1
|
Shakroo YM, Seabury CA, Iczkowski KA, Nelson K, Qian J, Ramnani DM. Germline pathogenic variants in prostate cancer. Pathol Res Pract 2024; 264:155718. [PMID: 39541765 DOI: 10.1016/j.prp.2024.155718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
While most prostate cancer is sporadic, evidence suggests that a significant minority of cases have a hereditary component, and germline variants may play a role in this heritability. In this study, we investigated germline pathogenic variants in prostate cancer patients. All genetic variants were classified using the American College of Medical Genetics and Genomics/Association for Molecular Pathology 2015 guidelines. By retrospectively reviewing patient charts and genetic testing results, we collected clinicopathologic, demographic, and genetic data. Among the 160 prostate cancer patients who met NCCN genetic testing guidelines and underwent germline testing, 41 % had metastatic cancer, while 59 % had localized cancer, mostly high-risk. Nineteen (19) out of the 160 patients (12 %) had a pathogenic or likely pathogenic variant in the following genes: MUTYH (3.1 %), ATM (1.9 %), BRCA2 (1.3 %), CHEK2 (1.3 %), PALB2 (1.3 %), HOXB13 (1.3 %), and 5 other genes (BRIP1, LZTR1, TP53, NTHL1, and NBN), each at a frequency of 0.6 %. There was no significant difference in clinicopathologic data (such as age, serum prostate-specific antigen, Gleason score, and others) between those with a pathogenic or likely pathogenic variant and those without. There was also a lack of significant difference in the number of variants of uncertain significance observed between different racial and ethnic groups. Individuals with a family history of cancer were significantly more likely to have a pathogenic or likely pathogenic variant than those without one (p = 0.002). Overall, our results show the necessity for future research with a larger sample size to better explain the relationship between clinicopathologic data and genetic variants.
Collapse
Affiliation(s)
| | | | - Kenneth A Iczkowski
- Department of Pathology and Laboratory Medicine, University of California-Davis, Sacramento, CA 95817, United States
| | | | - Junqi Qian
- Virginia Urology, Richmond, VA 23235, United States.
| | | |
Collapse
|
2
|
Sulaiman KM, Hama Salih RM. Study of HOXB13 Gene Variants in Prostate Cancer Patients. Cureus 2024; 16:e72513. [PMID: 39606519 PMCID: PMC11599774 DOI: 10.7759/cureus.72513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Prostate cancer (PC) is a prevalent malignancy with a significant hereditary component. The HOXB13 gene, encoding a transcription factor involved in prostate development, has been implicated in PC risk. OBJECTIVE The objective of this study was to assess the existence of HOXB13 mutations in PC patients. METHOD The retrospective study included 33 PC patients and 23 controls. Demographic data, family history, and smoking habits were recorded. Prostate-specific antigen (PSA) levels were measured. We investigated the second exon of HOXB13 after extracting genomic DNA from blood samples for mutations using polymerase chain reaction and Sanger sequencing. RESULT PC patients had a higher mean age (64.7 years), more frequent positive family history (63.64%, N = 21), and higher smoking prevalence (60.61%, N = 20) compared to controls. PSA levels were significantly elevated in patients (76.58 ng/ml) versus controls (7.22 ng/ml). HOXB13 mutations, including thymine (3.03%, N = 1), guanine (27.27%, N = 9), and adenine (33.33%, N = 11) mutations, were observed in patients, while no mutations were found in controls. CONCLUSION PC patients had higher mean age, more positive family histories, higher smoking rates, and elevated PSA levels. HOXB13 mutations were significantly higher in patients compared to controls. These findings emphasize the roles of HOXB13, age, family history, smoking, and PSA in PC risk stratification.
Collapse
Affiliation(s)
- Kazhal M Sulaiman
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, IRQ
| | - Rebwar M Hama Salih
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, IRQ
| |
Collapse
|
3
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy FMA, Alsaadi SB, Abosaoda MK. Role of homeobox genes in cancer: immune system interactions, long non-coding RNAs, and tumor progression. Mol Biol Rep 2024; 51:964. [PMID: 39240390 DOI: 10.1007/s11033-024-09857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
The intricate interplay between Homeobox genes, long non-coding RNAs (lncRNAs), and the development of malignancies represents a rapidly expanding area of research. Specific discernible lncRNAs have been discovered to adeptly regulate HOX gene expression in the context of cancer, providing fresh insights into the molecular mechanisms that govern cancer development and progression. An in-depth comprehension of these intricate associations may pave the way for innovative therapeutic strategies in cancer treatment. The HOX gene family is garnering increasing attention due to its involvement in immune system regulation, interaction with long non-coding RNAs, and tumor progression. Although initially recognized for its crucial role in embryonic development, this comprehensive exploration of the world of HOX genes contributes to our understanding of their diverse functions, potentially leading to immunology, developmental biology, and cancer research discoveries. Thus, the primary objective of this review is to delve into these aspects of HOX gene biology in greater detail, shedding light on their complex functions and potential therapeutic applications.
Collapse
Affiliation(s)
| | - Shireen Hamid Farhan
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Bıyıkoğlu M, Tanrıverdi R, Bozlu M, Şenel S, Fidancı ŞB, Tamer L, Akbay E. Evaluation of homeobox protein B13 (HOXB13) gene G84E mutation in patients with prostate cancer. World J Urol 2024; 42:476. [PMID: 39115757 DOI: 10.1007/s00345-024-05186-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 01/04/2025] Open
Abstract
OBJECTIVES To comprehensively investigate the potential association between prostate cancer (PCa) and the G84E mutation within the Homeobox Protein B13 (HOXB13) gene among individuals of Turkish descent, our study aims to undertake a prospective examination. METHODS We evaluated 300 patients (150 diagnosed with prostate cancer, 150 controls) who presented in our clinic. Data collected were prospectively examined. DNA isolation was performed using an isolation kit. The HOXB13-G84E mutation (rs138213197) was analyzed in the obtained samples. Data encoding and statistical analysis were performed. RESULTS The pathological allele for the G84E mutation was T. According to the findings, no mutations were detected in the control group, while the G84E mutation was detected in 17 patients in the patient group, all of whom had the TC genotype. The analysis showed that having the CC genotype reduced the risk of prostate cancer by 0.47 times (OR=0.47, CI=0.415-0.532). Our results did not support a trend toward family history or earlier-onset disease in comparisons between carriers and non-carriers of HOXB13 G84E mutation. Individuals with a positive family history exhibited a higher frequency of the G84E mutation. CONCLUSIONS We concluded that HOXB13 gene mutation is indeed linked to PCa in Turkish men. However, we did not find a relationship between the HOXB13 gene G84E mutation carrier status and either early-onset PCa or familial PCa in Turkish men.
Collapse
Affiliation(s)
- Melih Bıyıkoğlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye.
| | - Rojda Tanrıverdi
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Murat Bozlu
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Samet Şenel
- Department of Urology, Ankara State Hospital, Ankara, Türkiye
| | - Şenay Balcı Fidancı
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Lülüfer Tamer
- Department of Biochemistry, University of Mersin Faculty of Medicine, Mersin, Türkiye
| | - Erdem Akbay
- Department of Urology, University of Mersin Faculty of Medicine, Mersin, Türkiye
| |
Collapse
|
5
|
Vlaming M, Ausems MGEM, Schijven G, van Oort IM, Kets CM, Komdeur FL, van der Kolk LE, Oldenburg RA, Sijmons RH, Kiemeney LALM, Bleiker EMA. Men with metastatic prostate cancer carrying a pathogenic germline variant in breast cancer genes: disclosure of genetic test results to relatives. Fam Cancer 2024; 23:165-175. [PMID: 38722431 PMCID: PMC11153271 DOI: 10.1007/s10689-024-00377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 06/06/2024]
Abstract
Some patients with metastatic prostate cancer carry a pathogenic germline variant (PV) in a gene, that is mainly associated with an increased risk of breast cancer in women. If they test positive for such a PV, prostate cancer patients are encouraged to disclose the genetic test result to relatives who are at risk in case the carrier status changes the relatives' medical care. Our study aimed to investigate how men who learned they carry a PV in BRCA1, BRCA2, PALB2, CHEK2 or ATM disclosed their carrier status to at-risk relatives and to assess the possible psychological burden for the carrier and their perception of the burden for relatives. In total, 23 men with metastatic prostate cancer carrying a PV completed the IRI questionnaire about family communication; 14 also participated in a semi-structured interview. Patients felt highly confident in discussing the genetic test result with relatives. The diagnosis of prostate cancer was experienced as a burden, whereas being informed about genetic testing results did in most cases not add to this burden. Two patients encountered negative experiences with family communication, as they considered the genetic test result to be more urgent than their relatives. This mixed-methods study shows that metastatic prostate cancer patients with a PV in genes mainly associated with increased risk of breast cancer feel well-equipped to communicate about this predisposition in their families. Carriers felt motivated to disclose their genetic test result to relatives. Most of them indicated that the disclosure was not experienced as a psychological burden.
Collapse
Affiliation(s)
- Michiel Vlaming
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Margreet G E M Ausems
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Gina Schijven
- Department of Genetics, Division Laboratories, Pharmacy and Biomedical Genetics, University Medical Center Utrecht, Heidelberglaan 100, CX Utrecht, 3584, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - C Marleen Kets
- Department of Human Genetics, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - Fenne L Komdeur
- Department of Human Genetics, Amsterdam University Medical Centers, Meibergdreef 9, AZ Amsterdam, 1105, The Netherlands
| | - Lizet E van der Kolk
- Department of Clinical Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands
| | - Rogier A Oldenburg
- Department of Clinical Genetics, Erasmus Medical Center, Dr. Molewaterplein 40, GD Rotterdam, 3015, The Netherlands
| | - Rolf H Sijmons
- Department of Genetics, University Medical Center Groningen, Hanzeplein 1, GZ Groningen, 9713, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
- Department for Health Evidence, Radboud University Medical Center, Geert Grooteplein Zuid 10, GA Nijmegen, 6525, The Netherlands
| | - Eveline M A Bleiker
- Department of Clinical Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands.
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, CX Amsterdam, 1066, The Netherlands.
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, ZA Leiden, 2333, The Netherlands.
| |
Collapse
|
6
|
Chávarri-Guerra Y, Bourlon MT, Rodríguez-Olivares JL, Orozco L, Bazua D, Rodríguez-Faure A, Alcalde-Castro MJ, Castro E, Castillo D, Herzog J, Weitzel J. Germline DNA Repair Genes Pathogenic Variants Among Mexican Patients With Prostate Cancer. Clin Genitourin Cancer 2023; 21:569-573. [PMID: 37380563 DOI: 10.1016/j.clgc.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Early identification of germline mutation carriers may be relevant for the optimal management of prostate cancer and to inform cancer risk in relatives. However, population minorities have limited access to genetic testing. The aim of this study was to describe the frequency of DNA repair gene pathogenic variants (PVs) among Mexican men with prostate cancer referred for Genomic Cancer Risk Assessment and testing. METHODS Patients diagnosed with prostate cancer who meet criteria for genetic testing and enrolled in the Clinical Cancer Genomics Community Research Network at the Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán in Mexico City were included. Descriptive statistics were performed using frequency and proportions for categorical variables and median and range for quantitative variables. X2 and t test were used for group comparisons. RESULTS A total of 199 men were enrolled, median age at diagnosis was 66 (range 44-88) years; 45% were de novo metastatic and 44% were high- very high and 10% were intermediate risk group. Four (2%) had a pathogenic germline variant; one each of the following genes: ATM, CHEK2, BRIP1, and MUTYH (all monoallelic). Younger men at diagnosis were more likely to carry a PV than older age at diagnosis (56.7 vs. 66.4 years, P = .01). CONCLUSION Our results showed a low prevalence of known prostate cancer associated PVs and no BRCA PVs in Mexican men with prostate cancer. This suggests that the genetic and/or epidemiologic risk factors for prostate cancer are not well characterized in this specific population.
Collapse
Affiliation(s)
- Yanin Chávarri-Guerra
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María T Bourlon
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José L Rodríguez-Olivares
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Luis Orozco
- Centro Médico del Instituto de Seguridad Social del Estado de México y Municipios (ISSEMyM), Toluca, Edo. de México, Mexico
| | - Deborah Bazua
- Facultad de Medicina, Universidad Autónoma de Baja California, Mexicali, Baja California, Mexico
| | - Andrés Rodríguez-Faure
- Department of Hematology and Oncology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Mirza J Alcalde-Castro
- Department of Medicine, Divisions of Palliative Medicine and Medical Oncology, University of Toronto, Toronto, Canada
| | - Elena Castro
- National Cancer Research Center, Prostate Cancer Clinic Unit, Madrid, Spain
| | - Danielle Castillo
- City of Hope Cancer Center, Latin American School of Oncology (ELO), Duarte, CA, United States
| | - Josef Herzog
- City of Hope Cancer Center, Latin American School of Oncology (ELO), Duarte, CA, United States
| | | |
Collapse
|
7
|
Mehra N, Kloots I, Vlaming M, Aluwini S, Dewulf E, Oprea-Lager DE, van der Poel H, Stoevelaar H, Yakar D, Bangma CH, Bekers E, van den Bergh R, Bergman AM, van den Berkmortel F, Boudewijns S, Dinjens WN, Fütterer J, van der Hulle T, Jenster G, Kroeze LI, van Kruchten M, van Leenders G, van Leeuwen PJ, de Leng WW, van Moorselaar RJA, Noordzij W, Oldenburg RA, van Oort IM, Oving I, Schalken JA, Schoots IG, Schuuring E, Smeenk RJ, Vanneste BG, Vegt E, Vis AN, de Vries K, Willemse PPM, Wondergem M, Ausems M. Genetic Aspects and Molecular Testing in Prostate Cancer: A Report from a Dutch Multidisciplinary Consensus Meeting. EUR UROL SUPPL 2023; 49:23-31. [PMID: 36874601 PMCID: PMC9975012 DOI: 10.1016/j.euros.2022.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2022] [Indexed: 01/27/2023] Open
Abstract
Background Germline and tumour genetic testing in prostate cancer (PCa) is becoming more broadly accepted, but testing indications and clinical consequences for carriers in each disease stage are not yet well defined. Objective To determine the consensus of a Dutch multidisciplinary expert panel on the indication and application of germline and tumour genetic testing in PCa. Design setting and participants The panel consisted of 39 specialists involved in PCa management. We used a modified Delphi method consisting of two voting rounds and a virtual consensus meeting. Outcome measurements and statistical analysis Consensus was reached if ≥75% of the panellists chose the same option. Appropriateness was assessed by the RAND/UCLA appropriateness method. Results and limitations Of the multiple-choice questions, 44% reached consensus. For men without PCa having a relevant family history (familial PCa/BRCA-related hereditary cancer), follow-up by prostate-specific antigen was considered appropriate. For patients with low-risk localised PCa and a family history of PCa, active surveillance was considered appropriate, except in case of the patient being a BRCA2 germline pathogenic variant carrier. Germline and tumour genetic testing should not be done for nonmetastatic hormone-sensitive PCa in the absence of a relevant family history of cancer. Tumour genetic testing was deemed most appropriate for the identification of actionable variants, with uncertainty for germline testing. For tumour genetic testing in metastatic castration-resistant PCa, consensus was not reached for the timing and panel composition. The principal limitations are as follows: (1) a number of topics discussed lack scientific evidence, and therefore the recommendations are partly opinion based, and (2) there was a small number of experts per discipline. Conclusions The outcomes of this Dutch consensus meeting may provide further guidance on genetic counselling and molecular testing related to PCa. Patient summary A group of Dutch specialists discussed the use of germline and tumour genetic testing in prostate cancer (PCa) patients, indication of these tests (which patients and when), and impact of these tests on the management and treatment of PCa.
Collapse
Affiliation(s)
- Niven Mehra
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Iris Kloots
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Michiel Vlaming
- Division Laboratories, Pharmacy and biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Shafak Aluwini
- Department of Radiation Oncology, UMCG, Groningen, The Netherlands
| | - Els Dewulf
- Centre for Decision Analysis & Support, Ismar Healthcare NV, Lier, Belgium
| | - Daniela E. Oprea-Lager
- Department of Radiology & Nuclear Medicine, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Henk van der Poel
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Urology, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Herman Stoevelaar
- Centre for Decision Analysis & Support, Ismar Healthcare NV, Lier, Belgium
| | - Derya Yakar
- Department of Radiology, UMCG, Groningen, The Netherlands
- Department of Radiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Chris H. Bangma
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Elise Bekers
- Department of Pathology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | - Andries M. Bergman
- Department of Medical Oncology and Oncogenomics, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | - Steve Boudewijns
- Department of Medical Oncology, Bravis Hospital, Roosendaal, The Netherlands
| | | | - Jurgen Fütterer
- Department of Medical Imaging, Radboud UMC, Nijmegen, The Netherlands
| | - Tom van der Hulle
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Guido Jenster
- Department of Urology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Michel van Kruchten
- Department of Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | - Pim J. van Leeuwen
- Department of Urology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | | | | | - Walter Noordzij
- Department of Nuclear Medicine & Molecular Imaging, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Irma Oving
- Department of Internal Medicine, Ziekenhuis Groep Twente, Almelo, The Netherlands
| | | | - Ivo G. Schoots
- Department of Radiology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Ed Schuuring
- Department of Pathology, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J. Smeenk
- Department of Radiation Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Ben G.L. Vanneste
- Department of Radiation Oncology (MAASTRO), GROW - School for Oncology and Developmental Biology, Maastricht UMC, Maastricht, The Netherlands
- Department of Human Structure and Repair, Ghent University Hospital, Ghent, Belgium
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Erik Vegt
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Amsterdam University Medical Centers, VU University, Amsterdam, The Netherlands
| | - Kim de Vries
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Maurits Wondergem
- Department of Nuclear Medicine, Netherlands Cancer Institute-Antoni van Leeuwenhoek, Amsterdam, The Netherlands
| | - Margreet Ausems
- Division Laboratories, Pharmacy and biomedical Genetics, Department of Genetics, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
Vlaming M, Bleiker EMA, van Oort IM, Kiemeney LALM, Ausems MGEM. Mainstream germline genetic testing in men with metastatic prostate cancer: design and protocol for a multicenter observational study. BMC Cancer 2022; 22:1365. [PMID: 36581909 PMCID: PMC9801568 DOI: 10.1186/s12885-022-10429-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/07/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In international guidelines, germline genetic testing is recommended for patients with metastatic prostate cancer. Before undergoing germline genetic testing, these patients should receive pre-test counseling. In the standard genetic care pathway, pre-test counseling is provided by a healthcare professional of a genetics department. Because the number of patients with metastatic prostate cancer is large, the capacity in the genetics departments might be insufficient. Therefore, we aim to implement so-called mainstream genetic testing in the Netherlands for patients with metastatic prostate cancer. In a mainstream genetic testing pathway, non-genetic healthcare professionals discuss and order germline genetic testing. In our DISCOVER study, we will assess the experiences among patients and non-genetic healthcare professionals with this new pathway. METHODS A multicenter prospective observational cohort study will be conducted in 15 hospitals, in different regions of the Netherlands. We developed an online training module on genetics in prostate cancer and the counseling of patients. After completion of this module, non-genetic healthcare professionals will provide pre-test counseling and order germline genetic testing in metastatic prostate cancer patients. Both non-genetic healthcare professionals and patients receive three questionnaires. We will determine the experience with mainstream genetic testing, based on satisfaction and acceptability. Patients with a pathogenic germline variant will also be interviewed. We will determine the efficacy of the mainstreaming pathway, based on time investment for non-genetic healthcare professionals and the prevalence of pathogenic germline variants. DISCUSSION This study is intended to be one of the largest studies on mainstream genetic testing in prostate cancer. The results of this study can improve the mainstream genetic testing pathway in patients with prostate cancer. TRIAL REGISTRATION The study is registered in the WHO's International Clinical Trials Registry Platform (ICTRP) under number NL9617.
Collapse
Affiliation(s)
- Michiel Vlaming
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands
| | - Eveline M A Bleiker
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
- Family Cancer Clinic, The Netherlands Cancer Institute, Plesmanlaan 121, 1066, CX, Amsterdam, The Netherlands
| | - Inge M van Oort
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
| | - Lambertus A L M Kiemeney
- Department of Urology, Radboud university medical center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud university medical center, Geert Grooteplein Zuid 21, 6525, EZ, Nijmegen, The Netherlands
| | - Margreet G E M Ausems
- Division Laboratories, Pharmacy and Biomedical Genetics, dept. of Genetics, University Medical Center Utrecht, Heidelberglaan 100, 3584, CX, Utrecht, The Netherlands.
| |
Collapse
|
9
|
Trendowski MR, Sample C, Baird T, Sadeghpour A, Moon D, Ruterbusch JJ, Beebe-Dimmer JL, Cooney KA. Germline Variants in DNA Damage Repair Genes and HOXB13 Among Black Patients With Early-Onset Prostate Cancer. JCO Precis Oncol 2022; 6:e2200460. [PMID: 36446039 PMCID: PMC9812633 DOI: 10.1200/po.22.00460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
PURPOSE Genetic studies of prostate cancer susceptibility have predominantly focused on non-Hispanic White men, despite the observation that Black men are more likely to develop prostate cancer and die from the disease. Therefore, we sought to identify genetic variants in Black patients diagnosed with early-onset prostate cancer. METHODS Whole-exome sequencing of germline DNA from a population-based cohort of Black men diagnosed with prostate cancer at age 62 years or younger was performed. Analysis was focused on a panel of DNA damage repair (DDR) genes and HOXB13. All discovered variants were ranked according to their pathogenic potential based upon REVEL score, evidence from existing literature, and prevalence in the cohort. Logistic regression was used to investigate associations between mutation status and relevant clinical characteristics. RESULTS Among 743 Black prostate cancer patients, we identified 26 unique pathogenic (P) or likely pathogenic (LP) variants in 14 genes (including HOXB13, BRCA1/2, BRIP1, ATM, CHEK2, and PALB2) among 30 men, or approximately 4.0% of the patient population. We also identified 33 unique variants of unknown significance in 16 genes among 39 men. Because of the rarity of these variants in the population, most associations between clinical characteristics did not achieve statistical significance. However, our results suggest that carriers for P or LP (P/LP) variants were more likely to have a first-degree relative diagnosed with DDR gene-associated cancer, have a higher prostate-specific antigen at time of diagnosis, and be diagnosed with metastatic disease. CONCLUSION Variants in DDR genes and HOXB13 may be important cancer risk factors for Black men diagnosed with early-onset prostate cancer, and are more frequently observed in men with a family history of cancer.
Collapse
Affiliation(s)
| | | | - Tara Baird
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Azita Sadeghpour
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - David Moon
- Department of Medicine, Duke University School of Medicine, Durham, NC
| | - Julie J. Ruterbusch
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Jennifer L. Beebe-Dimmer
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI
- Barbara Ann Karmanos Cancer Institute, Detroit, MI
| | - Kathleen A. Cooney
- Department of Medicine, Duke University School of Medicine, Durham, NC
- Duke Cancer Institute, Durham, NC
| |
Collapse
|
10
|
Greenberg SE, Hunt TC, Ambrose JP, Lowrance WT, Dechet CB, O'Neil BB, Tward JD. Clinical Germline Testing Results of Men With Prostate Cancer: Patient-Level Factors and Implications of NCCN Guideline Expansion. JCO Precis Oncol 2021; 5:PO.20.00432. [PMID: 34250421 PMCID: PMC8232879 DOI: 10.1200/po.20.00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Germline likely pathogenic or pathogenic variants (PVs) have been identified in up to 17% of men with prostate cancer (PC) and may drive disease severity or be targetable by novel therapies. National Comprehensive Cancer Network (NCCN) guidelines encouraging germline testing in metastatic PC were recently expanded to include all men with high-risk, very high-risk, or regional PC. Our aim was to assess the impact of expanded NCCN guidelines on the detection rate of germline PVs and to determine patient-level factors associated with a PV germline testing result. PATIENTS AND METHODS Men with PC underwent multigene germline genetic testing for PVs from June 2016 to December 2018, and trends were compared. The association of patient-level factors with a PV germline testing result, where ≥ 1 PV was identified, was assessed using analysis of variance and univariate logistic regression. Sensitivity analyses were limited to clinically actionable variants and those associated with disease severity or progression (BRCA1/2 and ATM). RESULTS Of 408 men undergoing germline testing, 42 (10.3%) men had PVs and 366 (89.7%) men did not have PVs identified. The proportion of men identified with a germline PV remained stable following testing criteria expansion (9.4% v 10.6%, P = .73). No patient-level factors were significantly associated with increased odds of a PV germline testing result, including age at diagnosis, race, pretreatment prostate-specific antigen, Gleason grade group, NCCN risk group, and family history of cancer (breast and/or ovarian, prostate, or any cancer). CONCLUSION This study demonstrated a stable PV detection rate in men with PC using expanded criteria aligned to the updated NCCN testing guidelines. However, we did not find strong evidence to suggest that patient-level factors are associated with PV germline testing results. These findings support the recent expansion of NCCN germline testing guidelines in PC.
Collapse
Affiliation(s)
- Samantha E. Greenberg
- Genetic Counseling Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Trevor C. Hunt
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jacob P. Ambrose
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - William T. Lowrance
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Christopher B. Dechet
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Brock B. O'Neil
- Division of Urology, Department of Surgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jonathan D. Tward
- Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|