Medical Oncology, Vall d́Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d́Hebron Institute of Oncology, Barcelona, Spain.
| |
Collapse
|
6
|
Sears T, Pagadala M, Castro A, Lee KH, Kong J, Tanaka K, Lippman S, Zanetti M, Carter H. Integrated germline and somatic features reveal divergent immune pathways driving ICB response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575430. [PMID: 38293085 PMCID: PMC10827124 DOI: 10.1101/2024.01.12.575430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Immune Checkpoint Blockade (ICB) has revolutionized cancer treatment, however mechanisms determining patient response remain poorly understood. Here we used machine learning to predict ICB response from germline and somatic biomarkers and interpreted the learned model to uncover putative mechanisms driving superior outcomes. Patients with higher T follicular helper infiltrates were robust to defects in the class-I Major Histocompatibility Complex (MHC-I). Further investigation uncovered different ICB responses in MHC-I versus MHC-II neoantigen reliant tumors across patients. Despite similar response rates, MHC-II reliant responses were associated with significantly longer durable clinical benefit (Discovery: Median OS=63.6 vs. 34.5 months P=0.0074; Validation: Median OS=37.5 vs. 33.1 months, P=0.040). Characteristics of the tumor immune microenvironment reflected MHC neoantigen reliance, and analysis of immune checkpoints revealed LAG3 as a potential target in MHC-II but not MHC-I reliant responses. This study highlights the value of interpretable machine learning models in elucidating the biological basis of therapy responses.
Collapse
Affiliation(s)
- Timothy Sears
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
| | - Meghana Pagadala
- Biomedical Sciences Program, University of California San Diego, La Jolla, CA,, USA
| | - Andrea Castro
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Ko-han Lee
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
| | - JungHo Kong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Kairi Tanaka
- School of Biological Sciences, University of California San Diego, La Jolla, CA USA
| | - Scott Lippman
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
| | - Maurizio Zanetti
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, CA USA
| | - Hannah Carter
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA USA
- The Laboratory of Immunology, Moores Cancer Center and Department of Medicine, University of California San Diego, La Jolla, CA USA
| |
Collapse
|
7
|
Fedele D, Moroso S, Turoldo A, Bazzocchi G, Conforti C, Zalaudek I, Guglielmi A. A Dramatic Response to Second-Line Nivolumab and Ipilimumab in BRAF-V600-Mutated Metastatic Melanoma. Case Rep Oncol 2024; 17:161-168. [PMID: 38288458 PMCID: PMC10824524 DOI: 10.1159/000535902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/13/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction Current treatment options for BRAF V600-mutated unresectable stage III/IV melanoma include anti-PD-1 monotherapy or combination with anti-CTLA-4 or anti-LAG-3 agents, BRAF/MEK inhibitors, and clinical trials. The strategy of combination immunotherapy with nivolumab and ipilimumab has shown promising results, achieving higher response rates, longer duration of response, improved progression-free survival, and enhanced overall survival. The optimal sequence of treatments remains a topic of interest, with preliminary data suggesting a greater effectiveness of immunotherapy as the first-line approach. Preclinical trials have indicated that the efficacy of this sequence may be due to the modification of the immune environment by BRAF kinase inhibitors, leading to immune escape by tumor cells and resistance to immune checkpoint inhibitors. Case Presentation We present a case of a 72-year-old woman with high-burden metastatic melanoma who failed to respond to prior targeted therapy with BRAF/MEK inhibitors and exhibited a successful response to the second-line treatment with ipilimumab and nivolumab. We discuss the potential reasons for this positive outcome contributing to the current debate concerning treatment sequences, resistance mechanisms, and biomarkers predictive of response to immune checkpoint inhibitors in metastatic melanoma. Conclusion We believe that in few years the therapeutic algorithms in BRAF V600-mutated unresectable stage III/IV melanoma will be more complex since they will define clearly the correct therapeutic sequences with the inclusion of new immune checkpoint inhibitor drugs and multiple predictive biomarkers of response to better select patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Dahlia Fedele
- Department of Medical Oncology, ASUGI, Maggiore Hospital, Trieste, Italy
| | - Stefano Moroso
- Department of Medical Oncology, ASUGI, Maggiore Hospital, Trieste, Italy
| | - Angelo Turoldo
- University Department of Clinical Surgery, ASUGI, Cattinara Hospital, Trieste, Italy
| | - Gabriele Bazzocchi
- Department of Diagnostic Imaging, ASUGI, Maggiore Hospital, Trieste, Italy
| | | | - Iris Zalaudek
- University Department of Clinical Dermatology, ASUGI, Maggiore Hospital, Trieste, Italy
| | | |
Collapse
|
8
|
Ahmed J, Das B, Shin S, Chen A. Challenges and Future Directions in the Management of Tumor Mutational Burden-High (TMB-H) Advanced Solid Malignancies. Cancers (Basel) 2023; 15:5841. [PMID: 38136385 PMCID: PMC10741991 DOI: 10.3390/cancers15245841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
A standardized assessment of Tumor Mutational Burden (TMB) poses challenges across diverse tumor histologies, treatment modalities, and testing platforms, requiring careful consideration to ensure consistency and reproducibility. Despite clinical trials demonstrating favorable responses to immune checkpoint inhibitors (ICIs), not all patients with elevated TMB exhibit benefits, and certain tumors with a normal TMB may respond to ICIs. Therefore, a comprehensive understanding of the intricate interplay between TMB and the tumor microenvironment, as well as genomic features, is crucial to refine its predictive value. Bioinformatics advancements hold potential to improve the precision and cost-effectiveness of TMB assessments, addressing existing challenges. Similarly, integrating TMB with other biomarkers and employing comprehensive, multiomics approaches could further enhance its predictive value. Ongoing collaborative endeavors in research, standardization, and clinical validation are pivotal in harnessing the full potential of TMB as a biomarker in the clinic settings.
Collapse
Affiliation(s)
- Jibran Ahmed
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Biswajit Das
- Molecular Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sarah Shin
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Alice Chen
- Developmental Therapeutics Clinic (DTC), National Cancer Institute (NCI), National Institute of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Monjazeb AM, Daly ME, Luxardi G, Maverakis E, Merleev AA, Marusina AI, Borowsky A, Mirhadi A, Shiao SL, Beckett L, Chen S, Eastham D, Li T, Vick LV, McGee HM, Lara F, Garcia L, Morris LA, Canter RJ, Riess JW, Schalper KA, Murphy WJ, Kelly K. Atezolizumab plus stereotactic ablative radiotherapy for medically inoperable patients with early-stage non-small cell lung cancer: a multi-institutional phase I trial. Nat Commun 2023; 14:5332. [PMID: 37658083 PMCID: PMC10474145 DOI: 10.1038/s41467-023-40813-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/11/2023] [Indexed: 09/03/2023] Open
Abstract
Stereotactic ablative radiotherapy (SABR) is a standard-of-care for medically-inoperable-early-stage non-small cell lung cancer (NSCLC). One third of patients progress and chemotherapy is rarely used in this population. We questioned if addition of the immune-checkpoint-inhibitor (ICI) atezolizumab to standard-of-care SABR can improve outcomes. We initiated a multi-institutional single-arm phase I study (NCT02599454) enrolling twenty patients with the primary endpoint of maximum tolerated dose (MTD); secondary endpoints of safety and efficacy; and exploratory mechanistic correlatives. Treatment is well tolerated and full dose atezolizumab (1200 mg) is the MTD. Efficacy signals include early responses (after 2 cycles of ICI, before initiation of SABR) in 17% of patients. Biomarkers of functional adaptive immunity, including T cell activation in the tumor and response to ex-vivo stimulation by circulating T cells, are highly predictive of benefit. These results require validation and are being tested in a phase III randomized trial.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amin Mirhadi
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | | | - Shuai Chen
- UC Davis Health, Sacramento, CA, 95817, USA
| | - David Eastham
- David Grant USAF Medical Center, Travis AFB, Fairfield, CA, 93405, USA
| | | | | | | | | | | | | | | | | | | | | | - Karen Kelly
- UC Davis Health, Sacramento, CA, 95817, USA
- International Association for the Study of Lung Cancer, Denver, CO, 80202, USA
| |
Collapse
|
10
|
Alessi JV, Ricciuti B, Wang X, Pecci F, Di Federico A, Lamberti G, Elkrief A, Rodig SJ, Lebow ES, Eicholz JE, Thor M, Rimner A, Schoenfeld AJ, Chaft JE, Johnson BE, Gomez DR, Awad MM, Shaverdian N. Impact of TMB/PD-L1 expression and pneumonitis on chemoradiation and durvalumab response in stage III NSCLC. Nat Commun 2023; 14:4238. [PMID: 37454214 PMCID: PMC10349822 DOI: 10.1038/s41467-023-39874-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Although concurrent chemoradiation (CRT) and durvalumab consolidation has become a standard treatment for stage III non-small cell lung cancer (NSCLC), clinicopathologic and genomic factors associated with its efficacy remain poorly characterized. Here, in a multi-institutional retrospective cohort study of 328 patients treated with CRT and durvalumab, we identify that very high PD-L1 tumor proportion score (TPS) expression ( ≥ 90%) and increased tumor mutational burden (TMB) are independently associated with prolonged disease control. Additionally, we identify the impact of pneumonitis and its timing on disease outcomes among patients who discontinue durvalumab: compared to patients who experienced early-onset pneumonitis ( < 3 months) leading to durvalumab discontinuation, patients with late-onset pneumonitis had a significantly longer PFS (12.7 months vs not reached; HR 0.24 [95% CI, 0.10 to 0.58]; P = 0.001) and overall survival (37.2 months vs not reached; HR 0.26 [95% CI, 0.09 to 0.79]; P = 0.017). These findings suggest that opportunities exist to improve outcomes in patients with lower PD-L1 and TMB levels, and those at highest risk for pneumonitis.
Collapse
Affiliation(s)
- Joao V Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Arielle Elkrief
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, few York, NY, USA
| | - Scott J Rodig
- ImmunoProfile, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Emily S Lebow
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jordan E Eicholz
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Thor
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adam J Schoenfeld
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jamie E Chaft
- Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bruce E Johnson
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
11
|
Elkrief A, Alessi JMV, Ricciuti B, Brown S, Rizvi H, Preeshagul IR, Wang X, Pecci F, Di Federico A, Lamberti G, Egger JV, Chaft JE, Rudin CM, Riely GJ, Kris MG, Ladanyi M, Chen Y, Hellmann MD, Shen R, Awad MM, Schoenfeld AJ. Efficacy of PD-(L)1 blockade monotherapy compared with PD-(L)1 blockade plus chemotherapy in first-line PD-L1-positive advanced lung adenocarcinomas: a cohort study. J Immunother Cancer 2023; 11:e006994. [PMID: 37487667 PMCID: PMC10373730 DOI: 10.1136/jitc-2023-006994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Single-agent PD-(L)1 blockade (IO) alone or in combination with chemotherapy (Chemotherapy-IO) is approved first-line therapies in patients with advanced lung adenocarcinomas (LUADs) with PD-L1 expression ≥1%. These regimens have not been compared prospectively. The primary objective was to compare first-line efficacies of single-agent IO to Chemotherapy-IO in patients with advanced LUADs. Secondary objectives were to explore if clinical, pathological, and genomic features were associated with differential response to Chemotherapy-IO versus IO. METHODS This was a multicenter retrospective cohort study. Inclusion criteria were patients with advanced LUADs with tumor PD-L1 ≥1% treated with first-line Chemotherapy-IO or IO. To compare the first-line efficacies of single-agent IO to Chemotherapy-IO, we conducted inverse probability weighted Cox proportional hazards models using estimated propensity scores. RESULTS The cohort analyzed included 866 patients. Relative to IO, Chemotherapy-IO was associated with improved objective response rate (ORR) (44% vs 35%, p=0.007) and progression-free survival (PFS) in patients with tumor PD-L1≥1% (HR 0.84, 95% CI 0.72 to 0.97, p=0.021) or PD-L1≥50% (ORR 55% vs 38%, p<0.001; PFS HR 0.68, 95% CI 0.53 to 0.87, p=0.002). Using propensity-adjusted analyses, only never-smokers in the PD-L1≥50% subgroup derived a differential survival benefit from Chemotherapy-IO vs IO (p=0.013). Among patients with very high tumor PD-L1 expression (≥90%), there were no differences in outcome between treatment groups. No genomic factors conferred differential survival benefit to Chemotherapy-IO versus IO. CONCLUSIONS While the addition of chemotherapy to PD-(L)1 blockade increases the probability of initial response, never-smokers with tumor PD-L1≥50% comprise the only population identified that derived an apparent survival benefit with treatment intensification.
Collapse
Affiliation(s)
- Arielle Elkrief
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joao M Victor Alessi
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Samantha Brown
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Hira Rizvi
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Isabel R Preeshagul
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xinan Wang
- Environmental Health, Harvard University, Boston, Massachusetts, USA
| | - Federica Pecci
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Alessandro Di Federico
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jacklynn V Egger
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jamie E Chaft
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Gregory J Riely
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Mark G Kris
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Marc Ladanyi
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuan Chen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Matthew D Hellmann
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| | - Ronglai Shen
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Adam J Schoenfeld
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Weill Cornell Medical College, New York, New York, USA
| |
Collapse
|
12
|
Stinchcombe TE. Narrative review: blood and tumor biomarker testing in non-small cell lung cancer without an oncogenic driver. Transl Lung Cancer Res 2023; 12:158-167. [PMID: 36762068 PMCID: PMC9903081 DOI: 10.21037/tlcr-22-530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023]
Abstract
Background and Objective For patients with metastatic non-small cell lung cancer (NSCLC) without an oncogenic driver, systemic therapy with immune checkpoint inhibitors (ICIs) alone or in combination with chemotherapy have significantly improved the outcomes. However, the majority of patients do not have a durable response, and there is a need for additional predictive biomarkers. The objective of this narrative review is to describe potential biomarkers for immunotherapy. Methods Narrative overview of the literature synthesizing the findings of literature reporting retrospective, prospective, and subset analyses of studies investigating potential predictive biomarkers for ICI. Key Content and Findings Tumor expression of programmed death ligand-1 (PD-L1) is the only clinically available biomarker for patients receiving ICI-based therapy. However, PD-L1 has significant limitations and studies have investigated the predictive value of higher PD-L1 expression levels. There has been interest in tumor mutation burden (TMB) based on the premise that a higher TMB would be associated with a more neoantigens, which would increase the likelihood of an immune response. The studies to date have not revealed a consistent association with TMB level and survival benefit. Kelch-like ECH Associated Protein 1 (KEAP1) and serine/threonine kinase 11 (STK11) mutations have been associated with worse outcomes with ICI but these mutations appear to be associated with a worse prognosis, and not predictive for ICI. Tumor infiltrating lymphocytes (TIL's) are the mechanism of immune response, and there is interest in further investigating the presence, type and distribution of TIL's to predict immune benefit. Circulating tumor deoxyribonucleic acid (ctDNA) levels, at baseline and on treatment samples, are being investigated to assess response to therapy and long-term benefit of ICI. Conclusions None of the current biomarkers in development are validated for use in routine clinical care. Given the complexity of NSCLC biology and immune response to ICI most likely a composite biomarker using multiple biomarkers will need to be develop.
Collapse
|
13
|
Multiparametric immune profiling of advanced cervical cancer to predict response to programmed death-1 inhibitor combination therapy: an exploratory study of the CLAP trial. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:256-268. [PMID: 36115931 DOI: 10.1007/s12094-022-02945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023]
Abstract
PURPOSE Checkpoint immunotherapy is a promising treatment option for advanced cervical cancer. To aid in selecting patients for this treatment, we identified potential predictors of the response to anti-PD-1 combination therapy. METHODS We simultaneously characterized CD8+, FoxP3+, PD-L1+, CD68+, CD31+, PANCK+, and PANCK-PD-L1+ cells at the invasive margin (IM) of tumor by multispectral imaging of tissue sections from 37 patients with advanced cervical cancer in our previous trial cohort. The densities of each cell and cell-to-cell topography were compared between the responder and non-responder groups and evaluated for their predictive value in clinical response and survival. RESULTS CD8+ T cells, PD-L1+ cells, and PANCK-PD-L1+ immune cells showed higher densities at the IM in the responders than in the non-responders (P = 0.022, 0.0094, and 0.049, respectively). A higher density of CD8+ T cells at the IM was related to prolonged progression-free survival (PFS; P = 0.031). A higher ratio of CD68+/CD8+ cells was found in the non-responder group (P = 0.003) and related to poor PFS (P = 0.016). A higher density of PANCK-PD-L1+ immune cells within 20, 30, and 45 µm of PANCK+ tumor cells was correlated with better clinical response (P = 0.017, 0.017, and 0.02, respectively). CONCLUSIONS Multiparametric immune profiling of CD8+ T cells, PD-L1+ cells, CD68+ macrophages and PANCK-PD-L1+ immune cells at the invasive margin may help identify patients with cervical cancer who may benefit from anti-PD-1 combination therapy. CLINICAL TRIAL REGISTRATION ClinicalTrials. gov identifier: NCT03816553, January 25, 2019.
Collapse
|
14
|
Laktionov KK, Artamonova EV, Borisova TN, Breder VV, Bychkov IM, Vladimirova LI, Volkov NM, Ergnian SM, Zhabina AS, Kononets PV, Kuzminov AE, Levchenko EV, Malikhova OA, Marinov DT, Miller SV, Moiseenko FV, Mochal’nikova VV, Novikov SN, Pikin OV, Reutova EV, Rodionov EO, Sakaeva DD, Sarantseva KA, Semenova AI, Smolin AV, Sotnikov VM, Tuzikov SA, Turkin IN, Tyurin IE, Chkhikvadze VD, Kolbanov KI, Chernykh MV, Chernichenko AV, Fedenko AA, Filonenko EV, Nevol’skikh AA, Ivanov SA, Khailova ZV, Gevorkian TG, Butenko AV, Gil’mutdinova IR, Gridneva IV, Eremushkin MA, Zernova MA, Kasparov BS, Kovlen DV, Kondrat’eva KO, Konchugova TV, Korotkova SB, Krutov AA, Obukhova OA, Ponomarenko GN, Semiglazova TI, Stepanova AM, Khulamkhanova MM. Malignant neoplasm of the bronchi and lung: Russian clinical guidelines. JOURNAL OF MODERN ONCOLOGY 2022. [DOI: 10.26442/18151434.2022.3.201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
удалить
Collapse
|
15
|
Ricciuti B, Wang X, Alessi JV, Rizvi H, Mahadevan NR, Li YY, Polio A, Lindsay J, Umeton R, Sinha R, Vokes NI, Recondo G, Lamberti G, Lawrence M, Vaz VR, Leonardi GC, Plodkowski AJ, Gupta H, Cherniack AD, Tolstorukov MY, Sharma B, Felt KD, Gainor JF, Ravi A, Getz G, Schalper KA, Henick B, Forde P, Anagnostou V, Jänne PA, Van Allen EM, Nishino M, Sholl LM, Christiani DC, Lin X, Rodig SJ, Hellmann MD, Awad MM. Association of High Tumor Mutation Burden in Non-Small Cell Lung Cancers With Increased Immune Infiltration and Improved Clinical Outcomes of PD-L1 Blockade Across PD-L1 Expression Levels. JAMA Oncol 2022; 8:1160-1168. [PMID: 35708671 PMCID: PMC9204620 DOI: 10.1001/jamaoncol.2022.1981] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 04/03/2022] [Indexed: 01/16/2023]
Abstract
Importance Although tumor mutation burden (TMB) has been explored as a potential biomarker of immunotherapy efficacy in solid tumors, there still is a lack of consensus about the optimal TMB threshold that best discriminates improved outcomes of immune checkpoint inhibitor therapy among patients with non-small cell lung cancer (NSCLC). Objectives To determine the association between increasing TMB levels and immunotherapy efficacy across clinically relevant programmed death ligand-1 (PD-L1) levels in patients with NSCLC. Design, Setting, and Participants This multicenter cohort study included patients with advanced NSCLC treated with immunotherapy who received programmed cell death-1 (PD-1) or PD-L1 inhibition in the Dana-Farber Cancer Institute (DFCI), Memorial Sloan Kettering Cancer Center (MSKCC), and in the Stand Up To Cancer (SU2C)/Mark Foundation data sets. Clinicopathological and genomic data were collected from patients between September 2013 and September 2020. Data analysis was performed from November 2021 to February 2022. Exposures Treatment with PD-1/PD-L1 inhibition without chemotherapy. Main Outcomes and Measures Association of TMB levels with objective response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results In the entire cohort of 1552 patients with advanced NSCLC who received PD-1/PD-L1 blockade, the median (range) age was 66 (22-92) years, 830 (53.5%) were women, and 1347 (86.8%) had cancer with nonsquamous histologic profile. A regression tree modeling ORR as a function of TMB identified 2 TMB groupings in the discovery cohort (MSKCC), defined as low TMB (≤19.0 mutations per megabase) and high TMB (>19.0 mutations per megabase), which were associated with increasing improvements in ORR, PFS, and OS in the discovery cohort and in 2 independent cohorts (DFCI and SU2C/Mark Foundation). These TMB levels also were associated with significant improvements in outcomes of immunotherapy in each PD-L1 tumor proportion score subgroup of less than 1%, 1% to 49%, and 50% or higher. The ORR to PD-1/PD-L1 inhibition was as high as 57% in patients with high TMB and PD-L1 expression 50% or higher and as low as 8.7% in patients with low TMB and PD-L1 expression less than 1%. Multiplexed immunofluorescence and transcriptomic profiling revealed that high TMB levels were associated with increased CD8-positive, PD-L1-positive T-cell infiltration, increased PD-L1 expression on tumor and immune cells, and upregulation of innate and adaptive immune response signatures. Conclusions and Relevance These findings suggest that increasing TMB levels are associated with immune cell infiltration and an inflammatory T-cell-mediated response, resulting in increased sensitivity to PD-1/PD-L1 blockade in NSCLC across PD-L1 expression subgroups.
Collapse
Affiliation(s)
- Biagio Ricciuti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Xinan Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Joao V. Alessi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hira Rizvi
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Navin R. Mahadevan
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Yvonne Y. Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew Polio
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - James Lindsay
- Knowledge Systems Group, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Renato Umeton
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rileen Sinha
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giuseppe Lamberti
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marissa Lawrence
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Victor R. Vaz
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Giulia C. Leonardi
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Andrew J. Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hersh Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Andrew D. Cherniack
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael Y. Tolstorukov
- Department of Informatics and Analytics, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Bijaya Sharma
- ImmunoProfile, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kristen D. Felt
- ImmunoProfile, Brigham and Women’s Hospital and Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Justin F. Gainor
- Department of Medicine, Massachusetts General Hospital Cancer Center, Boston
| | - Arvind Ravi
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kurt A. Schalper
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Brian Henick
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Patrick Forde
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valsamo Anagnostou
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pasi A. Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eliezer M. Van Allen
- Center for Cancer Precision Medicine, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mizuki Nishino
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - David C. Christiani
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Scott J. Rodig
- Center for Immuno-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Matthew D. Hellmann
- Department of Medicine, Weill Cornell Medical College, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Mark M. Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Frost N, Reck M. [Immunotherapy for non-small cell lung cancer (NSCLC)]. INNERE MEDIZIN (HEIDELBERG, GERMANY) 2022; 63:709-716. [PMID: 35925267 DOI: 10.1007/s00108-022-01363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Within a few years the introduction of immune checkpoint inhibitors (ICI) fundamentally changed the treatment landscape of patients with metastatic non-small cell lung cancer (NSCLC) and improved survival for a relevant proportion of patients. Immune monotherapies are highly efficient in cancers showing a PD-L1 overexpression ≥ 50% of tumor cells, all others with a lower level and independent from the PD-L1 expression can be treated with various treatment combinations. In a curative setting all PD-L1 positive patients (≥ 1%) who underwent chemoradiotherapy to reduce disease relapse and subsequently to improve survival should undergo an ICI maintenance treatment. Furthermore, positive results from phase III studies are also available for adjuvant treatment of patients with resectable NSCLC, whereby an EMA approval is currently pending. The treatment with ICIs has given rise to a new class of immune-mediated adverse side effects, which occur in approximately one third of the patients and range from easily substituted endocrinopathies to life-threatening organ toxicity. An anticipatory monitoring as well as interdisciplinary treatment are therefore the keys to avoiding progression of higher grade potentially fatal toxicities.
Collapse
Affiliation(s)
- Nikolaj Frost
- Medizinische Klinik mit Schwerpunkt Infektiologie und Pneumologie, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Deutschland.
| | - Martin Reck
- Onkologischer Schwerpunkt, Airway Research Center North, Deutschen Zentrum für Lungenforschung, LungenClinic Großhansdorf, Großhansdorf, Deutschland
| |
Collapse
|
17
|
Zhu H, Zhao H, Wang J, Zhao S, Ma C, Wang D, Gao H, Yang F, Ni Q, Li H, Zhou X, Zhang C, Lu J. Potential prognosis index for m 6A-related mRNA in cholangiocarcinoma. BMC Cancer 2022; 22:620. [PMID: 35672673 PMCID: PMC9170563 DOI: 10.1186/s12885-022-09665-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cholangiocarcinoma (CHOL) is a malignant tumor that originates in the extrahepatic bile duct and can extend from the hilar region to the lower end of the common bile duct. The prognosis of CHOL patients is particularly poor; therefore, in this study, we screened mRNAs correlated with N6-methyladenosine (m6A) to construct a risk model for prognosis in CHOL. Methods The TCGA-CHOL dataset was applied to obtain and analyze the coexpression of 1281 m6A-related mRNAs, from which 14 were selected for further analysis through univariate proportional hazards (cox) regression analysis. Aryl hydrocarbon receptor interacting protein (AIP), CCAAT/enhancer binding protein beta (CEBPB), syndecan1 (SDC1), vacuolar protein sorting 25 homolog (VPS25) and syntaxin binding protein 2 (STXBP2) were then screened out through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to develop a precise m6A-related mRNA prognosis risk model (MRMRPM) with an area under curve (AUC) of 0.908 and 0.923 after 1 and 2 years, respectively. We divided the samples into high-risk and low-risk groups using the m6A-related mRNA prognosis risk model. Results Kaplan–Meier analysis indicated poor overall survival (OS) for the high-risk group. Two Gene Expression Omnibus (GEO) datasets (GSE89748 and GSE107943) were used to validate the risk model. The results of drug sensitivity and immune cell infiltration analysis showed that the risk model could serve as a prognosis index of potential immunotherapeutic characteristics and drug sensitivity. Furthermore, the proportion of resting dendritic cells and regulatory T cells was positively associated with an increased expression of four m6A-related mRNAs — AIP, CEBPB, SDC1, and VPS25 — in the high-risk CHOL group. Conclusions Our findings suggest that this model can be a prognostic indicator for CHOL patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09665-3.
Collapse
Affiliation(s)
- Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Haini Zhao
- Jinan Health Publicity and Education Center, Jinan, 250021, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shuchao Zhao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chaoqun Ma
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Dongliang Wang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, 100176, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Hongguang Li
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunqing Zhang
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China. .,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
18
|
Rojas F, Parra ER, Wistuba II, Haymaker C, Solis Soto LM. Pathological Response and Immune Biomarker Assessment in Non-Small-Cell Lung Carcinoma Receiving Neoadjuvant Immune Checkpoint Inhibitors. Cancers (Basel) 2022; 14:cancers14112775. [PMID: 35681755 PMCID: PMC9179283 DOI: 10.3390/cancers14112775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Recently, the U.S. Food and Drug Administration (FDA) approved neoadjuvant immunotherapy plus chemotherapy for the treatment of resectable non-small-cell lung carcinoma (NSCLC) due to the clinical benefits reported in several clinical trials. In these settings, the pathological assessment of the tumor bed to quantify a pathological response has been used as a surrogate method of clinical benefit to neoadjuvant therapy. In addition, several clinical trials are including the assessment of tissue-, blood-, or host-based biomarkers to predict therapy response and to monitor the response to neoadjuvant treatment. In this manuscript, we provide an overview of current recommendations for the evaluation of pathological response and describe potential biomarkers used in clinical trials of neoadjuvant immunotherapy in resectable NSCLC. Abstract Lung cancer is the leading cause of cancer incidence and mortality worldwide. Adjuvant and neoadjuvant chemotherapy have been used in the perioperative setting of non-small-cell carcinoma (NSCLC); however, the five-year survival rate only improves by about 5%. Neoadjuvant treatment with immune checkpoint inhibitors (ICIs) has become significant due to improved survival in advanced NSCLC patients treated with immunotherapy agents. The assessment of pathology response has been proposed as a surrogate indicator of the benefits of neaodjuvant therapy. An outline of recommendations has been published by the International Association for the Study of Lung Cancer (IASLC) for the evaluation of pathologic response (PR). However, recent studies indicate that evaluations of immune-related changes are distinct in surgical resected samples from patients treated with immunotherapy. Several clinical trials of neoadjuvant immunotherapy in resectable NSCLC have included the study of biomarkers that can predict the response of therapy and monitor the response to treatment. In this review, we provide relevant information on the current recommendations of the assessment of pathological responses in surgical resected NSCLC tumors treated with neoadjuvant immunotherapy, and we describe current and potential biomarkers to predict the benefits of neoadjuvant immunotherapy in patients with resectable NSCLC.
Collapse
|
19
|
Luthra A, Mastrogiacomo B, Smith SA, Chakravarty D, Schultz N, Sanchez-Vega F. Computational methods and translational applications for targeted next-generation sequencing platforms. Genes Chromosomes Cancer 2022; 61:322-331. [PMID: 35066956 PMCID: PMC10129038 DOI: 10.1002/gcc.23023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 11/09/2022] Open
Abstract
During the past decade, next-generation sequencing (NGS) technologies have become widely adopted in cancer research and clinical care. Common applications within the clinical setting include patient stratification into relevant molecular subtypes, identification of biomarkers of response and resistance to targeted and systemic therapies, assessment of heritable cancer risk based on known pathogenic variants, and longitudinal monitoring of treatment response. The need for efficient downstream processing and reliable interpretation of sequencing data has led to the development of novel algorithms and computational pipelines, as well as structured knowledge bases that link genomic alterations to currently available drugs and ongoing clinical trials. Cancer centers around the world use different types of targeted solid-tissue and blood based NGS assays to analyze the genomic and transcriptomic profile of patients as part of their routine clinical care. Recently, cross-institutional collaborations have led to the creation of large pooled datasets that can offer valuable insights into the genomics of rare cancers.
Collapse
Affiliation(s)
- Anisha Luthra
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Brooke Mastrogiacomo
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Shaleigh A Smith
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Debyani Chakravarty
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Nikolaus Schultz
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Francisco Sanchez-Vega
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
20
|
Murciano-Goroff YR, Pak T, Mondaca S, Flynn JR, Montecalvo J, Rekhtman N, Halpenny D, Plodkowski AJ, Wu SL, Kris MG, Paik PK, Riely GJ, Yu HA, Rudin CM, Hellmann MD, Land JD, Buie LW, Heller G, Lito P, Yaeger R, Drilon A, Liu D, Li BT, Offin M. Immune biomarkers and response to checkpoint inhibition of BRAF V600 and BRAF non-V600 altered lung cancers. Br J Cancer 2022; 126:889-898. [PMID: 34963703 PMCID: PMC8927094 DOI: 10.1038/s41416-021-01679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND While 2-4% of lung cancers possess alterations in BRAF, little is known about the immune responsiveness of these tumours. METHODS Clinical and genomic data were collected from 5945 patients with lung cancers whose tumours underwent next-generation sequencing between 2015 and 2018. Patients were followed through 2020. RESULTS In total, 127 patients with metastatic BRAF-altered lung cancers were identified: 29 tumours had Class I mutations, 59 had Class II/III alterations, and 39 had variants of unknown significance (VUS). Tumour mutation burden was higher in Class II/III than Class I-altered tumours (8.8 mutations/Mb versus 4.9, P < 0.001), but this difference was diminished when stratified by smoking status. The overall response rate to immune checkpoint inhibitors (ICI) was 9% in Class I-altered tumours and 26% in Class II/III (P = 0.25), with median time on treatment of 1.9 months in both groups. Among patients with Class I-III-altered tumours, 36-month HR for death in those who ever versus never received ICI was 1.82 (1.17-6.11). Nine patients were on ICI for >2 years (two with Class I mutations, two with Class II/III alterations, and five with VUS). CONCLUSIONS A subset of patients with BRAF-altered lung cancers achieved durable disease control on ICI. However, collectively no significant clinical benefit was seen.
Collapse
Affiliation(s)
| | - Terry Pak
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sebastian Mondaca
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica R Flynn
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Montecalvo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darragh Halpenny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andrew J Plodkowski
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stephanie L Wu
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark G Kris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Paul K Paik
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gregory J Riely
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Helena A Yu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Charles M Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew D Hellmann
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Josiah D Land
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Larry W Buie
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Glenn Heller
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Piro Lito
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander Drilon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dazhi Liu
- Department of Pharmacy, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael Offin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
21
|
Sholl LM. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod Pathol 2022; 35:66-74. [PMID: 34608245 DOI: 10.1038/s41379-021-00932-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Immunotherapy, including use of checkpoint inhibitors against PD-1, PD-L1, and CTLA-4, forms the backbone of oncologic management for the majority of non-small cell lung carcinoma patients. However, response to these therapies varies widely, from patients who have complete resolution of metastatic disease and long-term remission, to those who rapidly progress and succumb to their cancer despite use of the newest checkpoint inhibitors. While PD-L1 protein expression by immunohistochemistry serves as the principle predictive biomarker for immunotherapy response, neither the sensitivity nor the specificity of this approach is optimal, and clinical PD-L1 testing is plagued by concerns around result reproducibility and confusion born from the proliferation of different companion diagnostic assays. At the same time, insights into tumor and host immune-specific factors that inform both prognosis and response prediction are beginning to define better immunotherapy biomarkers. Beyond immune checkpoint expression status, common themes in analyses of immunotherapy response prediction include cancer neoantigen production, the state of the antigen presentation pathway in both tumor and antigen presenting cells, the admixture of effector and suppressor immune cells in the tumor microenvironment, and the genomic drivers and comutations that can influence the all of these variables. This review will address the state of PD-L1 testing in lung cancer, the role for tumor mutation burden as a predictive biomarker, the evolving status of human leukocyte antigen/major histocompatibility complex expression as a marker of antigen presentation, approaches to tumor immune cell quantitation including by multiplex immunofluorescence, and the importance of tumor genomic profiling to ascertain oncogenic driver (EGFR, ALK, KRAS, MET, etc.) and co-mutation (STK11, KEAP1, SMARCA4) status.
Collapse
Affiliation(s)
- Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Kim HD, Ryu MH, Park YS, Lee SY, Moon M, Kang YK. Insertion-deletion rate is a qualitative aspect of the tumor mutation burden associated with the clinical outcomes of gastric cancer patients treated with nivolumab. Gastric Cancer 2022; 25:226-234. [PMID: 34468871 DOI: 10.1007/s10120-021-01233-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND We aimed to investigate the clinical implications of the tumor mutation burden (TMB) and insertion-deletion (indel) rate in gastric cancer patients treated with nivolumab. METHODS A total of 105 patients with advanced gastric cancer who were treated with nivolumab as third or later line of therapy were included as the study population. The indel rate was defined as the proportion of indels making up the TMB. RESULTS The median age was 58 (32-78 years), and 65 (61.9%) were men. Patients with TMB > 18.03/Mb showed superior progression-free survival (PFS) and overall survival (OS) compared to those with TMB ≤ 18.03/Mb. Patients with a high indel rate (> 40%) had a favorable PFS and OS compared to those with a lower indel rate (≤ 40%) (P = 0.009 and P = 0.007, respectively). The association between a high indel rate and favorable PFS and OS was prominent in a subgroup with TMB > 18.03/Mb (P < 0.001 and P = 0.007 for PFS and OS, respectively), but not in that with TMB ≤ 18.03/Mb. All five patients with deficient-MMR fell into the category of 'TMB > 18.03/Mb with an indel rate of > 40%. TMB ≥ 18.03/Mb with an indel rate of > 40% was independently associated with a favorable PFS (hazard ratio [HR] 0.07, P = 0.012) and OS (HR 0.09, P = 0.023). CONCLUSION TMB and indel rate should be jointly considered to better predict survival outcomes of gastric cancer patients treated with nivolumab. Our findings deserve further investigation and validation in future studies.
Collapse
Affiliation(s)
- Hyung-Don Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Min-Hee Ryu
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Young Soo Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sun Young Lee
- Asan Medical Center, Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Meesun Moon
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yoon-Koo Kang
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
23
|
Kehl KL, Xu W, Gusev A, Bakouny Z, Choueiri TK, Riaz IB, Elmarakeby H, Van Allen EM, Schrag D. Artificial intelligence-aided clinical annotation of a large multi-cancer genomic dataset. Nat Commun 2021; 12:7304. [PMID: 34911934 PMCID: PMC8674229 DOI: 10.1038/s41467-021-27358-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
To accelerate cancer research that correlates biomarkers with clinical endpoints, methods are needed to ascertain outcomes from electronic health records at scale. Here, we train deep natural language processing (NLP) models to extract outcomes for participants with any of 7 solid tumors in a precision oncology study. Outcomes are extracted from 305,151 imaging reports for 13,130 patients and 233,517 oncologist notes for 13,511 patients, including patients with 6 additional cancer types. NLP models recapitulate outcome annotation from these documents, including the presence of cancer, progression/worsening, response/improvement, and metastases, with excellent discrimination (AUROC > 0.90). Models generalize to cancers excluded from training and yield outcomes correlated with survival. Among patients receiving checkpoint inhibitors, we confirm that high tumor mutation burden is associated with superior progression-free survival ascertained using NLP. Here, we show that deep NLP can accelerate annotation of molecular cancer datasets with clinically meaningful endpoints to facilitate discovery.
Collapse
Affiliation(s)
- Kenneth L Kehl
- From Dana-Farber Cancer Institute, Boston, MA, USA.
- Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Wenxin Xu
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Alexander Gusev
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Ziad Bakouny
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Toni K Choueiri
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Haitham Elmarakeby
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute, Rochester, USA
| | - Eliezer M Van Allen
- From Dana-Farber Cancer Institute, Boston, MA, USA
- Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute, Rochester, USA
| | | |
Collapse
|
24
|
Drilon A, Duruisseaux M, Han JY, Ito M, Falcon C, Yang SR, Murciano-Goroff YR, Chen H, Okada M, Molina MA, Wislez M, Brun P, Dupont C, Branden E, Rossi G, Schrock A, Ali S, Gounant V, Magne F, Blum TG, Schram AM, Monnet I, Shih JY, Sabari J, Pérol M, Zhu VW, Nagasaka M, Doebele R, Camidge DR, Arcila M, Ou SHI, Moro-Sibilot D, Rosell R, Muscarella LA, Liu SV, Cadranel J. Clinicopathologic Features and Response to Therapy of NRG1 Fusion-Driven Lung Cancers: The eNRGy1 Global Multicenter Registry. J Clin Oncol 2021; 39:2791-2802. [PMID: 34077268 PMCID: PMC8407651 DOI: 10.1200/jco.20.03307] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Although NRG1 fusions are oncogenic drivers across multiple tumor types including lung cancers, these are difficult to study because of their rarity. The global eNRGy1 registry was thus established to characterize NRG1 fusion-positive lung cancers in the largest and most diverse series to date. METHODS From June 2018 to February 2020, a consortium of 22 centers from nine countries in Europe, Asia, and the United States contributed data from patients with pathologically confirmed NRG1 fusion-positive lung cancers. Profiling included DNA-based and/or RNA-based next-generation sequencing and fluorescence in situ hybridization. Anonymized clinical, pathologic, molecular, and response (RECIST v1.1) data were centrally curated and analyzed. RESULTS Although the typified never smoking (57%), mucinous adenocarcinoma (57%), and nonmetastatic (71%) phenotype predominated in 110 patients with NRG1 fusion-positive lung cancer, further diversity, including in smoking history (43%) and histology (43% nonmucinous and 6% nonadenocarcinoma), was elucidated. RNA-based testing identified most fusions (74%). Molecularly, six (of 18) novel 5' partners, 20 unique epidermal growth factor domain-inclusive chimeric events, and heterogeneous 5'/3' breakpoints were found. Platinum-doublet and taxane-based (post-platinum-doublet) chemotherapy achieved low objective response rates (ORRs 13% and 14%, respectively) and modest progression-free survival medians (PFS 5.8 and 4.0 months, respectively). Consistent with a low programmed death ligand-1 expressing (28%) and low tumor mutational burden (median: 0.9 mutations/megabase) immunophenotype, the activity of chemoimmunotherapy and single-agent immunotherapy was poor (ORR 0%/PFS 3.3 months and ORR 20%/PFS 3.6 months, respectively). Afatinib achieved an ORR of 25%, not contingent on fusion type, and a 2.8-month median PFS. CONCLUSION NRG1 fusion-positive lung cancers were molecularly, pathologically, and clinically more heterogeneous than previously recognized. The activity of cytotoxic, immune, and targeted therapies was disappointing. Further research examining NRG1-rearranged tumor biology is needed to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Drilon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Michael Duruisseaux
- Respiratory Department, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
- Anticancer Antibodies Laboratory, Cancer Research Center of Lyon, Lyon, France
- Université Claude Bernard Lyon UMR INSERM 1052 CNRS 5286, Université de Lyon, Lyon, France
| | - Ji-Youn Han
- National Cancer Center, Korea, Goyang-si, South Korea
| | - Masaoki Ito
- Pangaea Oncology, Quiron-Dexeus University Institute, Barcelona, Spain
- Institute for Health Science Research Germans Trias i Pujol (IGTP), Badalona, Spain
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Christina Falcon
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Soo-Ryum Yang
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | | | - Haiquan Chen
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Thoracic Oncology, Fudan University, Shanghai, China
| | - Morihito Okada
- Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Miguel Angel Molina
- Pangaea Oncology, Laboratory of Molecular Biology, Quiron-Dexeus University Institute, Barcelona, Spain
| | - Marie Wislez
- Université de Paris, Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Paris, France
- Team Inflammation, Complement, and Cancer, and Oncology Thoracic Unit Pulmonology Department, AP-HP, Hôpital Cochin, Paris, France
| | - Philippe Brun
- Department of Pneumology, Lungenklinik Heckeshorn, Helios Klinikum Emil von Behring, Valence, France
| | - Clarisse Dupont
- Respiratory Department, Louis Pradel Hospital, Hospices Civils de Lyon Cancer Institute, Lyon, France
| | - Eva Branden
- Karolinska Institute and Karolinska University Hospital Solna, Stockholm, Sweden
- Centre for Research and Development, Uppsala University/Region Gävleborg, Gävle, Sweden
| | - Giulio Rossi
- Local Health Authority of Romagna, Infermi Hospital, Rimini, Italy
- Local Health Authority of Romagna, St Maria delle Croci Hospital, Ravenna, Italy
| | | | - Siraj Ali
- Foundation Medicine Inc, Cambridge, MA
| | - Valérie Gounant
- Department of Pulmonology, Hôpital Tenon, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Fanny Magne
- Hopital Nord Ouest Villefranche sur Saône, Gleizé, France
| | | | | | - Isabelle Monnet
- Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Jin-Yuan Shih
- National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Joshua Sabari
- New York University Langone Health Perlmutter Cancer Center, New York, NY
| | | | - Viola W. Zhu
- Chao Family Comprehensive Cancer Center, Department of Medicine, Division of Hematology/Oncology, University of California, Irvine School of Medicine, Orange, CA
| | - Misako Nagasaka
- Karmanos Cancer Institute, Wayne State University, Detroit, MI
- Division of Neurology, Department of Internal Medicine, St Marianna University, Kawasaki, Japan
| | - Robert Doebele
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO
| | - D. Ross Camidge
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, CO
| | - Maria Arcila
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | - Sai-Hong Ignatius Ou
- Chao Family Comprehensive Cancer Center, University of California Irvine Medical Center, Orange, CA
| | - Denis Moro-Sibilot
- Clinique de Pneumologie, Pôle Médecine Aiguë Communautaire, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Rafael Rosell
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS Casa Sollievo della Sofferenza, Foggia, Italy
| | - Stephen V. Liu
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
| | - Jacques Cadranel
- Department of Pneumology and Thoracic Oncology, Assistance Publique-Hopitaux de Paris, Tenon Hospital and GRC Theranoscan Sorbonne Université, Paris, France
| |
Collapse
|
25
|
Barroso-Sousa R, Keenan TE, Li T, Tayob N, Trippa L, Pastorello RG, Richardson Iii ET, Dillon D, Amoozgar Z, Overmoyer B, Schnitt SJ, Winer EP, Mittendorf EA, Van Allen E, Duda DG, Tolaney SM. Nivolumab in combination with cabozantinib for metastatic triple-negative breast cancer: a phase II and biomarker study. NPJ Breast Cancer 2021; 7:110. [PMID: 34433812 PMCID: PMC8387440 DOI: 10.1038/s41523-021-00287-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
This single-arm phase II study investigated the efficacy and safety of cabozantinib combined with nivolumab in metastatic triple-negative breast cancer (mTNBC). The primary endpoint was objective response rate (ORR) by RECIST 1.1. Biopsies at baseline and after cycle 1 were analyzed for tumor-infiltrating lymphocytes (TILs), PD-L1, and whole-exome and transcriptome sequencing. Only 1/18 patients achieved a partial response (ORR 6%), and the trial was stopped early. Toxicity led to cabozantinib dose reduction in 50% of patients. One patient had a PD-L1-positive tumor, and three patients had TILs > 10%. The responding patient had a PD-L1-negative tumor with low tumor mutational burden but high TILs and enriched immune gene expression. High pretreatment levels of plasma immunosuppressive cytokines, chemokines, and immune checkpoint molecules were associated with rapid progression. Although this study did not meet its primary endpoint, immunostaining, genomic, and proteomic studies indicated a high degree of tumor immunosuppression in this mTNBC cohort.
Collapse
Affiliation(s)
- Romualdo Barroso-Sousa
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
- Oncology Center, Hospital Sírio-Libanês, Brasilia, Brazil
| | - Tanya E Keenan
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Tianyu Li
- Biostatistics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Nabihah Tayob
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Lorenzo Trippa
- Biostatistics, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Deborah Dillon
- Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Zohreh Amoozgar
- Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Beth Overmoyer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | | | - Eric P Winer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
| | - Elizabeth A Mittendorf
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Eliezer Van Allen
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Dan G Duda
- Steele Laboratories for Tumor Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Breast Oncology Program, Dana-Farber/Brigham and Women's Cancer Center, Boston, MA, USA.
| |
Collapse
|
26
|
Yoh K, Matsumoto S, Furuya N, Nishino K, Miyamoto S, Oizumi S, Okamoto N, Itani H, Kuyama S, Nakamura A, Nishi K, Fukuda I, Tsuta K, Hayashi Y, Motoi N, Ishii G, Goto K. Comprehensive assessment of PD-L1 expression, tumor mutational burden and oncogenic driver alterations in non-small cell lung cancer patients treated with immune checkpoint inhibitors. Lung Cancer 2021; 159:128-134. [PMID: 34333203 DOI: 10.1016/j.lungcan.2021.07.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Immune checkpoint inhibitors (ICIs) have proven to be effective treatment for lung cancer. However, a precise predictive immuno-oncology biomarker is still under development. We investigated the associations among PD-L1 expression, tumor mutational burden (TMB), and oncogenic driver alterations in advanced non-small cell lung cancer (NSCLC) patients treated with ICIs. MATERIALS AND METHODS This multicenter cohort study included 1017 lung cancer patients. PD-L1 expression using four IHC assays (22C3, 28-8, SP263, SP142), TMB by whole-exome sequencing and oncogenic driver alterations were analyzed comprehensively. Clinical characteristics, treatment and survival data were collected. RESULTS The results of 22C3 and 28-8 for PD-L1 expression showed acceptable concordance (k = 0.89; 95% confidence interval [CI], 0.87-0.92), and the clinical outcomes of ICIs classified according to PD-L1 expression by both assays were also approximately the same. There was slight concordance (k = 0.16; 95% CI, 0.11-0.22) between 22C3 and SP142, and high PD-L1 expression by SP142 was correspond to very high PD-L1 expressions by other assays. Patients with both high PD-L1 expression and high TMB showed a good response to ICIs with the response rate of 64% and median progression-free survival of 9.0 months despite of small population. Common EGFR or STK11 mutations showed a lower rate of high PD-L1 expression and a worse efficacy of ICIs and KRAS mutations had no negative impact on response to ICIs. CONCLUSION Comprehensive assessment of PD-L1 expression, TMB, and oncogenic driver alterations would help to better predict the clinical outcomes of ICIs in NSCLC patients.
Collapse
Affiliation(s)
- Kiyotaka Yoh
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan.
| | - Shingo Matsumoto
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| | - Naoki Furuya
- Division of Respiratory Medicine, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Kazumi Nishino
- Department of Thoracic Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Satoshi Oizumi
- Department of Respiratory Medicine, National Hospital Organization Hokkaido Cancer Center, Sapporo, Japan
| | - Norio Okamoto
- Department of Thoracic Oncology and Bronchology, Osaka Habikino Medical Center, Habikino, Japan
| | - Hidetoshi Itani
- Department of Respiratory Medicine, Japanese Red Cross Ise Hospital, Ise, Japan
| | - Shoichi Kuyama
- Department of Respiratory Medicine, Iwakuni Clinical Center, Iwakuni, Japan
| | - Atsushi Nakamura
- Department of Pulmonary Medicine, Sendai Kousei Hospital, Sendai, Japan
| | - Koichi Nishi
- Division of Respiratory Medicine, Ishikawa Prefecutual Central Hospital, Kanazawa, Japan
| | - Ikue Fukuda
- Department of Pulmonary Medicine, Itami City Hospital, Hyogo, Japan
| | - Koji Tsuta
- Department of Pathology and Laboratory Medicine, Kansai Medical University, Osaka, Japan
| | - Yuichiro Hayashi
- Department of Anatomic Pathology, International University of Health and Welfare Narita Hospital, Narita, Japan
| | - Noriko Motoi
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| | - Genichiro Ishii
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital East, Kashiwa, Japan
| | - Koichi Goto
- Department of Thoracic Oncology, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba 277-8577, Japan
| |
Collapse
|
27
|
Gorgun FM, Widen SG, Tyler DS, Englander EW. Enhanced Antitumor Response to Immune Checkpoint Blockade Exerted by Cisplatin-Induced Mutagenesis in a Murine Melanoma Model. Front Oncol 2021; 11:701968. [PMID: 34295826 PMCID: PMC8290318 DOI: 10.3389/fonc.2021.701968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/16/2021] [Indexed: 12/21/2022] Open
Abstract
Sequencing data from different types of cancers including melanomas demonstrate that tumors with high mutational loads are more likely to respond to immune checkpoint blockade (ICB) therapies. We have previously shown that low-dose intratumoral injection of the chemotherapeutic DNA damaging drug cisplatin activates intrinsic mutagenic DNA damage tolerance pathway, and when combined with ICB regimen leads to tumor regression in the mouse YUMM1.7 melanoma model. We now report that tumors generated with an in vitro cisplatin-mutagenized YUMM1.7 clone (YUMM1.7-CM) regress in response to ICB, while an identical ICB regimen alone fails to suppress growth of tumors generated with the parental YUMM1.7 cells. Regressing YUMM1.7-CM tumors show greater infiltration of CD8 T lymphocytes, higher granzyme B expression, and higher tumoral cell death. Similarly, ex-vivo, immune cells isolated from YUMM1.7-CM tumors-draining lymph nodes (TDLNs) co-incubated with cultured YUMM1.7-CM cells, eliminate the tumor cells more efficiently than immune cells isolated from TDLNs of YUMM1.7 tumor-bearing mice. Collectively, our findings show that in vitro induced cisplatin mutations potentiate the antitumor immune response and ICB efficacy, akin to tumor regression achieved in the parental YUMM1.7 model by ICB administered in conjunction with intratumoral cisplatin injection. Hence, our data uphold the role of tumoral mutation burden in improving immune surveillance and response to ICB, suggesting a path for expanding the range of patients benefiting from ICB therapy.
Collapse
Affiliation(s)
- Falih M Gorgun
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Steven G Widen
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Douglas S Tyler
- Department of Surgery, University of Texas Medical Branch, Galveston, TX, United States
| | - Ella W Englander
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
28
|
Bozinovski S, Vannitamby A, Rangamuwa K, Aujla S, Wang H, Aloe C, Irving L, Leong TT, Steinfort DP. Integrating endobronchial ultrasound bronchoscopy with molecular testing of immunotherapy biomarkers in non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:2779-2787. [PMID: 34295677 PMCID: PMC8264344 DOI: 10.21037/tlcr-20-781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
Immunotherapy has transformed treatment of advanced non-small-cell lung cancer (NSCLC) patients leading to remarkable long-term survival benefit. However, only about 20% of advanced NSCLC patients typically respond to immune checkpoint inhibitors (ICIs) that target the PD-1/PD-L1 pathway. The only validated biomarker for ICI therapy is the PD-L1 immunohistochemistry (IHC) test, which is considered an imperfect assay due to several variables including availability and integrity of tumour tissue, variability in staining/scoring techniques and heterogeneity in PD-L1 protein expression within and across tumour biopsies. Herein, we discuss integrating minimally invasive EBUS bronchoscopy procedures with novel molecular approaches to improve accuracy and sensitivity of PD-L1 testing. EBUS guided bronchoscopy facilitates repeated sampling of tumour tissue to increase the probability of detecting PD-L1 positive tumours. Since intra-tumoural PD-L1 (CD274) copy number is reported to be less heterogeneous than PD-L1 protein detection, quantifying PD-L1 transcript levels may increase detection of PD-L1 positive tumours. PD-L1 transcript levels show excellent concordance with PD-L1 IHC scoring and multiplex digital droplet PCR (ddPCR) assays that quantify absolute PD-L1 transcript copy number have been developed. ddPCR can also be automated for high throughput detection of low abundant variants with excellent sensitivity and accuracy to improve the broader application of diagnostic cut-off values. Optimizing diagnostic workflows that integrate optimal EBUS bronchoscopy procedures with emerging molecular ICI biomarker assays may improve the selection criteria for ICI therapy benefit.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Amanda Vannitamby
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Kanishka Rangamuwa
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Savreet Aujla
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Hao Wang
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Christian Aloe
- School of Health & Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Louis Irving
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Tracy T Leong
- Department of Respiratory Medicine, Austin Health, Heidelberg, Victoria, Australia.,The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel P Steinfort
- Department of Respiratory Medicine, Royal Melbourne Hospital, Melbourne, Australia.,Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
29
|
Huang X, He M, Peng H, Tong C, Liu Z, Zhang X, Shao Y, Zhu D, Zhang J, Yin JC, Yang F, Lan C. Genomic profiling of advanced cervical cancer to predict response to programmed death-1 inhibitor combination therapy: a secondary analysis of the CLAP trial. J Immunother Cancer 2021; 9:jitc-2020-002223. [PMID: 34011535 PMCID: PMC8137235 DOI: 10.1136/jitc-2020-002223] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The Camrelizumab Plus Apatinib in Patients with Advanced Cervical Cancer trial was a single-arm, phase II study that showed promising activity of the programmed death-1 (PD-1) inhibitor camrelizumab plus the vascular endothelial growth factor receptor-2 inhibitor apatinib in patients with advanced cervical cancer. However, the predictive biomarkers for treatment outcomes are unknown. In this study, we aimed to identify potential predictors of treatment response in PD-1 inhibitor combination therapy. METHODS Genomic profiling was performed on patients with available biopsy or surgical samples by targeted next-generation sequencing of 425 cancer-related genes in this preplanned, secondary analysis. Somatic alterations, including all non-synonymous mutations, and tumor mutational burden (TMB) were assessed for their predictive values in objective response rate, progression-free survival (PFS), and overall survival (OS). RESULTS A subset of 32 patients was included in this analysis. Top altered genes included PIK3CA (43.8%), STK11 (25%), FBXW7 (15.6%), and PTEN (15.6%). The PI3K/AKT pathway was among the most frequently dysregulated pathways, and its genetic alterations were identified in 68.8% of patients. PIK3CA (PFS HR 0.33, p=0.05; OS HR 0.23, p=0.04) and PTEN (PFS HR 3.71e-09, p=0.05; OS HR 3.64e-09, p=0.08) alterations were associated with improved outcomes. PI3K/AKT pathway genetic alterations showed improved predictive power compared with either PIK3CA or PTEN alterations alone (PFS HR 0.33, p=0.03; OS HR 0.25, p=0.02), while ERBB3 mutations (PFS HR 34.9, p<0.001; OS HR 19.8, p<0.001) correlated with poor survival. TMB-high (≥5 mut/Mb) was associated with prolonged PFS (HR 0.26, p<0.01) and OS (HR 0.31, p=0.05). Multivariate analysis showed ERBB3 mutations (PFS p=0.01, OS p<0.001), PD-L1 positive (PFS p=0.01, OS p=0.05), and high TMB (PFS p=0.01, OS p=0.05) remained significantly associated with survival. CONCLUSIONS We uncovered that genetic alterations in PIK3CA, PTEN, ERBB3, and PI3K/AKT pathway, as well as TMB, could be novel predictive biomarkers in patients with cervical cancer treated with PD-1 inhibitor combination therapy. TRIAL REGISTRATION NUMBER NCT03816553.
Collapse
Affiliation(s)
- Xin Huang
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Minjun He
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Peng
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chongjie Tong
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhimin Liu
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolong Zhang
- Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China.,Center for Bioinformatics, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yang Shao
- Nanjing Geneseeq Technology Inc, Nanjing, China.,School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongqin Zhu
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Junli Zhang
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Jiani C Yin
- Nanjing Geneseeq Technology Inc, Nanjing, China
| | - Fan Yang
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chunyan Lan
- Gynecologic Oncololgy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China .,Key State Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Garutti M, Bonin S, Buriolla S, Bertoli E, Pizzichetta MA, Zalaudek I, Puglisi F. Find the Flame: Predictive Biomarkers for Immunotherapy in Melanoma. Cancers (Basel) 2021; 13:cancers13081819. [PMID: 33920288 PMCID: PMC8070445 DOI: 10.3390/cancers13081819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has revolutionized the therapeutic landscape of melanoma. In particular, checkpoint inhibition has shown to increase long-term outcome, and, in some cases, it can be virtually curative. However, the absence of clinically validated predictive biomarkers is one of the major causes of unpredictable efficacy of immunotherapy. Indeed, the availability of predictive biomarkers could allow a better stratification of patients, suggesting which type of drugs should be used in a certain clinical context and guiding clinicians in escalating or de-escalating therapy. However, the difficulty in obtaining clinically useful predictive biomarkers reflects the deep complexity of tumor biology. Biomarkers can be classified as tumor-intrinsic biomarkers, microenvironment biomarkers, and systemic biomarkers. Herein we review the available literature to classify and describe predictive biomarkers for checkpoint inhibition in melanoma with the aim of helping clinicians in the decision-making process. We also performed a meta-analysis on the predictive value of PDL-1.
Collapse
Affiliation(s)
- Mattia Garutti
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Correspondence:
| | - Serena Bonin
- DSM—Department of Medical Sciences, University of Trieste, 34123 Trieste, Italy;
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
- Dipartimento di Oncologia, Azienda Sanitaria Universitaria Friuli Centrale, 33100 Udine, Italy
| | - Elisa Bertoli
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| | - Maria Antonietta Pizzichetta
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Iris Zalaudek
- Department of Dermatology, University of Trieste, 34123 Trieste, Italy;
| | - Fabio Puglisi
- CRO Aviano National Cancer Institute IRCCS, 33081 Aviano, Italy; (E.B.); (M.A.P.); (F.P.)
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
31
|
McGrail DJ, Pilié PG, Rashid NU, Voorwerk L, Slagter M, Kok M, Jonasch E, Khasraw M, Heimberger AB, Lim B, Ueno NT, Litton JK, Ferrarotto R, Chang JT, Moulder SL, Lin SY. High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 2021; 32:661-672. [PMID: 33736924 DOI: 10.1016/j.annonc.2021.02.006] [Citation(s) in RCA: 658] [Impact Index Per Article: 164.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High tumor mutation burden (TMB-H) has been proposed as a predictive biomarker for response to immune checkpoint blockade (ICB), largely due to the potential for tumor mutations to generate immunogenic neoantigens. Despite recent pan-cancer approval of ICB treatment for any TMB-H tumor, as assessed by the targeted FoundationOne CDx assay in nine tumor types, the utility of this biomarker has not been fully demonstrated across all cancers. PATIENTS AND METHODS Data from over 10 000 patient tumors included in The Cancer Genome Atlas were used to compare approaches to determine TMB and identify the correlation between predicted neoantigen load and CD8 T cells. Association of TMB with ICB treatment outcomes was analyzed by both objective response rates (ORRs, N = 1551) and overall survival (OS, N = 1936). RESULTS In cancer types where CD8 T-cell levels positively correlated with neoantigen load, such as melanoma, lung, and bladder cancers, TMB-H tumors exhibited a 39.8% ORR to ICB [95% confidence interval (CI) 34.9-44.8], which was significantly higher than that observed in low TMB (TMB-L) tumors [odds ratio (OR) = 4.1, 95% CI 2.9-5.8, P < 2 × 10-16]. In cancer types that showed no relationship between CD8 T-cell levels and neoantigen load, such as breast cancer, prostate cancer, and glioma, TMB-H tumors failed to achieve a 20% ORR (ORR = 15.3%, 95% CI 9.2-23.4, P = 0.95), and exhibited a significantly lower ORR relative to TMB-L tumors (OR = 0.46, 95% CI 0.24-0.88, P = 0.02). Bulk ORRs were not significantly different between the two categories of tumors (P = 0.10) for patient cohorts assessed. Equivalent results were obtained by analyzing OS and by treating TMB as a continuous variable. CONCLUSIONS Our analysis failed to support application of TMB-H as a biomarker for treatment with ICB in all solid cancer types. Further tumor type-specific studies are warranted.
Collapse
Affiliation(s)
- D J McGrail
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| | - P G Pilié
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - N U Rashid
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, USA; Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - L Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - M Slagter
- Division of Molecular Oncology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Oncode Institute, Utrecht, The Netherlands
| | - M Kok
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands; Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - E Jonasch
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - M Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, USA
| | - A B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - B Lim
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - N T Ueno
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - R Ferrarotto
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J T Chang
- Department of Integrative Biology and Pharmacology, The University of Texas Health Sciences Center at Houston, Houston, USA; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S L Moulder
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - S-Y Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
32
|
Zhou JG, Donaubauer AJ, Frey B, Becker I, Rutzner S, Eckstein M, Sun R, Ma H, Schubert P, Schweizer C, Fietkau R, Deutsch E, Gaipl U, Hecht M. Prospective development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with recurrent/metastatic cancer to immune checkpoint inhibitors. J Immunother Cancer 2021; 9:jitc-2020-001845. [PMID: 33593828 PMCID: PMC7888377 DOI: 10.1136/jitc-2020-001845] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Background The predictive power of novel biological markers for treatment response to immune checkpoint inhibitors (ICI) is still not satisfactory for the majority of patients with cancer. One should identify valid predictive markers in the peripheral blood, as this is easily available before and during treatment. The current interim analysis of patients of the ST-ICI cohort therefore focuses on the development and validation of a liquid immune profile-based signature (LIPS) to predict response of patients with metastatic cancer to ICI targeting the programmed cell death protein 1 (PD-1)/programmed cell death-ligand 1 (PD-L1) axis. Methods A total of 104 patients were prospectively enrolled. 54 immune cell subsets were prospectively analyzed in patients’ peripheral blood by multicolor flow cytometry before treatment with ICI (pre-ICI; n=89), and after the first application of ICI (n=65). Pre-ICI, patients were randomly allocated to a training (n=56) and a validation cohort (n=33). Univariate Cox proportional hazards regression analysis and least absolute shrinkage and selection operator Cox model were used to create a predictive immune signature, which was also checked after the first ICI, to consider the dynamics of changes in the immune status. Results Whole blood samples were provided by 89 patients pre-ICI and by 65 patients after the first ICI. We identified a LIPS which is based on five immune cell subtypes: CD14high monocytes, CD8+/PD-1+ T cells, plasmacytoid dendritic cells, neutrophils, and CD3+/CD56+/CD16+ natural killer (NK)T cells. The signature achieved a high accuracy (C-index 0.74 vs 0.71) for predicting overall survival (OS) benefit in both the training and the validation cohort. In both cohorts, the low-risk group had significantly longer OS than the high-risk group (HR 0.26, 95% CI 0.12 to 0.56, p=0.00025; HR 0.30, 95% CI 0.10 to 0.91, p=0.024, respectively). Regarding the whole cohort, LIPS also predicted progression-free survival (PFS). The identified LIPS was not affected by clinicopathological features with the exception of brain metastases. NKT cells and neutrophils of the LIPS can be used as dynamic predictive biomarkers for OS and PFS after first administration of the ICI. Conclusion Our study identified a predictive LIPS for survival of patients with cancer treated with PD-1/PD-L1 ICI, which is based on immune cell subsets in the peripheral whole blood. Trial registration number NCT03453892.
Collapse
Affiliation(s)
- Jian-Guo Zhou
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Anna-Jasmina Donaubauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Ina Becker
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Sandra Rutzner
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Eckstein
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.,Institute of Pathology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Roger Sun
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Hu Ma
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Philipp Schubert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Claudia Schweizer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy - CentraleSupélec - TheraPanacea Center of Artificial Intelligence in Radiation Therapy and Oncology, Villejuif, France.,Université Paris-Saclay, INSERM1030 Radiothérapie Moléculaire, Villejuif, France
| | - Udo Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany .,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
33
|
Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell 2021; 39:154-173. [PMID: 33125859 PMCID: PMC7878292 DOI: 10.1016/j.ccell.2020.10.001] [Citation(s) in RCA: 617] [Impact Index Per Article: 154.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 08/04/2020] [Accepted: 09/30/2020] [Indexed: 12/20/2022]
Abstract
Tumor mutational burden (TMB) reflects cancer mutation quantity. Mutations are processed to neo-antigens and presented by major histocompatibility complex (MHC) proteins to T cells. To evade immune eradication, cancers exploit checkpoints that dampen T cell reactivity. Immune checkpoint inhibitors (ICIs) have transformed cancer treatment by enabling T cell reactivation; however, response biomarkers are required, as most patients do not benefit. Higher TMB results in more neo-antigens, increasing chances for T cell recognition, and clinically correlates with better ICI outcomes. Nevertheless, TMB is an imperfect response biomarker. A composite predictor that also includes critical variables, such as MHC and T cell receptor repertoire, is needed.
Collapse
Affiliation(s)
- Denis L Jardim
- Centro de Oncologia Hospital Sírio Libanês-São Paulo, São Paulo, Brazil
| | - Aaron Goodman
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA
| | | | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California, San Diego, CA, USA.
| |
Collapse
|
34
|
Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, Watkins TBK, Rosenthal R, Biswas D, Rowan A, Lim E, Al Bakir M, Turati V, Guerra-Assunção JA, Conde L, Furness AJS, Saini SK, Hadrup SR, Herrero J, Lee SH, Van Loo P, Enver T, Larkin J, Hellmann MD, Turajlic S, Quezada SA, McGranahan N, Swanton C. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021; 184:596-614.e14. [PMID: 33508232 PMCID: PMC7933824 DOI: 10.1016/j.cell.2021.01.002] [Citation(s) in RCA: 507] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/26/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
Checkpoint inhibitors (CPIs) augment adaptive immunity. Systematic pan-tumor analyses may reveal the relative importance of tumor-cell-intrinsic and microenvironmental features underpinning CPI sensitization. Here, we collated whole-exome and transcriptomic data for >1,000 CPI-treated patients across seven tumor types, utilizing standardized bioinformatics workflows and clinical outcome criteria to validate multivariable predictors of CPI sensitization. Clonal tumor mutation burden (TMB) was the strongest predictor of CPI response, followed by total TMB and CXCL9 expression. Subclonal TMB, somatic copy alteration burden, and histocompatibility leukocyte antigen (HLA) evolutionary divergence failed to attain pan-cancer significance. Dinucleotide variants were identified as a source of immunogenic epitopes associated with radical amino acid substitutions and enhanced peptide hydrophobicity/immunogenicity. Copy-number analysis revealed two additional determinants of CPI outcome supported by prior functional evidence: 9q34 (TRAF2) loss associated with response and CCND1 amplification associated with resistance. Finally, single-cell RNA sequencing (RNA-seq) of clonal neoantigen-reactive CD8 tumor-infiltrating lymphocytes (TILs), combined with bulk RNA-seq analysis of CPI-responding tumors, identified CCR5 and CXCL13 as T-cell-intrinsic markers of CPI sensitivity.
Collapse
Affiliation(s)
- Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - James L Reading
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Clare Puttick
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Krupa Thakkar
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Chris Abbosh
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Robert Bentham
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Rachel Rosenthal
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrew Rowan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emilia Lim
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Virginia Turati
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - José Afonso Guerra-Assunção
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Andrew J S Furness
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Sunil Kumar Saini
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Sine R Hadrup
- Department of Health Technology, Technical University of Denmark, Copenhagen, Denmark
| | - Javier Herrero
- Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK
| | - Se-Hoon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea; Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Peter Van Loo
- Cancer Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tariq Enver
- Stem Cell Group, Cancer Institute, University College London, London WC1E 6DD, UK
| | - James Larkin
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| | - Matthew D Hellmann
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and Parker Center for Cancer Immunotherapy, 885 2nd Avenue, New York, NY 10017, USA
| | - Samra Turajlic
- Renal and Skin Units, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; Cancer Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Hematology, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London WC1E 6BT, UK.
| |
Collapse
|
35
|
Frost N, Kollmeier J, Vollbrecht C, Grah C, Matthes B, Pultermann D, von Laffert M, Lüders H, Olive E, Raspe M, Mairinger T, Ochsenreither S, Blum T, Hummel M, Suttorp N, Witzenrath M, Grohé C. KRAS G12C/TP53 co-mutations identify long-term responders to first line palliative treatment with pembrolizumab monotherapy in PD-L1 high (≥50%) lung adenocarcinoma. Transl Lung Cancer Res 2021; 10:737-752. [PMID: 33718018 PMCID: PMC7947421 DOI: 10.21037/tlcr-20-958] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Background Pembrolizumab is a standard of care as first line palliative therapy in PD-L1 overexpressing (≥50%) non-small cell lung cancer (NSCLC). This study aimed at the identification of KRAS and TP53-defined mutational subgroups in the PD-L1 high population to distinguish long-term responders from those with limited benefit. Methods In this retrospective, observational study, patients from 4 certified lung cancer centers in Berlin, Germany, having received pembrolizumab monotherapy as first line palliative treatment for lung adenocarcinoma (LuAD) from 2017 to 2018, with PD-L1 expression status and targeted NGS data available, were evaluated. Results A total of 119 patients were included. Rates for KRAS, TP53 and combined mutations were 52.1%, 47.1% and 21.9%, respectively, with no association given between KRAS and TP53 mutations (P=0.24). By trend, PD-L1 expression was higher in KRAS-positive patients (75% vs. 65%, P=0.13). Objective response rate (ORR), median progression-free survival (PFS) and overall survival (OS) in the KRASG12C group (n=32, 51.6%) were 63.3%, 19.8 months (mo.) and not estimable (NE), respectively. Results in KRASother and wild type patients were similar and by far lower (42.7%, P=0.06; 6.2 mo., P<0.001; 23.4 mo., P=0.08). TP53 mutations alone had no impact on response and survival. However, KRASG12C/TP53 co-mutations (n=12) defined a subset of long-term responders (ORR 100.0%, PFS 33.3 mo., OS NE). In contrast, patients with KRASother/TP53 mutations showed a dismal prognosis (ORR 27.3%, P=0.002; PFS 3.9 mo., P=0.001, OS 9.7 mo., P=0.02). Conclusions A comprehensive assessment of KRAS subtypes and TP53 mutations allows a highly relevant prognostic differentiation of patients with metastatic, PD-L1 high LuAD treated upfront with pembrolizumab.
Collapse
Affiliation(s)
- Nikolaj Frost
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Jens Kollmeier
- Helios Klinikum Emil von Behring, Lungenklinik Heckeshorn, Berlin, Germany
| | - Claudia Vollbrecht
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pathology, Berlin, Germany
| | - Christian Grah
- Gemeinschaftskrankenhaus Havelhöhe, Department of Pneumonology, Berlin, Germany
| | - Burkhard Matthes
- Gemeinschaftskrankenhaus Havelhöhe, Department of Pneumonology, Berlin, Germany
| | - Dennis Pultermann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Maximilian von Laffert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pathology, Berlin, Germany
| | - Heike Lüders
- Klinik für Pneumologie - Evangelische Lungenklinik Berlin Buch, Berlin, Germany
| | - Elisabeth Olive
- Klinik für Pneumologie - Evangelische Lungenklinik Berlin Buch, Berlin, Germany
| | - Matthias Raspe
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Thomas Mairinger
- Helios Klinikum Emil von Behring, Department of Pathology, Berlin, Germany
| | - Sebastian Ochsenreither
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumorimmunology, Berlin, Germany
| | - Torsten Blum
- Helios Klinikum Emil von Behring, Lungenklinik Heckeshorn, Berlin, Germany
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pathology, Berlin, Germany
| | - Norbert Suttorp
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Martin Witzenrath
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Infectious Diseases and Pulmonary Medicine, Berlin, Germany
| | - Christian Grohé
- Klinik für Pneumologie - Evangelische Lungenklinik Berlin Buch, Berlin, Germany
| |
Collapse
|
36
|
Biomarkers: Is Tumor Mutational Burden the New Prognostic Grail? Lung Cancer 2021. [DOI: 10.1007/978-3-030-74028-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
37
|
Golkaram M, Zhao C, Kruglyak K, Zhang S, Bilke S. The interplay between cancer type, panel size and tumor mutational burden threshold in patient selection for cancer immunotherapy. PLoS Comput Biol 2020; 16:e1008332. [PMID: 33166276 PMCID: PMC7676656 DOI: 10.1371/journal.pcbi.1008332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 11/19/2020] [Accepted: 09/12/2020] [Indexed: 01/10/2023] Open
Abstract
The tumor mutational burden (TMB) is increasingly recognized as an emerging biomarker that predicts improved outcomes or response to immune checkpoint inhibitors in cancer. A multitude of technical and biological factors make it difficult to compare TMB values across platforms, histologies, and treatments. Here, we present a mechanistic model that explains the association between panel size, histology, and TMB threshold with panel performance and survival outcome and demonstrate the limitations of existing methods utilized to harmonize TMB across platforms. An increasing number of studies have demonstrated the benefit of tumor mutation burden (TMB), the number of non-silent mutations in the genome, as a predictive biomarker in a clinical setting. Most clinical trials utilize a smaller panel, instead of whole exome sequencing (WES), to estimate the exome-wide mutational load. However, the use of panels introduces panel size dependent sampling noise that could affect the performance of the TMB biomarker. In this work we create a mathematical model of the cancer histology, treatment response, and TMB device system to assess the interplay between cancer type, panel size and tumor mutational burden threshold in patient selection for cancer immunotherapy.
Collapse
Affiliation(s)
| | - Chen Zhao
- Illumina, Inc., San Diego, CA, United States of America
| | | | - Shile Zhang
- Illumina, Inc., San Diego, CA, United States of America
| | - Sven Bilke
- Illumina, Inc., San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
38
|
Gjoerup O, Brown CA, Ross JS, Huang RSP, Schrock A, Creeden J, Fabrizio D, Tolba K. Identification and Utilization of Biomarkers to Predict Response to Immune Checkpoint Inhibitors. AAPS JOURNAL 2020; 22:132. [PMID: 33057937 DOI: 10.1208/s12248-020-00514-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICPI) have revolutionized cancer therapy and provided clinical benefit to thousands of patients. Despite durable responses in many tumor types, the majority of patients either fail to respond at all or develop resistance to the ICPI. Furthermore, ICPI treatment can be accompanied by serious adverse effects. There is an urgent need for identification of patient populations that will benefit from ICPI as single agents and when used in combinations. As ICPI have achieved regulatory approvals, accompanying biomarkers including PD-L1 immunohistochemistry (IHC) and tumor mutational burden (TMB) have also received approvals for some indications. The ICPI pembrolizumab was the first example of a tissue-agnostic FDA approval based on tumor microsatellite instability (MSI)/deficient mismatch repair (dMMR) biomarker status, rather than on tumor histology assessment. Several other ICPI-associated biomarkers are in the exploratory stage, including quantification of tumor-infiltrating lymphocytes (TILs), gene expression profiling (GEP) of an inflamed microenvironment, and neoantigen prediction. TMB and PD-L1 expression can predict a subset of responses, but they fail to predict all responses to checkpoint blockade. While a single biomarker is currently limited in its ability to fully capture the complexity of the tumor-immune microenvironment, a combination of biomarkers is emerging as a method to improve predictive power. Here we review the steadily growing impact of comprehensive genomic profiling (CGP) for development and utilization of predictive biomarkers by simultaneously capturing TMB, MSI, and the status of genomic targets that confer sensitivity or resistance to immunotherapy, as well as detecting inflammation through RNA expression signatures.
Collapse
Affiliation(s)
- Ole Gjoerup
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA. .,Foundation Medicine, 121 Seaport Blvd, Room 970-35, Boston, Massachusetts, 02210, USA.
| | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA.,Upstate Medical University, Syracuse, New York, USA
| | | | - Alexa Schrock
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | - James Creeden
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| | | | - Khaled Tolba
- Foundation Medicine, Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Donoghue MTA, Schram AM, Hyman DM, Taylor BS. Discovery through clinical sequencing in oncology. ACTA ACUST UNITED AC 2020; 1:774-783. [PMID: 35122052 PMCID: PMC8985175 DOI: 10.1038/s43018-020-0100-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022]
Abstract
The molecular characterization of tumors now informs clinical cancer care for many patients. This advent of molecular oncology is driven by the expanding number of therapeutic biomarkers that can predict sensitivity to both approved and investigational agents. Beyond its role in driving clinical trial enrollments and guiding therapy in individual patients, large-scale clinical genomics in oncology also represents a rapidly expanding research resource for translational scientific discovery. Here, we review the progress, opportunities, and challenges of scientific and translational discovery from prospective clinical genomic screening programs now routinely conducted in cancer patients.
Collapse
|
40
|
Reddy HG, Qin A, Kalemkerian GP. Emerging drugs for small cell lung cancer: a focused review on immune checkpoint inhibitors. Expert Opin Emerg Drugs 2020; 25:353-366. [PMID: 32683991 DOI: 10.1080/14728214.2020.1798929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is an aggressive malignancy that accounts for 15% of all lung cancers. It is characterized by initial responsiveness to therapy followed by rapid disease progression that is relatively resistant to further treatment. Recently, the addition of an immune checkpoint inhibitor (ICI) to chemotherapy has improved survival in patients with advanced disease, the first advance in systemic therapy in SCLC in over 30 years. AREAS COVERED In this review, we present an overview of SCLC with a focus on the scope of the problem and standard treatment, followed by a critical assessment of scientific rationale for immunotherapy in SCLC and the clinical trials that have been performed with ICIs in SCLC. Finally, we address ongoing hurdles for the development of ICIs in SCLC and potential avenues for further study. EXPERT OPINION Despite solid biological rationale, the results of clinical trials of ICIs in SCLC have yielded modest benefits. A small subset of patients does achieve long-term benefit, but further development of ICIs in SCLC will depend on the identification of predictive biomarkers and the design of combination regimens that take advantage of the molecular alterations that drive the immune-avoidance mechanisms and survival of SCLC cells.
Collapse
Affiliation(s)
- Haritha G Reddy
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| | - Angel Qin
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| | - Gregory P Kalemkerian
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
41
|
Viteri S, Cabrera-Gálvez C, Rosell R. Keynote 407: the combination of pembrolizumab and chemotherapy cracks the shell of squamous cell lung cancer. Transl Lung Cancer Res 2020; 9:828-832. [PMID: 32676347 PMCID: PMC7354136 DOI: 10.21037/tlcr-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Santiago Viteri
- Dr. Rosell Oncology Institute, Teknon Medical Center, Quironsalud Group, Barcelona, Spain
| | - Carlos Cabrera-Gálvez
- Dr. Rosell Oncology Institute, Teknon Medical Center, Quironsalud Group, Barcelona, Spain
| | - Rafael Rosell
- Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Badalona, Spain
| |
Collapse
|