1
|
Esteban R, Pollastri S, Brilli F, García-Plazaola JI, Odriozola I, Michelozzi M, Loreto F. Dehydration and rehydration differently affect photosynthesis and volatile monoterpenes in bryophytes with contrasting ecological traits. PHYSIOLOGIA PLANTARUM 2024; 176:e14395. [PMID: 38922932 DOI: 10.1111/ppl.14395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/10/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024]
Abstract
Bryophytes desiccate rapidly when relative humidity decreases. The capacity to withstand dehydration depends on several ecological and physiological factors. Volatile organic compounds (VOCs) may have a role in enhancing tolerance to desiccating bryophytes. However, the functions of VOCs in bryophytes have received little attention so far. We aimed to investigate the impact of a dehydration-rehydration treatment on primary carbon metabolism and volatile terpenes (VTs) in three bryophytes with contrasting ecological traits: Vessicularia dubyana, Porella platyphylla and Pleurochaete squarrosa. First, we confirmed the desiccation sensitivity gradient of the species. Under fully hydrated conditions, the photosynthetic rate (A) was inversely associated with stress tolerance, with a lower rate in more tolerant species. The partial recovery of A in P. platyphylla and P. squarrosa after rehydration confirmed the desiccation tolerance of these two species. On the other hand, A did not recover after rehydration in V. dubyana. Regarding VT, each species exhibited a distinct VT profile under optimum hydration, with the highest VT pool found in the more desiccation-sensitive species (V. dubyana). However, the observed species-specific VT pattern could be associated with the ecological habitat of each species. P. squarrosa, a moss of dry habitats, may synthesize mainly non-volatile secondary metabolites as stress-defensive compounds. On the other hand, V. dubyana, commonly found submerged, may need to invest photosynthetically assimilated carbon to synthesize a higher amount of VTs to cope with transient water stress occurrence. Further research on the functions of VTs in bryophytes is needed to deepen our understanding of their ecological significance.
Collapse
Affiliation(s)
- Raquel Esteban
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Susanna Pollastri
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | | | - Iñaki Odriozola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/ EHU), Bilbao, Spain
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources (IBBR), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
| | - Francesco Loreto
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy (CNR), Sesto Fiorentino, Florence, Italy
- Department of Biology, University of Naples Federico II, Italy
| |
Collapse
|
2
|
Arzac MI, Miranda-Apodaca J, Gasulla F, Arce-Guerrero M, Fernández-Marín B, García-Plazaola JI. Acquisition of Desiccation Tolerance Unveiled: Polar Lipid Profiles of Streptophyte Algae Offer Insights. PHYSIOLOGIA PLANTARUM 2023; 175:e14073. [PMID: 38148218 DOI: 10.1111/ppl.14073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 12/28/2023]
Abstract
Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.
Collapse
Affiliation(s)
- Miren Irati Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Miranda-Apodaca
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - María Arce-Guerrero
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), La Laguna, Canary Islands, Spain
| | | |
Collapse
|
3
|
Nadal M, Carriquí M, Badel E, Cochard H, Delzon S, King A, Lamarque LJ, Flexas J, Torres-Ruiz JM. Photosynthesis, leaf hydraulic conductance and embolism dynamics in the resurrection plant Barbacenia purpurea. PHYSIOLOGIA PLANTARUM 2023; 175:e14035. [PMID: 37882305 DOI: 10.1111/ppl.14035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
The main parameters determining photosynthesis are stomatal and mesophyll conductance and electron transport rate, and for hydraulic dynamics they are leaf hydraulic conductance and the spread of embolism. These parameters have scarcely been studied in desiccation-tolerant (resurrection) plants exposed to drought. Here, we characterized photosynthesis and hydraulics during desiccation and rehydration in a poikilochlorophyllous resurrection plant, Barbacenia purpurea (Velloziaceae). Gas exchange, chlorophyll fluorescence, and leaf water status were monitored along the whole dehydration-rehydration cycle. Simultaneously, embolism formation and hydraulic functioning recovery were measured at leaf level using micro-computed tomography imaging. Photosynthesis and leaf hydraulic conductance ceased at relatively high water potential (-1.28 and -1.54 MPa, respectively), whereas the onset of leaf embolism occurred after stomatal closure and photosynthesis cessation (<-1.61 MPa). This sequence of physiological processes during water stress may be associated with the need to delay dehydration, to prepare the molecular changes required in the desiccated state. Complete rehydration occurred rapidly in the mesophyll, whereas partial xylem refilling, and subsequent recovery of photosynthesis, occurred at later stages after rewatering. These results highlight the importance of stomata as safety valves to protect the vascular system from embolism, even in a plant able to fully recover after complete embolism.
Collapse
Affiliation(s)
- Miquel Nadal
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | - Marc Carriquí
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Eric Badel
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Hervé Cochard
- Université Clermont-Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | | | - Andrew King
- Synchrotron Source Optimisée de Lumière d'Energie Intermédiaire du LURE, L'Orme de Merisiers, France
| | | | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Institut d'Investigacions Agroambientals i d'Economia de l'Aigua (INAGEA), Palma, Illes Balears, Spain
| | | |
Collapse
|
4
|
Putzier CC, Polich SB, Verhoeven AS. Sustained zeaxanthin-dependent thermal dissipation is induced by desiccation and low temperatures in the fern Polypodium virginianum. PHYSIOLOGIA PLANTARUM 2022; 174:e13743. [PMID: 35773786 DOI: 10.1111/ppl.13743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Desiccation and low temperatures inhibit photosynthetic carbon reduction and, in combination with light, result in severe oxidative stress, thus, tolerant organisms must utilize enhanced photoprotective mechanisms to prevent damaging reactions from occurring. We sought to characterize the desiccation tolerance of the fern Polypodium virginianum and to assess the role of the xanthophyll cycle and sustained forms of thermal dissipation in its response to desiccation, as well as to low temperatures during winter. Our results demonstrate that P. virginianum is desiccation-tolerant and that it increases its utilization of sustained forms of zexanthin (Z)-dependent thermal dissipation in response to desiccation and low temperatures during winter. Experiments with detached fronds were conducted in dark and natural light conditions and demonstrated that some dark-formation of Z occurs in this species. In addition, desiccation in the light resulted in more pronounced declines in maximal photochemical efficiency (Fv /Fm ) and higher Z levels than desiccation in the dark, indicating a substantial fraction of the sustained reduction in Fv /Fm is due to Z-dependent sustained dissipation. Recovery from desiccation and from low temperatures exhibited biphasic kinetics with a more rapid phase (1-4 h), which was accompanied by an increase in minimal fluorescence yield (Fo ) but no change in Z, and a slower phase (up to 24 h) correlating with reconversion of Z to violaxanthin. These data suggest that two mechanisms of sustained thermal dissipation occur in response to desiccation and low temperatures, possibly corresponding to sustained forms of the energy-dependent and zeaxanthin-dependent mechanisms of dynamic thermal dissipation.
Collapse
Affiliation(s)
| | - Sidney B Polich
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Medwed C, Holzinger A, Hofer S, Hartmann A, Michalik D, Glaser K, Karsten U. Ecophysiological, morphological, and biochemical traits of free-living Diplosphaera chodatii (Trebouxiophyceae) reveal adaptation to harsh environmental conditions. PROTOPLASMA 2021; 258:1187-1199. [PMID: 33550447 PMCID: PMC8523416 DOI: 10.1007/s00709-021-01620-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/28/2021] [Indexed: 05/14/2023]
Abstract
Single-celled green algae within the Trebouxiophyceae (Chlorophyta) are typical components of terrestrial habitats, which often exhibit harsh environmental conditions for these microorganisms. This study provides a detailed overview of the ecophysiological, biochemical, and ultrastructural traits of an alga living on tree bark. The alga was isolated from a cypress tree in the Botanical Garden of Innsbruck (Austria) and identified by morphology and molecular phylogeny as Diplosphaera chodatii. Transmission electron microscopy after high-pressure freezing (HPF) showed an excellent preservation of the ultrastructure. The cell wall was bilayered with a smooth inner layer and an outer layer of polysaccharides with a fuzzy hair-like appearance that could possibly act as cell-cell adhesion mechanism and hence as a structural precursor supporting biofilm formation together with the mucilage observed occasionally. The photosynthetic-irradiance curves of D. chodatii indicated low light requirements without photoinhibition at high photon flux densities (1580 μmol photons m-2 s-1) supported by growth rate measurements. D. chodatii showed a high desiccation tolerance, as 85% of its initial value was recovered after controlled desiccation at a relative humidity of ~10%. The alga contained the low molecular weight carbohydrates sucrose and sorbitol, which probably act as protective compounds against desiccation. In addition, a new but chemically not elucidated mycosporine-like amino acid was detected with a molecular mass of 332 g mol-1 and an absorption maximum of 324 nm. The presented data provide various traits which contribute to a better understanding of the adaptive mechanisms of D. chodatii to terrestrial habitats.
Collapse
Affiliation(s)
- Cynthia Medwed
- Institute of Biological Science, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Strasse 3, D-18059, Rostock, Germany
| | - Andreas Holzinger
- Department of Botany, Functional Plant Biology, University of Innsbruck, Sternwartestrasse 15, A-6020, Innsbruck, Austria
| | - Stefanie Hofer
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Anja Hartmann
- Department of Pharmacognosy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Dirk Michalik
- Institute of Chemistry, University of Rostock, Albert-Einstein-Strasse 3a, D-18059, Rostock, Germany
- Leibniz Institute of Catalysis, Albert-Einstein-Strasse 29a, D-18059, Rostock, Germany
| | - Karin Glaser
- Institute of Biological Science, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Strasse 3, D-18059, Rostock, Germany
| | - Ulf Karsten
- Institute of Biological Science, Applied Ecology & Phycology, University of Rostock, Albert-Einstein-Strasse 3, D-18059, Rostock, Germany.
| |
Collapse
|
6
|
Nadal M, Brodribb TJ, Fernández-Marín B, García-Plazaola JI, Arzac MI, López-Pozo M, Perera-Castro AV, Gulías J, Flexas J, Farrant JM. Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern Anemia caffrorum. THE NEW PHYTOLOGIST 2021; 231:1415-1430. [PMID: 33959976 DOI: 10.1111/nph.17445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Desiccation tolerant plants can survive extreme water loss in their vegetative tissues. The fern Anemia caffrorum produces desiccation tolerant (DT) fronds in the dry season and desiccation sensitive (DS) fronds in the wet season, providing a unique opportunity to explore the physiological mechanisms associated with desiccation tolerance. Anemia caffrorum plants with either DT or DS fronds were acclimated in growth chambers. Photosynthesis, frond structure and anatomy, water relations and minimum conductance to water vapour were measured under well-watered conditions. Photosynthesis, hydraulics, frond pigments, antioxidants and abscisic acid contents were monitored under water deficit. A comparison between DT and DS fronds under well-watered conditions showed that the former presented higher leaf mass per area, minimum conductance, tissue elasticity and lower CO2 assimilation. Water deficit resulted in a similar induction of abscisic acid in both frond types, but DT fronds maintained higher stomatal conductance and upregulated more prominently lipophilic antioxidants. The seasonal alternation in production of DT and DS fronds in A. caffrorum represents a mechanism by which carbon gain can be maximized during the rainy season, and a greater investment in protective mechanisms occurs during the hot dry season, enabling the exploitation of episodic water availability.
Collapse
Affiliation(s)
- Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Tim J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tas., 7001, Australia
| | - Beatriz Fernández-Marín
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - José I García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Miren I Arzac
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Alicia V Perera-Castro
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Javier Gulías
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears (UIB), INAGEA, Carretera de Valldemossa Km 7.5, Palma de Mallorca, Illes Balears, 07122, Spain
- King Abdulaziz University, Jeddah, 80200, Saudi Arabia
| | - Jill M Farrant
- Department of Molecular and Cell Biology, University of Cape Town, Private Bag X3, Rondebosch, 7701, South Africa
| |
Collapse
|
7
|
Verhoeven AS, Berkowitz JM, Walton BN, Berube BK, Willour JJ, Polich SB. Is zeaxanthin needed for desiccation tolerance? Sustained forms of thermal dissipation in tolerant versus sensitive bryophytes. PHYSIOLOGIA PLANTARUM 2021; 171:453-467. [PMID: 33161567 DOI: 10.1111/ppl.13263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Desiccation tolerant (DT) plants engage and disengage sustained forms of energy dissipation in response to desiccation and rehydration. This project sought to characterize the role of zeaxanthin and thylakoid protein phosphorylation status in sustained energy dissipation during desiccation in bryophytes with varying DT. Tolerant (Polytrichum piliferum, Dicranum species, Calliergon stramineum) and sensitive (Grimmia species, Schistidium rivulare, Sphagnum species) moss were desiccated in darkness or natural light conditions for up to three weeks. Desiccation caused pronounced reductions in Fv /Fm in all cases which was enhanced by light exposure during desiccation. Desiccation in darkness resulted in no accumulation of Z in any species, however, in natural light conditions there was significant accumulation of Z in tolerant but not sensitive species. Desiccation in natural light, relative to darkness, resulted in more pronounced reductions in Fo in tolerant but not sensitive species. Recovery of Fv /Fm upon rehydration occurred in two phases, a rapid phase (minutes) and a slower phase (hours). Increased time of desiccation, and light exposure, resulted in a reduction in the rapid phase. Desiccation in light conditions resulted in some accumulation of the phosphorylated form of the major light harvesting trimer (LHCII). Data are consistent with two mechanisms of sustained quenching, neither of which requires Z. However, when desiccation occurs in natural light conditions, accumulation of Z likely contributes to one or both of the sustained forms of dissipation. Increases in LHCII phosphorylation during desiccation are consistent with increased connectivity between the photosystems. The absence of Z formation in sensitive species may contribute to their lack of desiccation tolerance.
Collapse
Affiliation(s)
- Amy S Verhoeven
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | | | - Brenna N Walton
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brandt K Berube
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Jerry J Willour
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| | - Sidney B Polich
- Biology Department, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
8
|
Fernández-Marín B, Nadal M, Gago J, Fernie AR, López-Pozo M, Artetxe U, García-Plazaola JI, Verhoeven A. Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. THE NEW PHYTOLOGIST 2020; 226:741-759. [PMID: 32017123 DOI: 10.1111/nph.16464] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/20/2020] [Indexed: 05/24/2023]
Abstract
Resurrection plants recover physiological functions after complete desiccation. Almost all of them are native to tropical warm environments. However, the Gesneriaceae include four genera, remnant of the past palaeotropical flora, which inhabit temperate mountains. One of these species is additionally freezing-tolerant: Ramonda myconi. We hypothesise that this species has been able to persist in a colder climate thanks to some resurrection-linked traits. To disentangle the physiological mechanisms underpinning multistress tolerance to desiccation and freezing, we conducted an exhaustive seasonal assessment of photosynthesis (gas exchange, limitations to partitioning, photochemistry and galactolipids) and primary metabolism (through metabolomics) in two natural populations at different elevations. R. myconi displayed low rates of photosynthesis, largely due to mesophyll limitation. However, plants were photosynthetically active throughout the year, excluding a reversible desiccation period. Common responses to desiccation and low temperature involved chloroplast protection: enhanced thermal energy dissipation, higher carotenoid to Chl ratio and de-epoxidation of the xanthophyll cycle. As specific responses, antioxidants and secondary metabolic routes rose upon desiccation, while putrescine, proline and a variety of sugars rose in winter. The data suggest conserved mechanisms to cope with photo-oxidation during desiccation and cold events, while additional metabolic mechanisms may have evolved as specific adaptations to cold during recent glaciations.
Collapse
Affiliation(s)
- Beatriz Fernández-Marín
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
- Department of Botany, Ecology and Plant Physiology, University of La Laguna (ULL), Tenerife, 38200, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Jorge Gago
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears (UIB), Instituto de Agroecología y Economía del Agua (INAGEA), ctra. Valldemossa km 7.5, Palma de Mallorca, 07122, Spain
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Marina López-Pozo
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Unai Artetxe
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - José Ignacio García-Plazaola
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Amy Verhoeven
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Spain
- Biology Department (OWS352), University of St Thomas, 2115 Summit Ave., St Paul, MN, USA
| |
Collapse
|
9
|
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:964-978. [PMID: 31833133 DOI: 10.1111/tpj.14651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Photosynthesis is the basis of all life on Earth. Surprisingly, until very recently, data on photosynthesis, photosynthetic efficiencies, and photosynthesis limitations in terrestrial land plants other than spermatophytes were very scarce. Here we provide an updated data compilation showing that maximum photosynthesis rates (expressed either on an area or dry mass basis) progressively scale along the land plant's phylogeny, from lowest values in bryophytes to largest in angiosperms. Unexpectedly, both photosynthetic water (WUE) and nitrogen (PNUE) use efficiencies also scale positively through the phylogeny, for which it has been commonly reported that these two efficiencies tend to trade-off between them when comparing different genotypes or a single species subject to different environmental conditions. After providing experimental evidence that these observed trends are mostly due to an increased mesophyll conductance to CO2 - associated with specific anatomical changes - along the phylogeny, we discuss how these findings on a large phylogenetic scale can provide useful information to address potential photosynthetic improvements in crops in the near future.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 51, 7001, Hobart, TAS, Australia
| |
Collapse
|
10
|
Rippin M, Borchhardt N, Karsten U, Becker B. Cold Acclimation Improves the Desiccation Stress Resilience of Polar Strains of Klebsormidium (Streptophyta). Front Microbiol 2019; 10:1730. [PMID: 31447802 PMCID: PMC6691101 DOI: 10.3389/fmicb.2019.01730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/12/2019] [Indexed: 11/13/2022] Open
Abstract
Biological soil crusts (BSCs) are complex communities of autotrophic, heterotrophic, and saprotrophic (micro)organisms. In the polar regions, these biocrust communities have essential ecological functions such as primary production, nitrogen fixation, and ecosystem engineering while coping with extreme environmental conditions (temperature, desiccation, and irradiation). The microalga Klebsormidium is commonly found in BSCs all across the globe. The ecophysiological resilience of various Klebsormidium species to desiccation and other stresses has been studied intensively. Here we present the results of transcriptomic analyses of two different Klebsormidium species, K. dissectum and K. flaccidum, isolated from Antarctic and Arctic BSCs. We performed desiccation stress experiments at two different temperatures mimicking fluctuations associated with global change. Cultures grown on agar plates were desiccated on membrane filters at 10% relative air humidity until the photosynthetic activity as reflected in the effective quantum yield of photosystem II [Y(II)] ceased. For both species, the response to dehydration was much faster at the higher temperature. At the transcriptome level both species responded more strongly to the desiccation stress at the higher temperature suggesting that adaptation to cold conditions enhanced the resilience of both algae to desiccation stress. Interestingly, the two different species responded differently to the applied desiccation stress with respect to the number as well as function of genes showing differential gene expression. The portion of differentially expressed genes shared between both taxa was surprisingly low indicating that both Klebsormidium species adapted independently to the harsh conditions of Antarctica and the Arctic, respectively. Overall, our results indicate that environmental acclimation has a great impact on gene expression and the response to desiccation stress in Klebsormidium.
Collapse
Affiliation(s)
- Martin Rippin
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| | | | - Ulf Karsten
- Department of Biology, University of Rostock, Rostock, Germany
| | - Burkhard Becker
- Department of Biology, Botanical Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Holzinger A, Herburger K, Blaas K, Lewis LA, Karsten U. The terrestrial green macroalga Prasiola calophylla (Trebouxiophyceae, Chlorophyta): ecophysiological performance under water-limiting conditions. PROTOPLASMA 2017; 254:1755-1767. [PMID: 28066876 PMCID: PMC5474099 DOI: 10.1007/s00709-016-1068-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/21/2016] [Indexed: 05/22/2023]
Abstract
The phylogenetic placement of Prasiola calophylla, from an anthropogenic habitat previously shown to contain a novel UV sunscreen compound, was confirmed by analysis of its rbcL gene. This alga has the capacity to tolerate strong water-limiting conditions. The photosynthetic performance and ultrastructural changes under desiccation and osmotic stress were investigated. Freshly harvested thalli showed an effective quantum yield of PSII [Y(II)] of 0.52 ± 0.06 that decreased to ∼60% of the initial value at 3000 mM sorbitol, and 4000 mM sorbitol led to a complete loss of Y(II). The Y(II) of thalli exposed to controlled desiccating conditions at 60% relative humidity (RH) ceased within 240 min, whereas zero values were reached after 120 min at 20% RH. All investigated samples completely recovered Y(II) within ∼100 min after rehydration. Relative electron transport rates (rETR) were temperature dependent, increasing from 5, 10, to 25 °C but strongly declining at 45 °C. Transmission electron microscopy of samples desiccated for 2.5 h showed an electron dense appearance of the entire cytoplasm when compared to control samples. Thylakoid membranes were still visible in desiccated cells, corroborating the ability to recover. Control and desiccated cells contained numerous storage lipids and starch grains, providing reserves. Overall, P. calophylla showed a high capacity to cope with water-limiting conditions on a physiological and structural basis. A lipophilic outer layer of the cell walls might contribute to reduce water evaporation in this poikilohydric organism.
Collapse
Affiliation(s)
- Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria.
| | - Klaus Herburger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Kathrin Blaas
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestrasse 15, 6020, Innsbruck, Austria
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269-3043, USA
| | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| |
Collapse
|