1
|
Fiebig A, Leibl V, Oostendorf D, Lukaschek S, Frömbgen J, Masoudi M, Kremer AE, Strupf M, Reeh P, Düll M, Namer B. Peripheral signaling pathways contributing to non-histaminergic itch in humans. J Transl Med 2023; 21:908. [PMID: 38087354 PMCID: PMC10717026 DOI: 10.1186/s12967-023-04698-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/04/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Chronic itch (chronic pruritus) is a major therapeutic challenge that remains poorly understood despite the extensive recent analysis of human pruriceptors. It is unclear how the peripheral nervous system differentiates the signaling of non-histaminergic itch and pain. METHODS Here we used psychophysical analysis and microneurography (single nerve fiber recordings) in healthy human volunteers to explore the distinct signaling mechanisms of itch, using the pruritogens β-alanine, BAM 8-22 and cowhage extract. RESULTS The mode of application (injection or focal application using inactivated cowhage spicules) influenced the itch/pain ratio in sensations induced by BAM 8-22 and cowhage but not β-alanine. We found that sensitizing pre-injections of prostaglandin E2 increased the pain component of BAM 8-22 but not the other pruritogens. A-fibers contributed only to itch induced by β-alanine. TRPV1 and TRPA1 were necessary for itch signaling induced by all three pruritogens. In single-fiber recordings, we found that BAM 8-22 and β-alanine injection activated nearly all CM-fibers (to different extents) but not CMi-fibers, whereas cowhage extract injection activated only 56% of CM-fibers but also 25% of CMi-fibers. A "slow bursting discharge pattern" was evoked in 25% of CM-fibers by β-alanine, in 35% by BAM 8-22, but in only 10% by cowhage extract. CONCLUSION Our results indicate that no labeled line exists for these pruritogens in humans. A combination of different mechanisms, specific for each pruritogen, leads to itching sensations rather than pain. Notably, non-receptor-based mechanisms such as spatial contrast or discharge pattern coding seem to be important processes. These findings will facilitate the discovery of therapeutic targets for chronic pruritus, which are unlikely to be treated effectively by single receptor blockade.
Collapse
Affiliation(s)
- Andrea Fiebig
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Victoria Leibl
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - David Oostendorf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Saskia Lukaschek
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Jens Frömbgen
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany
| | - Maral Masoudi
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Andreas E Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, University of Zürich, Zurich, Switzerland
| | - Marion Strupf
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Peter Reeh
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Miriam Düll
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany
- Department of Medicine 1, University Hospital Erlangen and Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Namer
- Research Group Neuroscience, Interdisciplinary Centre for Clinical Research, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
- Institute of Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, 91054, Erlangen, Germany.
| |
Collapse
|
2
|
Kwatra SG, Misery L, Clibborn C, Steinhoff M. Molecular and cellular mechanisms of itch and pain in atopic dermatitis and implications for novel therapeutics. Clin Transl Immunology 2022; 11:e1390. [PMID: 35582626 PMCID: PMC9082890 DOI: 10.1002/cti2.1390] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/03/2022] Open
Abstract
Atopic dermatitis is a chronic inflammatory skin disease. Patients with atopic dermatitis experience inflammatory lesions associated with intense itch and pain, which lead to sleep disturbance and poor mental health and quality of life. We review the molecular mechanisms underlying itch and pain symptoms in atopic dermatitis and discuss the current clinical development of treatments for moderate-to-severe atopic dermatitis. The molecular pathology of atopic dermatitis includes aberrant immune activation involving significant cross-talk among the skin and immune and neuronal cells. Exogenous and endogenous triggers modulate stimulation of mediators including cytokine/chemokine expression/release by the skin and immune cells, which causes inflammation, skin barrier disruption, activation and growth of sensory neurons, itch and pain. These complex interactions among cell types are mediated primarily by cytokines, but also involve chemokines, neurotransmitters, lipids, proteases, antimicrobial peptides, agonists of ion channels or various G protein-coupled receptors. Patients with atopic dermatitis have a cytokine profile characterised by abnormal levels of interleukins 4, 12, 13, 18, 22, 31 and 33; thymic stromal lymphopoietin; and interferon gamma. Cytokine receptors mainly signal through the Janus kinase/signal transducer and activator of transcription pathway. Among emerging novel therapeutics, several Janus kinase inhibitors are being developed for topical or systemic treatment of moderate-to-severe atopic dermatitis because of their potential to modulate cytokine expression and release. Janus kinase inhibitors lead to changes in gene expression that have favourable effects on local and systemic cytokine release, and probably other mediators, thus successfully modulating molecular mechanisms responsible for itch and pain in atopic dermatitis.
Collapse
Affiliation(s)
- Shawn G Kwatra
- Department of DermatologyJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurent Misery
- Department of DermatologyUniversity Hospital of BrestBrestFrance
| | | | - Martin Steinhoff
- Department of Dermatology and VenereologyHamad Medical CorporationDohaQatar
- Translational Research InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Dermatology InstituteAcademic Health SystemHamad Medical CorporationDohaQatar
- Department of DermatologyWeill Cornell Medicine‐QatarDohaQatar
- Qatar University, College of MedicineDohaQatar
- Department of DermatologyWeill Cornell MedicineNew YorkNYUSA
| |
Collapse
|
3
|
Piyush Shah D, Barik A. The Spino-Parabrachial Pathway for Itch. Front Neural Circuits 2022; 16:805831. [PMID: 35250493 PMCID: PMC8891797 DOI: 10.3389/fncir.2022.805831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Itch-induced scratching is an evolutionarily conserved behavioral response that protects organisms from potential parasites/irritants in their immediate vicinity. How the exposure to a pruritogen is translated to the perception of itch and how that perception drives scratching directed towards the site of exposure remains poorly understood. In this review, we focus on the recent findings that shed light on the neural pathways in the brain that underlie itch-induced scratching. We compare the molecularly defined itch pathways with the known pain circuits as they have anatomical and functional overlap. We review the roles played by the neurons in the spinoparabrachial pathway-comprising of the neurons in the spinal cord and the parabrachial nucleus (PBN), which acts as a hub for transmitting itch information across the brain. Lastly, we deliberate on scratching as a behavioral measure of the intensity of itch and its implication in unraveling the underlying supraspinal mechanisms. In summary, we provide a resource on the recent advances and discuss a path forward on our understanding of the neural circuits for itch.
Collapse
Affiliation(s)
| | - Arnab Barik
- Centre for Neuroscience, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
Abstract
Mechanistic theories of itch are based on neuronal specificity, stimulus intensity, and temporal or spatial discharge patterns. Traditionally, these theories are conceptualized as mutually exclusive, assuming that finding evidence for one theory would exclude the others and could sufficiently explain itch. Current experimental data primarily support the specificity or pattern theory of itch. However, in contrast to an assumed inherent exclusivity, recent results have shown that even within itch-specific pathways in the spinal cord, temporal discharge patterns are important as sustained pruriceptor is required to allow successful transsynaptic signal progression. Also, optogenetic activation of pruriceptors suggest that the combination of neuronal specificity and temporal pattern determines the sensory effect: tonic activation of pruriceptors is required to induce scratching behavior whereas short-lasting stimulation rather causes withdrawal. In addition to the mere duration of discharge, also the temporal pattern or spatial aspects could critically contribute to elicit pruritus instead of pain. Basic neurophysiological studies trying to validate neuronal theories for pruritus in their pure form provide unitary concepts leading from neuronal discharge to the itch sensation. However, the crucial clinical questions have the opposite perspective: which mechanisms explain the chronic itch in a given patient or a given disease? In trying to solve these clinical problems we should not feel bound to the mutual exclusive nature of itch theories, but rather appreciate blending several theories and also accept combinations of itch and pain. Thus, blended versions of itch theories might better suffice for an explanation of chronic itch in patients and will improve the basis for mechanistic treatment options.
Collapse
Affiliation(s)
- Martin Schmelz
- Department of Experimental Pain Research, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
5
|
Khasabov SG, Truong H, Rogness VM, Alloway KD, Simone DA, Giesler GJ. Responses of neurons in the primary somatosensory cortex to itch- and pain-producing stimuli in rats. J Neurophysiol 2020; 123:1944-1954. [PMID: 32292106 DOI: 10.1152/jn.00038.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding of cortical encoding of itch is limited. Injection of pruritogens and algogens into the skin of the cheek produces distinct behaviors, making the rodent cheek a useful model for understanding mechanisms of itch and pain. We examined responses of neurons in the primary somatosensory cortex by application of mechanical stimuli (brush, pressure, and pinch) and stimulations with intradermal injections of pruritic and algesic chemical of receptive fields located on the skin of the cheek in urethane-anesthetized rats. Stimuli included chloroquine, serotonin, β-alanine, histamine, capsaicin, and mustard oil. All 33 neurons studied were excited by noxious mechanical stimuli applied to the cheek. Based on mechanical stimulation most neurons were functionally classified as high threshold. Of 31 neurons tested for response to chemical stimuli, 84% were activated by one or more pruritogens/partial pruritogens. No cells were activated by all five substances. Histamine activated the greatest percentage of neurons and evoked the greatest mean discharge. Importantly, no cells were excited exclusively by pruritogens or partial pruritogens. The recording sites of all neurons that responded to chemical stimuli applied to the cheek were located in the dysgranular zone (DZ) and in deep laminae of the medial border of the vibrissal barrel fields (VBF). Therefore, neurons in the DZ/VBF of rats encode mechanical and chemical pruritogens and algogens. This cortical region appears to contain primarily nociceptive neurons as defined by responses to noxious pinching of the skin. Its role in encoding itch and pain from the cheek of the face needs further study.NEW & NOTEWORTHY Processing of information related to itch sensation at the level of cerebral cortex is not well understood. In this first single-unit electrophysiological study of pruriceptive cortical neurons, we show that neurons responsive to noxious and pruritic stimulation of the cheek of the face are concentrated in a small area of the dysgranular cortex, indicating that these neurons encode information related to itch and pain.
Collapse
Affiliation(s)
- Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Hai Truong
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Victoria M Rogness
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Kevin D Alloway
- Center for Neural Engineering, Penn State University, University Park, Pennsylvania.,Department of Neural and Behavioral Sciences, Penn State University, University Park, Pennsylvania
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota
| | - Glenn J Giesler
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
6
|
Itch sensitization? A systematic review of studies using quantitative sensory testing in patients with chronic itch. Pain 2019; 160:2661-2678. [DOI: 10.1097/j.pain.0000000000001678] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Abstract
Itching can result from activity of specialized primary afferent neurons (“pruriceptors”) that have been shown to express certain molecular markers such as B-type natriuretic peptide and several members of the Mrgpr-family in rodents. On the other hand, neurons involved in pain processing (“nociceptors”) can also provoke itching when the activation site is restricted to an isolated tiny spot within the epidermis. Individuals classified as having sensitive skin report increased itching and pain sensations upon weak external stimuli that are not painful or itchy in the control group. Numerous possible factors could contribute to sensitive skin along the pathway of transduction of the external stimuli into peripheral neuronal signals, followed by neuronal processing, finally resulting in the perception: (a) reduced local protective factors leading to impaired skin barrier function, (b) increased production of excitatory skin mediators, (c) sensitized peripheral neurons, (d) facilitated spinal and central processing, and (e) reduced descending inhibition from the central nervous system. For all of those pathophysiological mechanisms there are clinical examples such as atopic dermatitis (a,b,c), neuropathic itching (c,e), and restless leg syndrome (d,e). However, none of these factors have been directly linked to the occurrence of sensitive skin. Moreover, individuals reporting sensitive skin are heterogeneous and a subpopulation with defined pathophysiology has not yet been identified. Given that the condition is reported in about 50% of women, and thereby includes many healthy individuals, it appears problematic to assign a definitive pathophysiological mechanism to it.
Collapse
Affiliation(s)
- Martin Schmelz
- Department Experimental Pain Research, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
8
|
Abstract
Pain and itch are generally regarded antagonistic as painful stimuli such as scratching suppresses itch. Moreover, inhibition of pain processing by opioids generates itch further supporting their opposing role. Separate specific pathways for itch and pain processing have been uncovered, and several molecular markers have been established in mice that identify neurons involved in the processing of histaminergic and non-histaminergic itch on primary afferent and spinal level. These results are in agreement with the specificity theory for itch and might suggest that pain and itch should be investigated separately on the level of neurons, mediators, and mechanisms. However, in addition to broadly overlapping mediators of itch and pain, there is also evidence for overlapping functions in primary afferents: nociceptive primary afferents can provoke itch when activated very locally in the epidermis, and sensitization of both nociceptors and pruriceptors has been found following local nerve growth factor application in volunteers. Thus, also mechanisms that underlie the development of chronic itch and pain including spontaneous activity and sensitization of primary afferents as well as spinal cord sensitization may well overlap to a great extent. Rather than separating itch and pain, research concepts should therefore address the common mechanisms. Such an approach appears most appropriate for clinical conditions of neuropathic itch and pain and also chronic inflammatory conditions. While itch researchers can benefit from the large body of information of the pain field, pain researchers will find behavioral readouts of spontaneous itch much simpler than those for spontaneous pain in animals and the skin as source of the pruritic activity much more accessible even in patients.
Collapse
Affiliation(s)
- Martin Schmelz
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine Mannheim, University of Heidelberg, Theodor-Kutzer Ufer 1-3, Mannheim, 68167, Germany,
| |
Collapse
|