1
|
Kuzmanović L, Mandalà G, Tundo S, Ciorba R, Frangella M, Ruggeri R, Rossini F, Gevi F, Rinalducci S, Ceoloni C. Equipping Durum Wheat- Thinopyrum ponticum Recombinant Lines With a Thinopyrum elongatum Major QTL for Resistance to Fusarium Diseases Through a Cytogenetic Strategy. FRONTIERS IN PLANT SCIENCE 2019; 10:1324. [PMID: 31695716 PMCID: PMC6817583 DOI: 10.3389/fpls.2019.01324] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/24/2019] [Indexed: 05/08/2023]
Abstract
Prompted by recent changes in climate trends, cropping areas, and management practices, Fusarium head blight (FHB), a threatening disease of cereals worldwide, is also spreading in unusual environments, where bread wheat (BW) and durum wheat (DW) are largely cultivated. The scarcity of efficient resistance sources within adapted germplasm is particularly alarming for DW, mainly utilized for human consumption, which is therefore at high risk of kernel contamination by health-dangerous mycotoxins (e.g., deoxynivalenol = DON). To cope with this scenario, we looked outside the wheat primary gene pool and recently transferred an exceptionally effective FHB resistance QTL (Fhb-7EL) from Thinopyrum elongatum 7EL chromosome arm onto a Thinopyrum ponticum 7el1L arm segment, containing additional valuable genes (including Lr19 for leaf rust resistance and Yp for yellow pigment content), distally inserted onto 7DL of BW lines. Two such lines were crossed with two previously developed DW-Th. ponticum recombinants, having 7el1L distal portions on 7AL arms. Genomic in situ hybridization (GISH) analysis showed homologous pairing, which is enabled by 7el1L segments common to the BW and DW recombinant chromosomes, to occur with 42-78% frequency, depending on the shared 7el1L amount. Aided by 7EL/7el1L-linked markers, 7EL+7el1L tetraploid recombinant types were isolated in BC1 progenies to DW of all cross combinations. Homozygous 7EL+7el1L recombinant plants and null segregates selected in BC2F2 progenies were challenged by Fusarium graminearum spike inoculation to verify the Fhb-7EL efficacy in DW. Infection outcomes confirmed previous observations in BW, with >90% reduction of disease severity associated with Fhb-7EL presence vs. its absence. The same differential effect was detected on seed set and weight of inoculated spikes, with genotypes lacking Fhb-7EL having ∼80% reduction compared with unaffected values of Fhb-7EL carriers. In parallel, DON content in flour extracts of resistant recombinants averaged 0.67 ppm, a value >800 times lower than that of susceptible controls. Furthermore, as observed in BW, the same Fhb-7EL also provided the novel DW recombinants with resistance to Fusarium crown rot (∼60% symptom reduction) as from seedling infection with Fusarium culmorum. Through alien segment stacking, we succeeded in equipping DW with a very effective barrier against different Fusarium diseases and other positive attributes for crop security and safety.
Collapse
Affiliation(s)
- Ljiljana Kuzmanović
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Giulia Mandalà
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ciorba
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Matteo Frangella
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Roberto Ruggeri
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Francesco Rossini
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Federica Gevi
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
- *Correspondence: Carla Ceoloni,
| |
Collapse
|
2
|
Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities. DIVERSITY-BASEL 2017. [DOI: 10.3390/d9040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x) and tetraploid durum wheat (T. durum, 4x), widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s) of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or created by presence of alien genes affecting segregation of wheat-alien recombinant chromosomes, will also be illustrated.
Collapse
|
3
|
Ceoloni C, Forte P, Kuzmanović L, Tundo S, Moscetti I, De Vita P, Virili ME, D'Ovidio R. Cytogenetic mapping of a major locus for resistance to Fusarium head blight and crown rot of wheat on Thinopyrum elongatum 7EL and its pyramiding with valuable genes from a Th. ponticum homoeologous arm onto bread wheat 7DL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2005-2024. [PMID: 28656363 DOI: 10.1007/s00122-017-2939-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/15/2017] [Indexed: 05/19/2023]
Abstract
A major locus for resistance to different Fusarium diseases was mapped to the most distal end of Th. elongatum 7EL and pyramided with Th. ponticum beneficial genes onto wheat 7DL. Perennial Triticeae species of the Thinopyrum genus are among the richest sources of valuable genes/QTL for wheat improvement. One notable and yet unexploited attribute is the exceptionally effective resistance to a major wheat disease worldwide, Fusarium head blight, associated with the long arm of Thinopyrum elongatum chromosome 7E (7EL). We targeted the transfer of the temporarily designated Fhb-7EL locus into bread wheat, pyramiding it with a Th. ponticum 7el1L segment stably inserted into the 7DL arm of wheat line T4. Desirable genes/QTL mapped along the T4 7el1L segment determine resistance to wheat rusts (Lr19, Sr25) and enhancement of yield-related traits. Mapping of the Fhb-7EL QTL, prerequisite for successful pyramiding, was established here on the basis of a bioassay with Fusarium graminearum of different 7EL-7el1L bread wheat recombinant lines. These were obtained without resorting to any genetic pairing promotion, but relying on the close 7EL-7el1L homoeology, resulting in 20% pairing frequency between the two arms. Fhb-7EL resided in the telomeric portion and resistant recombinants could be isolated with useful combinations of more proximally located 7el1L genes/QTL. The transferred Fhb-7EL locus was shown to reduce disease severity and fungal biomass in grains of infected recombinants by over 95%. The same Fhb-7EL was, for the first time, proved to be effective also against F. culmorum and F. pseudograminearum, predominant agents of crown rot. Prebreeding lines possessing a suitable 7EL-7el1L gene/QTL assembly showed very promising yield performance in preliminary field tests.
Collapse
Affiliation(s)
- Carla Ceoloni
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy.
| | - Paola Forte
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Ljiljana Kuzmanović
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Silvio Tundo
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Ilaria Moscetti
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | | | - Maria Elena Virili
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| | - Renato D'Ovidio
- Department of Agricultural and Forest Sciences (DAFNE), University of Tuscia, 01100, Viterbo, Italy
| |
Collapse
|
4
|
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:452-467. [PMID: 27402341 DOI: 10.1111/tpj.13266] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 05/09/2023]
Abstract
Goat grasses (Aegilops spp.) contributed to the evolution of bread wheat and are important sources of genes and alleles for modern wheat improvement. However, their use in alien introgression breeding is hindered by poor knowledge of their genome structure and a lack of molecular tools. The analysis of large and complex genomes may be simplified by dissecting them into single chromosomes via flow cytometric sorting. In some species this is not possible due to similarities in relative DNA content among chromosomes within a karyotype. This work describes the distribution of GAA and ACG microsatellite repeats on chromosomes of the U, M, S and C genomes of Aegilops, and the use of microsatellite probes to label the chromosomes in suspension by fluorescence in situ hybridization (FISHIS). Bivariate flow cytometric analysis of chromosome DAPI fluorescence and fluorescence of FITC-labelled microsatellites made it possible to discriminate all chromosomes and sort them with negligible contamination by other chromosomes. DNA of purified chromosomes was used as a template for polymerase chain reation (PCR) using Conserved Orthologous Set (COS) markers with known positions on wheat A, B and D genomes. Wheat-Aegilops macrosyntenic comparisons using COS markers revealed significant rearrangements in the U and C genomes, while the M and S genomes exhibited structure similar to wheat. Purified chromosome fractions provided an attractive resource to investigate the structure and evolution of the Aegilops genomes, and the COS markers assigned to Aegilops chromosomes will facilitate alien gene introgression into wheat.
Collapse
Affiliation(s)
- István Molnár
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Veronika Burešová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Petr Cápal
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - András Farkas
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - András Cseh
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| | - Márta Molnár-Láng
- Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
5
|
Li H, Lv M, Song L, Zhang J, Gao A, Li L, Liu W. Production and Identification of Wheat-Agropyron cristatum 2P Translocation Lines. PLoS One 2016; 11:e0145928. [PMID: 26731742 PMCID: PMC4701160 DOI: 10.1371/journal.pone.0145928] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 12/10/2015] [Indexed: 11/24/2022] Open
Abstract
Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, possesses many potentially valuable traits that can be transferred to common wheat through breeding programs. The wheat-A. cristatum disomic addition and translocation lines can be used as bridge materials to introduce alien chromosomal segments to wheat. Wheat-A. cristatum 2P disomic addition line II-9-3 was highly resistant to powdery mildew and leaf rust, which was reported in our previous study. However, some translocation lines induced from II-9-3 have not been reported. In this study, some translocation lines were induced from II-9-3 by 60Co-γ irradiation and gametocidal chromosome 2C and then identified by cytological methods. Forty-nine wheat-A. cristatum translocation lines were obtained and various translcoation types were identified by GISH (genomic in situ hybridization), such as whole-arm, segmental and intercalary translocations. Dual-color FISH (fluorescent in situ hybridization) was applied to identify the wheat chromosomes involved in the translocations, and the results showed that A. cristatum 2P chromosome segments were translocated to the different wheat chromosomes, including 1A, 2A, 3A, 4A, 5A, 6A, 7A, 3B, 5B, 7B, 1D, 4D and 6D. Many different types of wheat-A. cristatum alien translocation lines would be valuable for not only identifying and cloning A. cristatum 2P-related genes and understanding the genetics and breeding effects of the translocation between A. cristatum chromosome 2P and wheat chromosomes, but also providing new germplasm resources for the wheat genetic improvement.
Collapse
Affiliation(s)
- Huanhuan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingjie Lv
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liqiang Song
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ainong Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lihui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- * E-mail: (WHL); (LHL)
| | - Weihua Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- * E-mail: (WHL); (LHL)
| |
Collapse
|
6
|
Tiwari VK, Wang S, Danilova T, Koo DH, Vrána J, Kubaláková M, Hribova E, Rawat N, Kalia B, Singh N, Friebe B, Doležel J, Akhunov E, Poland J, Sabir JSM, Gill BS. Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5M(g) of Aegilops geniculata. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:733-46. [PMID: 26408103 DOI: 10.1111/tpj.13036] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 05/07/2023]
Abstract
Next-generation sequencing (NGS) provides a powerful tool for the discovery of important genes and alleles in crop plants and their wild relatives. Despite great advances in NGS technologies, whole-genome shotgun sequencing is cost-prohibitive for species with complex genomes. An attractive option is to reduce genome complexity to a single chromosome prior to sequencing. This work describes a strategy for studying the genomes of distant wild relatives of wheat by isolating single chromosomes from addition or substitution lines, followed by chromosome sorting using flow cytometry and sequencing of chromosomal DNA by NGS technology. We flow-sorted chromosome 5M(g) from a wheat/Aegilops geniculata disomic substitution line [DS5M(g) (5D)] and sequenced it using an Illumina HiSeq 2000 system at approximately 50 × coverage. Paired-end sequences were assembled and used for structural and functional annotation. A total of 4236 genes were annotated on 5M(g) , in close agreement with the predicted number of genes on wheat chromosome 5D (4286). Single-gene FISH indicated no major chromosomal rearrangements between chromosomes 5M(g) and 5D. Comparing chromosome 5M(g) with model grass genomes identified synteny blocks in Brachypodium distachyon, rice (Oryza sativa), sorghum (Sorghum bicolor) and barley (Hordeum vulgare). Chromosome 5M(g) -specific SNPs and cytogenetic probe-based resources were developed and validated. Deletion bin-mapped and ordered 5M(g) SNP markers will be useful to track 5M-specific introgressions and translocations. This study provides a detailed sequence-based analysis of the composition of a chromosome from a distant wild relative of bread wheat, and opens up opportunities to develop genomic resources for wild germplasm to facilitate crop improvement.
Collapse
Affiliation(s)
- Vijay K Tiwari
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Shichen Wang
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Tatiana Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Dal Hoe Koo
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jan Vrána
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Marie Kubaláková
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eva Hribova
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Nidhi Rawat
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bhanu Kalia
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Narinder Singh
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, CZ 78371, Olomouc, Czech Republic
| | - Eduard Akhunov
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66502, USA
| | - Jesse Poland
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| | - Jamal S M Sabir
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bikram S Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University Manhattan, Manhattan, KS, 66506, USA
| |
Collapse
|
7
|
Durum wheat genetic stocks involving chromosome 1E of diploid wheatgrass: resistance to Fusarium head blight. THE NUCLEUS 2014. [DOI: 10.1007/s13237-014-0102-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Danilova TV, Friebe B, Gill BS. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:715-30. [PMID: 24408375 PMCID: PMC3931928 DOI: 10.1007/s00122-013-2253-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/13/2013] [Indexed: 05/04/2023]
Abstract
A cytogenetic map of wheat was constructed using FISH with cDNA probes. FISH markers detected homoeology and chromosomal rearrangements of wild relatives, an important source of genes for wheat improvement. To transfer agronomically important genes from wild relatives to bread wheat (Triticum aestivum L., 2n = 6 x = 42, AABBDD) by induced homoeologous recombination, it is important to know the chromosomal relationships of the species involved. Fluorescence in situ hybridization (FISH) can be used to study chromosome structure. The genomes of allohexaploid bread wheat and other species from the Triticeae tribe are colinear to some extent, i.e., composed of homoeoloci at similar positions along the chromosomes, and with genic regions being highly conserved. To develop cytogenetic markers specific for genic regions of wheat homoeologs, we selected more than 60 full-length wheat cDNAs using BLAST against mapped expressed sequence tags and used them as FISH probes. Most probes produced signals on all three homoeologous chromosomes at the expected positions. We developed a wheat physical map with several cDNA markers located on each of the 14 homoeologous chromosome arms. The FISH markers confirmed chromosome rearrangements within wheat genomes and were successfully used to study chromosome structure and homoeology in wild Triticeae species. FISH analysis detected 1 U-6 U chromosome translocation in the genome of Aegilops umbellulata, showed colinearity between chromosome A of Ae. caudata and group-1 wheat chromosomes, and between chromosome arm 7S#3 L of Thinopyrum intermedium and the long arm of the group-7 wheat chromosomes.
Collapse
Affiliation(s)
- Tatiana V. Danilova
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
| | - Bernd Friebe
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
| | - Bikram S. Gill
- Department of Plant Pathology, Wheat Genetics Resource Center, Kansas State University, Manhattan, KS 66506 USA
- Faculty of Science, Genomics and Biotechnology Section, Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| |
Collapse
|
9
|
Kuzmanović L, Gennaro A, Benedettelli S, Dodd IC, Quarrie SA, Ceoloni C. Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:509-25. [PMID: 24319256 PMCID: PMC3904708 DOI: 10.1093/jxb/ert393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
For the first time, using chromosome engineering of durum wheat, the underlying genetic determinants of a yield-improving segment from Thinopyrum ponticum (7AgL) were dissected. Three durum wheat-Th. ponticum near-isogenic recombinant lines (NIRLs), with distal portions of their 7AL arm (fractional lengths 0.77, 0.72, and 0.60) replaced by alien chromatin, were field-tested for two seasons under rainfed conditions. Yield traits and other agronomic characteristics of the main shoot and whole plant were measured. Loci for seed number per ear and per spikelet were detected in the proximal 7AgL segment (0.60-0.72). Loci determining considerable increases of flag leaf width and area, productive tiller number per plant, biomass per plant, and grain yield per plant were located in the distally adjacent 0.72-0.77 7AgL segment, while in the most distal portion (0.77-1.00) genetic effects on spikelet number per ear were identified. Contrary to previous reports, trials with the bread wheat T4 translocation line, carrying on 7DL a sizeable 7AgL segment of which those present in the durum wheat-Th. ponticum NIRLs represent fractions, gave no yield advantage. The hypothesis that ABA might be a factor contributing to the 7AgL effects was tested by analysing endogenous ABA contents of the NIRLs and their responses to exogenous ABA application. The 7AgL yield-related loci were shown to be ABA-independent. This study highlights the value of wheat-alien recombinant lines for dissecting the genetic and physiological basis of complex traits present in wild germplasm, and provides a basis for their targeted exploitation in wheat breeding.
Collapse
Affiliation(s)
- Ljiljana Kuzmanović
- Department of Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Andrea Gennaro
- Department of Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Stefano Benedettelli
- Department of Plant, Soil and Environmental Sciences, University of Florence, Florence, Italy
| | - Ian C. Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Carla Ceoloni
- Department of Agriculture, Forestry, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
10
|
Jauhar PP. Genetic control of chromosome behaviour: Implications in evolution, crop improvement, and human biology. THE NUCLEUS 2010. [DOI: 10.1007/s13237-010-0010-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
11
|
Cifuentes M, Benavente E. Complete characterization of wheat-alien metaphase I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 118:1609-1616. [PMID: 19319503 DOI: 10.1007/s00122-009-1009-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 03/08/2009] [Indexed: 05/27/2023]
Abstract
The pattern of homoeologous metaphase I (MI) pairing has been fully characterized in durum wheat x Aegilops cylindrica hybrids (2n = 4x = 28, ABC(c)D(c)) by an in situ hybridization procedure that has permitted individual discrimination of every wheat and wild constituent genome. One of the three hybrid genotypes examined carried the ph1c mutation. In all cases, MI associations between chromosomes of both species represented around two-third of total. Main results from the analysis are as follows (a) the A genome chromosomes are involved in wheat-wild MI pairing more frequently than the B genome partners, irrespective of the alien genome considered; (b) both durum wheat genomes pair preferentially with the D(c) genome of jointed goatgrass. These findings are discussed in relation to the potential of genetic transference between wheat crops and this weedy relative. It can also be highlighted that inactivation of Ph1 provoked a relatively higher promotion of MI associations involving B genome.
Collapse
Affiliation(s)
- Marta Cifuentes
- Departamento de Biotecnología, Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | |
Collapse
|
12
|
Jauhar PP. Meiotic restitution in wheat polyhaploids (amphihaploids): a potent evolutionary force. ACTA ACUST UNITED AC 2007; 98:188-93. [PMID: 17416932 DOI: 10.1093/jhered/esm011] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Polyploidy is well recognized as a major force in plant speciation. Among the polyploids in nature, allopolyploids are preponderant and include important crop plants like bread wheat, Triticum aestivum L. (2n = 6x = 42; AABBDD genomes). Allopolyploidy must result through concomitant or sequential events that entail interspecific or intergeneric hybridization and chromosome doubling in the resultant hybrids. To gain insight into the mechanism of evolution of wheat, we extracted polyhaploids of 2 cultivars, Chinese Spring (CS) and Fukuhokomugi (Fuko), of bread wheat by crossing them with maize, Zea mays L. ssp. mays. The derived Ph1-polyhaploids (2n = 3x = 21; ABD) showed during meiosis mostly univalents, which produced first-division restitution (FDR) nuclei that in turn gave rise to unreduced (2n) male gametes with 21 chromosomes. The haploids on maturity set some viable seed. The mean number of seeds per spike was 1.45 +/- 0.161 in CS and 2.3 +/- 0.170 in Fuko. Mitotic chromosome preparations from root tips of the derived plantlets revealed 2n = 42 chromosomes, that is, twice that of the parental polyhaploid, which indicated that they arose by fusion of unreduced male and female gametes formed by the polyhaploid. The Ph1-induced univalency must have produced 2n gametes and hence bilateral sexual polyploidization and reconstitution of disomic bread wheat. These findings highlight the quantum jump by which bread wheat evolved from durum wheat in nature. Thus, bread wheat offers an excellent example of rapid evolution by allopolyploidy. In the induced polyhaploids (ABD) that are equivalent of amphihaploids, meiotic phenomena such as FDR led to regeneration of parental bread wheat, perhaps a simulation of the evolutionary steps that occurred in nature at the time of the origin of hexaploid wheat.
Collapse
Affiliation(s)
- Prem P Jauhar
- United States Department of Agriculture-Agricultural Research Service, Northern Crop Science Laboratory, Fargo, ND 58105-5677, USA.
| |
Collapse
|