1
|
Mason M, Lapuente-Santana Ó, Halkola AS, Wang W, Mall R, Xiao X, Kaufman J, Fu J, Pfeil J, Banerjee J, Chung V, Chang H, Chasalow SD, Lin HY, Chai R, Yu T, Finotello F, Mirtti T, Mäyränpää MI, Bao J, Verschuren EW, Ahmed EI, Ceccarelli M, Miller LD, Monaco G, Hendrickx WRL, Sherif S, Yang L, Tang M, Gu SS, Zhang W, Zhang Y, Zeng Z, Das Sahu A, Liu Y, Yang W, Bedognetti D, Tang J, Eduati F, Laajala TD, Geese WJ, Guinney J, Szustakowski JD, Vincent BG, Carbone DP. A community challenge to predict clinical outcomes after immune checkpoint blockade in non-small cell lung cancer. J Transl Med 2024; 22:190. [PMID: 38383458 PMCID: PMC10880244 DOI: 10.1186/s12967-023-04705-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Predictive biomarkers of immune checkpoint inhibitor (ICI) efficacy are currently lacking for non-small cell lung cancer (NSCLC). Here, we describe the results from the Anti-PD-1 Response Prediction DREAM Challenge, a crowdsourced initiative that enabled the assessment of predictive models by using data from two randomized controlled clinical trials (RCTs) of ICIs in first-line metastatic NSCLC. METHODS Participants developed and trained models using public resources. These were evaluated with data from the CheckMate 026 trial (NCT02041533), according to the model-to-data paradigm to maintain patient confidentiality. The generalizability of the models with the best predictive performance was assessed using data from the CheckMate 227 trial (NCT02477826). Both trials were phase III RCTs with a chemotherapy control arm, which supported the differentiation between predictive and prognostic models. Isolated model containers were evaluated using a bespoke strategy that considered the challenges of handling transcriptome data from clinical trials. RESULTS A total of 59 teams participated, with 417 models submitted. Multiple predictive models, as opposed to a prognostic model, were generated for predicting overall survival, progression-free survival, and progressive disease status with ICIs. Variables within the models submitted by participants included tumor mutational burden (TMB), programmed death ligand 1 (PD-L1) expression, and gene-expression-based signatures. The best-performing models showed improved predictive power over reference variables, including TMB or PD-L1. CONCLUSIONS This DREAM Challenge is the first successful attempt to use protected phase III clinical data for a crowdsourced effort towards generating predictive models for ICI clinical outcomes and could serve as a blueprint for similar efforts in other tumor types and disease states, setting a benchmark for future studies aiming to identify biomarkers predictive of ICI efficacy. TRIAL REGISTRATION CheckMate 026; NCT02041533, registered January 22, 2014. CheckMate 227; NCT02477826, registered June 23, 2015.
Collapse
Affiliation(s)
- Mike Mason
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Óscar Lapuente-Santana
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Anni S Halkola
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Wenyu Wang
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
- Department of Immunology, St. Jude Children's Research Hospital, P.O. Box 38105, Memphis, TN, USA
- Biotechnology Research Center, Technology Innovation Institute, P.O. Box 9639, Abu Dhabi, United Arab Emirates
| | - Xu Xiao
- School of Informatics, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jacob Kaufman
- Department of Medicine, Duke University, Durham, NC, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Jingxin Fu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | | | - Han Chang
- Bristol Myers Squibb, Princeton, NJ, USA
| | | | | | | | | | - Francesca Finotello
- Institute of Molecular Biology, University of Innsbruck, Innsbruck, Austria
- Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Tuomas Mirtti
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- Department of Biomedical Engineering, School of Medicine, Emory University, Atlanta, GA, USA
| | - Mikko I Mäyränpää
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jie Bao
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
| | - Emmy W Verschuren
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Eiman I Ahmed
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", 80125, Naples, Italy
- BIOGEM Institute of Molecular Biology and Genetics, Via Camporeale, Ariano Irpino, Italy
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Gianni Monaco
- BIOGEM Institute of Molecular Biology and Genetics, Via Camporeale, Ariano Irpino, Italy
| | - Wouter R L Hendrickx
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
| | - Shimaa Sherif
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
| | - Lin Yang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ming Tang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | | - Yi Zhang
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zexian Zeng
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yang Liu
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Davide Bedognetti
- Human Immunology Department, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, P.O. Box 26999, Doha, Qatar
- Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy
| | - Jing Tang
- Faculty of Medicine, Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Federica Eduati
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Teemu D Laajala
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program in Systems Oncology, University of Helsinki, Helsinki, Finland
- iCAN-Digital Precision Cancer Medicine Flagship, Helsinki, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Pharmacology, Anschutz Medical Campus, University of Colorado, Denver, CO, USA
| | | | | | | | - Benjamin G Vincent
- Department of Medicine, Division of Hematology, Department of Microbiology and Immunology, Curriculum in Bioinformatics and Computational Biology, Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David P Carbone
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
2
|
Yolchuyeva S, Ebrahimpour L, Tonneau M, Lamaze F, Orain M, Coulombe F, Malo J, Belkaid W, Routy B, Joubert P, Manem VS. Multi-institutional prognostic modeling of survival outcomes in NSCLC patients treated with first-line immunotherapy using radiomics. J Transl Med 2024; 22:42. [PMID: 38200511 PMCID: PMC10777540 DOI: 10.1186/s12967-024-04854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) have emerged as one of the most promising first-line therapeutics in the management of non-small cell lung cancer (NSCLC). However, only a subset of these patients responds to ICIs, highlighting the clinical need to develop better predictive and prognostic biomarkers. This study will leverage pre-treatment imaging profiles to develop survival risk models for NSCLC patients treated with first-line immunotherapy. METHODS Advanced NSCLC patients (n = 149) were retrospectively identified from two institutions who were treated with first-line ICIs. Radiomics features extracted from pretreatment imaging scans were used to build the predictive models for progression-free survival (PFS) and overall survival (OS). A compendium of five feature selection methods and seven machine learning approaches were utilized to build the survival risk models. The concordance index (C-index) was used to evaluate model performance. RESULTS From our results, we found several combinations of machine learning algorithms and feature selection methods to achieve similar performance. K-nearest neighbourhood (KNN) with ReliefF (RL) feature selection was the best-performing model to predict PFS (C-index = 0.61 and 0.604 in discovery and validation cohorts), while XGBoost with Mutual Information (MI) feature selection was the best-performing model for OS (C-index = 0.7 and 0.655 in discovery and validation cohorts). CONCLUSION The results of this study highlight the importance of implementing an appropriate feature selection method coupled with a machine learning strategy to develop robust survival models. With further validation of these models on external cohorts when available, this can have the potential to improve clinical decisions by systematically analyzing routine medical images.
Collapse
Affiliation(s)
- Sevinj Yolchuyeva
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois-Rivières, Canada
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Leyla Ebrahimpour
- Quebec Heart & Lung Institute Research Center, Québec , Canada
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
- Department of Physics, Laval University, Québec, Canada
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Canada
- Université de médecine de Lille, Lille, France
| | - Fabien Lamaze
- Quebec Heart & Lung Institute Research Center, Québec , Canada
| | - Michele Orain
- Quebec Heart & Lung Institute Research Center, Québec , Canada
| | | | - Julie Malo
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Canada
| | - Wiam Belkaid
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montreal, Canada
| | - Philippe Joubert
- Quebec Heart & Lung Institute Research Center, Québec , Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec, Canada
| | - Venkata Sk Manem
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois-Rivières, Canada.
- Quebec Heart & Lung Institute Research Center, Québec , Canada.
- Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada.
| |
Collapse
|
4
|
Yolchuyeva S, Giacomazzi E, Tonneau M, Lamaze F, Orain M, Coulombe F, Malo J, Belkaid W, Routy B, Joubert P, Manem VSK. Radiomics approaches to predict PD-L1 and PFS in advanced non-small cell lung patients treated with immunotherapy: a multi-institutional study. Sci Rep 2023; 13:11065. [PMID: 37422576 PMCID: PMC10329671 DOI: 10.1038/s41598-023-38076-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023] Open
Abstract
With the increasing use of immune checkpoint inhibitors (ICIs), there is an urgent need to identify biomarkers to stratify responders and non-responders using programmed death-ligand (PD-L1) expression, and to predict patient-specific outcomes such as progression free survival (PFS). The current study is aimed to determine the feasibility of building imaging-based predictive biomarkers for PD-L1 and PFS through systematically evaluating a combination of several machine learning algorithms with different feature selection methods. A retrospective, multicenter study of 385 advanced NSCLC patients amenable to ICIs was undertaken in two academic centers. Radiomic features extracted from pretreatment CT scans were used to build predictive models for PD-L1 and PFS (short-term vs. long-term survivors). We first employed the LASSO methodology followed by five feature selection methods and seven machine learning approaches to build the predictors. From our analyses, we found several combinations of feature selection methods and machine learning algorithms to achieve a similar performance. Logistic regression with ReliefF feature selection (AUC = 0.64, 0.59 in discovery and validation cohorts) and SVM with Anova F-test feature selection (AUC = 0.64, 0.63 in discovery and validation datasets) were the best-performing models to predict PD-L1 and PFS. This study elucidates the application of suitable feature selection approaches and machine learning algorithms to predict clinical endpoints using radiomics features. Through this study, we identified a subset of algorithms that should be considered in future investigations for building robust and clinically relevant predictive models.
Collapse
Affiliation(s)
- Sevinj Yolchuyeva
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Elena Giacomazzi
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada
| | - Marion Tonneau
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
- Université de médecine de Lille, Lille, France
| | - Fabien Lamaze
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Michele Orain
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - François Coulombe
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
| | - Julie Malo
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Wiam Belkaid
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Bertrand Routy
- Centre de Recherche du Centre Hospitalier Universitaire de Montréal, Montréal, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Venkata S K Manem
- Department of Mathematics and Computer Science, Université du Québec à Trois Rivières, Trois Rivières, Canada.
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
| |
Collapse
|