1
|
Renz M, Siegert P, Paul R, Lepadatu A, Leukel P, Frauenknecht K, Urmann A, Hain J, Mohnke K, Ziebart A, Harder A, Ruemmler R. Hypoxic-ischemic brain injury in pig after cardiac arrest - A new histopathological scoring system for non-specialists. Resusc Plus 2024; 20:100779. [PMID: 39328899 PMCID: PMC11424782 DOI: 10.1016/j.resplu.2024.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction After cardiac arrest and successful resuscitation patients often present with hypoxic-ischemic brain injury, which is a major cause of death due to poor neurological outcome. The development of a robust histopathological scoring system for the reliable and easy identification and quantification of hypoxic-ischemic brain injury could lead to a standardization in the evaluation of brain damage. We wanted to establish an easy-to-use neuropathological scoring system to identify and quantify hypoxic-ischemic brain injury. Methods The criteria for regular neurons, hypoxic-ischemic brain injury neurons and neurons with ischemic neuronal change (ischemic change neurons) were established in collaboration with specialized neuropathologists. Nine non-specialist examiners performed cell counting using the mentioned criteria in brain tissue samples from a porcine cardiac arrest model. The statistical analyses were performed using the interclass correlation coefficient for counting data and reliability testing. Results The inter-rater reliability for regular neurons (ICC 0.68 (0.42 - 0.84; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.87 (0.81 - 0.92; p < 0.001) showed moderate to excellent correlation while ischemic change neurons showed poor reliability. Excellent results were seen for intra-rater reliability for regular neurons (ICC 0.9 (0.68 - 0.97; p < 0.001) and hypoxic-ischemic brain injury neurons (ICC 0.99 (0.83 - 1; p < 0.001). Conclusion The scoring system provides a reliable method for the discrimination between regular neurons and neurons affected by hypoxic/ischemic injury. This scoring system allows an easy and reliable identification and quantification of hypoxic-ischemic brain injury for non-specialists and offers a standardization to evaluate hypoxic-ischemic brain injury after cardiac arrest.
Collapse
Affiliation(s)
- Miriam Renz
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Pascal Siegert
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Roman Paul
- Institute for Medical Biometry, Epidemiology and Information Technology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Adina Lepadatu
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Petra Leukel
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | - Katrin Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Luxembourg Center of Neuropathology (LCNP) & Department of Cancer Research (DoCR), Luxembourg Institute of Health (LIH), 1210 Luxembourg, Luxembourg
| | - Andrea Urmann
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Johanna Hain
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Katja Mohnke
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Alexander Ziebart
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anja Harder
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University Mainz, Germany
- Institute of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
- Cure NF Research Group, Medical Faculty, Martin Luther University Halle-Wittenberg, 06108 Halle, Saale, Germany
| | - Robert Ruemmler
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
2
|
Collins B, Lemanski EA, Wright-Jin E. The Importance of Including Maternal Immune Activation in Animal Models of Hypoxic-Ischemic Encephalopathy. Biomedicines 2024; 12:2559. [PMID: 39595123 PMCID: PMC11591850 DOI: 10.3390/biomedicines12112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Hypoxic-ischemic encephalopathy (HIE) is a perinatal brain injury that is the leading cause of cerebral palsy, developmental delay, and poor cognitive outcomes in children born at term, occurring in about 1.5 out of 1000 births. The only proven therapy for HIE is therapeutic hypothermia. However, despite this treatment, many children ultimately suffer disability, brain injury, and even death. Barriers to implementation including late diagnosis and lack of resources also lead to poorer outcomes. This demonstrates a critical need for additional treatments for HIE, and to facilitate this, we need translational models that accurately reflect risk factors and interactions present in HIE. Maternal or amniotic infection is a significant risk factor and possible cause of HIE in humans. Maternal immune activation (MIA) is a well-established model of maternal infection and inflammation that has significant developmental consequences largely characterized within the context of neurodevelopmental disorders such as autism spectrum disorder and schizophrenia. MIA can also lead to long-lasting changes within the neuroimmune system, which lead to compounding negative outcomes following a second insult. This supports the importance of understanding the interaction of maternal inflammation and hypoxic-ischemic outcomes. Animal models have been invaluable to understanding the pathophysiology of this injury and to the development of therapeutic hypothermia. However, each model system has its own limitations. Large animal models such as pigs may more accurately represent the brain and organ development and complexity in humans, while rodent models are more cost-effective and offer more possible molecular techniques. Recent studies have utilized MIA or direct inflammation prior to HIE insult. Investigators should thoughtfully consider the risk factors they wish to include in their HIE animal models. In the incorporation of MIA, investigators should consider the type, timing, and dose of the inflammatory stimulus, as well as the timing, severity, and type of hypoxic insult. Using a variety of animal models that incorporate the maternal-placental-fetal system of inflammation will most likely lead to a more robust understanding of the mechanisms of this injury that can guide future clinical decisions and therapies.
Collapse
Affiliation(s)
- Bailey Collins
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elise A. Lemanski
- Division of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA; (B.C.); (E.A.L.)
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Elizabeth Wright-Jin
- Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
- Division of Neurology, Nemours Children’s Health, Wilmington, DE 19803, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
3
|
Gundersen JK, Chakkarapani E, Menassa DA, Walløe L, Thoresen M. The effects of anaesthesia on cell death in a porcine model of neonatal hypoxic-ischaemic brain injury. BJA OPEN 2024; 10:100283. [PMID: 38741692 PMCID: PMC11089311 DOI: 10.1016/j.bjao.2024.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 05/16/2024]
Abstract
Background Hypothermia is neuroprotective after neonatal hypoxic-ischaemic brain injury. However, systemic cooling to hypothermic temperatures is a stressor and may reduce neuroprotection in awake pigs. We compared two experiments of global hypoxic-ischaemic injury in newborn pigs, in which one group received propofol-remifentanil and the other remained awake during post-insult hypothermia treatment. Methods In both studies, newborn pigs were anaesthetised using halothane during a 45-min global hypoxic-ischaemic insult induced by reducing Fio2 and graded hypotension until a low-voltage <7 μV electroencephalogram was achieved. On reoxygenation, the pigs were randomly allocated to receive 24 h of normothermia or hypothermia. In the first study (n=18) anaesthesia was discontinued and the pigs' tracheas were extubated. In the second study (n=14) anaesthesia was continued using propofol and remifentanil. Brain injury was assessed after 72 h by classical global histopathology, Purkinje cell count, and apoptotic cell counts in the hippocampus and cerebellum. Results Global injury was nearly 10-fold greater in the awake group compared with the anaesthetised group (P=0.021). Hypothermia was neuroprotective in the anaesthetised pigs but not the awake pigs. In the hippocampus, the density of cleaved caspase-3-positive cells was increased in awake compared with anaesthetised pigs in normothermia. In the cerebellum, Purkinje cell density was reduced in the awake pigs irrespective of treatment, and the number of cleaved caspase-3-positive Purkinje cells was greatly increased in hypothermic awake pigs. We detected no difference in cleaved caspase-3 in the granular cell layer or microglial reactivity across the groups. Conclusions Our study provides novel insights into the significance of anaesthesia/sedation during hypothermia for achieving optimal neuroprotection.
Collapse
Affiliation(s)
- Julia K. Gundersen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neurology, Akershus University Hospital, Lørenskog, Norway
| | - Ela Chakkarapani
- Translational Health Sciences, St. Michael's Hospital, Bristol Medical School, University of Bristol, Bristol, UK
| | - David A. Menassa
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Neuropathology and The Queen's College, University of Oxford, Oxford, UK
- Department of Women's & Children's Health, Karolinska Institutet, Solna, Sweden
| | - Lars Walløe
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Translational Health Sciences, St. Michael's Hospital, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Tsuchiya T, Nakamura S, Sugiyama Y, Nakao Y, Mitsuie T, Inoue K, Inoue E, Htun Y, Arioka M, Ohta K, Morita H, Fuke N, Kondo S, Koyano K, Miki T, Ueno M, Kusaka T. Hydrogen gas can ameliorate seizure burden during therapeutic hypothermia in asphyxiated newborn piglets. Pediatr Res 2024; 95:1536-1542. [PMID: 38267709 DOI: 10.1038/s41390-024-03041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND We previously reported that hydrogen (H2) gas combined with therapeutic hypothermia (TH) improved short-term neurological outcomes in asphyxiated piglets. However, the effect on seizure burden was unclear. Using amplitude-integrated electroencephalography (aEEG), we compared TH + H2 with TH alone in piglets 24 h after hypoxic-ischemic (HI) insult. METHODS After a 40-min insult and resuscitation, 36 piglets ≤24 h old were divided into three groups: normothermia (NT, n = 14), TH alone (33.5 ± 0.5 °C, 24 h, n = 13), and TH + H2 (2.1-2.7% H2 gas, 24 h, n = 9). aEEG was recorded for 24 h post-insult and its background pattern, status epilepticus (SE; recurrent seizures lasting >5 min), and seizure occurrence (Sz; occurring at least once but not fitting the definition of SE) were evaluated. Background findings with a continuous low voltage and burst suppression were considered abnormal. RESULTS The percentage of piglets with an abnormal aEEG background (aEEG-BG), abnormal aEEG-BG+Sz and SE was lower with TH + H2 than with TH at 24 h after HI insult. The duration of SE was shorter with TH + H2 and significantly shorter than with NT. CONCLUSIONS H2 gas combined with TH ameliorated seizure burden 24 h after HI insult. IMPACT In this asphyxiated piglet model, there was a high percentage of animals with an abnormal amplitude-integrated electroencephalography background (aEEG-BG) after hypoxic-ischemic (HI) insult, which may correspond to moderate and severe hypoxic-ischemic encephalopathy (HIE). Therapeutic hypothermia (TH) was associated with a low percentage of piglets with EEG abnormalities up to 6 h after HI insult but this percentage increased greatly after 12 h, and TH was not effective in attenuating seizure development. H2 gas combined with TH was associated with a low percentage of piglets with an abnormal aEEG-BG and with a shorter duration of status epilepticus at 24 h after HI insult.
Collapse
Affiliation(s)
- Toui Tsuchiya
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Yuichiro Sugiyama
- Department of Pediatrics, Japanese Red Cross Aichi Medical Center Nagoya Daiichi Hospital, Nagoya, Aichi, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Mitsuie
- Medical Engineering Equipment Management Center, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Kota Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Eri Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Makoto Arioka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hirosuke Morita
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Noriko Fuke
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sonoko Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
5
|
Htun Y, Nakamura S, Nakao Y, Mitsuie T, Ohta K, Arioka M, Yokota T, Inoue E, Inoue K, Tsuchiya T, Koyano K, Konishi Y, Miki T, Ueno M, Kusaka T. Conflicting findings on the effectiveness of hydrogen therapy for ameliorating vascular leakage in a 5-day post hypoxic-ischemic survival piglet model. Sci Rep 2023; 13:10486. [PMID: 37380745 DOI: 10.1038/s41598-023-37577-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is a major cause of morbidity and mortality in newborns in both high- and low-income countries. The important determinants of its pathophysiology are neural cells and vascular components. In neonatal HIE, increased vascular permeability due to damage to the blood-brain barrier is associated with seizures and poor outcomes in both translational and clinical studies. In our previous studies, hydrogen gas (H2) improved the neurological outcome of HIE and ameliorated the cell death. In this study, we used albumin immunohistochemistry to assess if H2 inhalation effectively reduced the cerebral vascular leakage. Of 33 piglets subjected to a hypoxic-ischemic insult, 26 piglets were ultimately analyzed. After the insult, the piglets were grouped into normothermia (NT), H2 ventilation (H2), therapeutic hypothermia (TH), and H2 combined with TH (H2-TH) groups. The ratio of albumin stained to unstained areas was analyzed and found to be lower in the H2 group than in the other groups, although the difference was not statistically significant. In this study, H2 therapy did not significantly improve albumin leakage despite the histological images suggesting signs of improvement. Further investigations are warranted to study the efficacy of H2 gas for vascular leakage in neonatal HIE.
Collapse
Affiliation(s)
- Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Tsutomu Mitsuie
- Medical Engineering Equipment Management Center, Kagawa University Hospital, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Kenichi Ohta
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Makoto Arioka
- Maternal and Perinatal Center, Kagawa University Hospital, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Takayuki Yokota
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Eri Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Kota Inoue
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Toi Tsuchiya
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Kosuke Koyano
- Maternal and Perinatal Center, Kagawa University Hospital, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Yukihiko Konishi
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, 1750-1 Mikicho, Kitagun, Kagawa, 761-0793, Japan.
| |
Collapse
|
6
|
Andelius TCK, Bøgh N, Pedersen MV, Omann C, Andersen M, Andersen HB, Hjortdal VE, Pedersen M, Rasmussen MB, Kyng KJ, Henriksen TB. Early changes in cerebral metabolism after perinatal hypoxia-ischemia: a study in normothermic and hypothermic piglets. Front Pediatr 2023; 11:1167396. [PMID: 37325341 PMCID: PMC10264796 DOI: 10.3389/fped.2023.1167396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Hypoxic ischemic encephalopathy (HIE) after a perinatal insult is a dynamic process that evolves over time. Therapeutic hypothermia (TH) is standard treatment for severe to moderate HIE. There is a lack of evidence on the temporal change and interrelation of the underlying mechanisms that constitute HIE under normal and hypothermic conditions. We aimed to describe early changes in intracerebral metabolism after a hypoxic-ischemic insult in piglets treated with and without TH and in controls. Methods Three devices were installed into the left hemisphere of 24 piglets: a probe measuring intracranial pressure, a probe measuring blood flow and oxygen tension, and a microdialysis catheter measuring lactate, glucose, glycerol, and pyruvate. After a standardized hypoxic ischemic insult, the piglets were randomized to either TH or normothermia. Results Glycerol, a marker of cell lysis, increased immediately after the insult in both groups. There was a secondary increase in glycerol in normothermic piglets but not in piglets treated with TH. Intracerebral pressure, blood flow, oxygen tension, and extracellular lactate remained stable during the secondary increase in glycerol. Conclusion This exploratory study depicted the development of the pathophysiological mechanisms in the hours following a perinatal hypoxic-ischemic insult with and without TH and controls.
Collapse
Affiliation(s)
- Ted C. K. Andelius
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Nikolaj Bøgh
- The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Mette V. Pedersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Camilla Omann
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hannah B. Andersen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Vibeke E. Hjortdal
- Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Aarhus University Hospital, Aarhus, Denmark
| | - Martin B. Rasmussen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Tine B. Henriksen
- Department of Pediatrics, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Chock VY, Rao A, Van Meurs KP. Optimal neuromonitoring techniques in neonates with hypoxic ischemic encephalopathy. Front Pediatr 2023; 11:1138062. [PMID: 36969281 PMCID: PMC10030520 DOI: 10.3389/fped.2023.1138062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/20/2023] [Indexed: 03/29/2023] Open
Abstract
Neonates with hypoxic ischemic encephalopathy (HIE) are at significant risk for adverse outcomes including death and neurodevelopmental impairment. Neuromonitoring provides critical diagnostic and prognostic information for these infants. Modalities providing continuous monitoring include continuous electroencephalography (cEEG), amplitude-integrated electroencephalography (aEEG), near-infrared spectroscopy (NIRS), and heart rate variability. Serial bedside neuromonitoring techniques include cranial ultrasound and somatic and visual evoked potentials but may be limited by discrete time points of assessment. EEG, aEEG, and NIRS provide distinct and complementary information about cerebral function and oxygen utilization. Integrated use of these neuromonitoring modalities in addition to other potential techniques such as heart rate variability may best predict imaging outcomes and longer-term neurodevelopment. This review examines available bedside neuromonitoring techniques for the neonate with HIE in the context of therapeutic hypothermia.
Collapse
|
8
|
Andersen HB, Andersen M, Bennedsgaard K, Kerrn-Jespersen S, Kyng KJ, Holm IE, Henriksen TB. No Differences in Cerebral Immunohistochemical Markers following Remote Ischemic Postconditioning in Newborn Piglets with Hypoxia-Ischemia. Neuropediatrics 2022; 53:423-431. [PMID: 35777661 PMCID: PMC9643070 DOI: 10.1055/a-1889-8544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Despite therapeutic hypothermia, neonates with hypoxic-ischemic encephalopathy still develop neurological disabilities. We have previously investigated neuroprotection by remote ischemic postconditioning (RIPC) in newborn piglets following hypoxia-ischemia (HI). The aim of this study was to further investigate potential effects of RIPC on cerebral immunohistochemical markers related to edema, apoptosis, and angiogenesis. METHODS Brain expression of aquaporin 4, caspase-3, B-cell lymphoma 2, and vascular endothelial growth factor was analyzed by immunohistochemistry in 23 piglets, randomly selected from a larger study of RIPC after HI. Twenty animals were subjected to 45 minutes of HI and randomized to treatment with and without RIPC, while three animals were randomized to sham procedures. RIPC was conducted by four conditioning cycles of 5-minute ischemia and reperfusion. Piglets were euthanized 72 hours after the HI insult. RESULTS Piglets subjected to HI treated with and without RIPC were similar at baseline and following the HI insult. However, piglets randomized to HI alone had longer duration of low blood pressure during the insult. We found no differences in the brain expression of the immunohistochemical markers in any regions of interest or the whole brain between the two HI groups. CONCLUSION RIPC did not influence brain expression of markers related to edema, apoptosis, or angiogenesis in newborn piglets at 72 hours after HI. These results support previous findings of limited neuroprotective effect by this RIPC protocol. Our results may have been affected by the time of assessment, use of fentanyl as anesthetic, or limitations related to our immunohistochemical methods.
Collapse
Affiliation(s)
- Hannah B. Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Andersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Sigrid Kerrn-Jespersen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kasper J. Kyng
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ida E. Holm
- Department of Pathology, Randers Regional Hospital, Randers, Denmark
| | - Tine B. Henriksen
- Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
9
|
Christidis P, Vij A, Petousis S, Ghaemmaghami J, Shah BV, Koutroulis I, Kratimenos P. Neuroprotective effect of Src kinase in hypoxia-ischemia: A systematic review. Front Neurosci 2022; 16:1049655. [PMID: 36507364 PMCID: PMC9730728 DOI: 10.3389/fnins.2022.1049655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/02/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal morbidity and mortality worldwide. While the application of therapeutic hypothermia has improved neurodevelopmental outcomes for some survivors of HIE, this lone treatment option is only available to a subset of affected neonates. Src kinase, an enzyme central to the apoptotic cascade, is a potential pharmacologic target to preserve typical brain development after HIE. Here, we present evidence of the neuroprotective effects of targeting Src kinase in preclinical models of HIE. Methods We performed a comprehensive literature search using the National Library of Medicine's MEDLINE database to compile studies examining the impact of Src kinase regulation on neurodevelopment in animal models. Each eligible study was assessed for bias. Results Twenty studies met the inclusion criteria, and most studies had an intermediate risk for bias. Together, these studies showed that targeting Src kinase resulted in a neuroprotective effect as assessed by neuropathology, enzymatic activity, and neurobehavioral outcomes. Conclusion Src kinase is an effective neuroprotective target in the setting of acute hypoxic injury. Src kinase inhibition triggers multiple signaling pathways of the sub-membranous focal adhesions and the nucleus, resulting in modulation of calcium signaling and prevention of cell death. Despite the significant heterogeneity of the research studies that we examined, the available evidence can serve as proof-of-concept for further studies on this promising therapeutic strategy.
Collapse
Affiliation(s)
- Panagiotis Christidis
- Laboratory of Physiology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Abhya Vij
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Stamatios Petousis
- 2nd Department of Obstetrics and Gynecology, “Hippokrateion” General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Javid Ghaemmaghami
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States
| | - Bhairav V. Shah
- Division of Pediatric Surgery, Department of Pediatrics, School of Medicine, Prisma Health Children's Hospital-Midlands, University of South Carolina, Columbia, SC, United States
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Washington, DC, United States,Division of Neonatology, Department of Pediatrics, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States,*Correspondence: Panagiotis Kratimenos
| |
Collapse
|
10
|
Pedersen MV, Andelius TCK, Andersen HB, Kyng KJ, Henriksen TB. Hypothermia and heart rate variability in a healthy newborn piglet model. Sci Rep 2022; 12:18282. [PMID: 36316356 PMCID: PMC9622714 DOI: 10.1038/s41598-022-22426-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Decreased heart rate variability (HRV) may be a biomarker of brain injury severity in neonatal hypoxic-ischemic encephalopathy for which therapeutic hypothermia is standard treatment. While therapeutic hypothermia may influence the degree of brain injury; hypothermia may also affect HRV per se and obscure a potential association between HRV and hypoxic-ischemic encephalopathy. Previous results are conflicting. This study aimed to investigate the effect of hypothermia on HRV in healthy, anaesthetised, newborn piglets. Six healthy newborn piglets were anaesthetised. Three piglets were first kept normothermic (38.5-39.0 °C) for 3 h, then exposed to hypothermia (33.5-34.5 °C) for 3 h. Three piglets were first exposed to hypothermia for 3 h, then rewarmed to normothermia for 3 h. Temperature and ECG were recorded continuously. HRV was calculated from the ECG in 5 min epochs and included time domain and frequency domain variables. The HRV variables were compared between hypothermia and normothermia. All assessed HRV variables were higher during hypothermia compared to normothermia. Heart rate was lower during hypothermia compared to normothermia and all HRV variables correlated with heart rate. Hypothermia was associated with an increase in HRV; this could be mediated by bradycardia during hypothermia.
Collapse
Affiliation(s)
- Mette Vestergård Pedersen
- grid.154185.c0000 0004 0512 597XDepartment of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark
| | - Ted Carl Kejlberg Andelius
- grid.154185.c0000 0004 0512 597XDepartment of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark
| | - Hannah Brogård Andersen
- grid.154185.c0000 0004 0512 597XDepartment of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark
| | - Kasper Jacobsen Kyng
- grid.154185.c0000 0004 0512 597XDepartment of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark
| | - Tine Brink Henriksen
- grid.154185.c0000 0004 0512 597XDepartment of Pediatrics, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark ,grid.7048.b0000 0001 1956 2722Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 99, Aarhus N, Denmark
| |
Collapse
|
11
|
Early Plasma Magnesium in Near-Term and Term Infants with Neonatal Encephalopathy in the Context of Perinatal Asphyxia. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9081233. [PMID: 36010122 PMCID: PMC9406851 DOI: 10.3390/children9081233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Magnesium ions are implicated in brain functioning. The disruption of brain metabolism subsequent to a perinatal hypoxic-ischaemic insult may be reflected by plasma magnesium. Infants at 36 weeks after birth or later with neonatal encephalopathy and who were admitted to our neonatal unit from 2011 to 2019 were retrospectively included. The kinetics of plasma magnesium were investigated for the first 72 h of life and correlated to the Barkovich MRI score. Among the 125 infants who met the inclusion criteria, 45 patients (36%) had moderate to severe brain lesions on neonatal MRI. Plasma magnesium values were not strongly associated with the severity of clinical encephalopathy, initial EEG background and brain lesions. Intriguingly, higher plasma magnesium values during the 0−6 h period were linked to the presence of brain injuries that predominated within the white matter (p < 0.001) and to the requirement of cardiac resuscitation in the delivery room (p = 0.001). The occurrence of seizures was associated with a lower mean magnesium value around the 24th hour of life (p = 0.005). This study supports that neonatal encephalopathy is a complex and multifactorial condition. Plasma magnesium could help to better identify the subtypes of neonatal encephalopathy. Further studies are needed to confirm these results in this prospect.
Collapse
|
12
|
Cerebral hemodynamic response during the resuscitation period after hypoxic-ischemic insult predicts brain injury on day 5 after insult in newborn piglets. Sci Rep 2022; 12:13157. [PMID: 35915296 PMCID: PMC9343657 DOI: 10.1038/s41598-022-16625-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022] Open
Abstract
Perinatal hypoxic-ischemic brain injury of neonates remains a significant problem worldwide. During the resuscitation period, changes in cerebral hemoglobin oxygen saturation (ScO2) have been identified by near-infrared spectroscopy (NIRS). However, in asphyxiated neonates, the relationship between these changes and brain injury is not known. Three-wavelength near-infrared time-resolved spectroscopy, an advanced technology for NIRS, allows for the estimation of ScO2 and cerebral blood volume (CBV). Here, we studied changes in ScO2 and CBV during the resuscitation period after hypoxic-ischemic insult and the relationship between these changes after insult and histopathological brain injuries on day 5 after insult using an asphyxiated piglet model. Of 36 newborn piglets subjected to hypoxic-ischemic insult, 29 were analyzed. ScO2 and CBV were measured 0, 5, 10, 15, and 30 min after the insult. Brain tissue was histologically evaluated on day 5. ScO2 and CBV increased immediately after the insult, reached a peak, and then maintained a consistent value. The increase in CBV 5 to 30 min after the insult was significantly correlated with histopathological injury scores. However, there was no correlation with ScO2. In conclusion, an increase in CBV within 30 min after hypoxic-ischemic insult reflects the histopathological brain injury on day 5 after insult in a piglet model.
Collapse
|
13
|
Lee HY, Jung YH, Mamadjonov N, Jeung KW, Kim MC, Lim KS, Jeon CY, Lee Y, Kim HJ. Effects of Sodium Nitroprusside Administered Via a Subdural Intracranial Catheter on the Microcirculation, Oxygenation, and Electrocortical Activity of the Cerebral Cortex in a Pig Cardiac Arrest Model. J Am Heart Assoc 2022; 11:e025400. [PMID: 35624079 PMCID: PMC9238727 DOI: 10.1161/jaha.122.025400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Postischemic cerebral hypoperfusion has been indicated as an important contributing factor to secondary cerebral injury after cardiac arrest. We evaluated the effects of sodium nitroprusside administered via a subdural intracranial catheter on the microcirculation, oxygenation, and electrocortical activity of the cerebral cortex in the early postresuscitation period using a pig model of cardiac arrest. Methods and Results Twenty‐nine pigs were resuscitated with closed cardiopulmonary resuscitation after 14 minutes of untreated ventricular fibrillation. Thirty minutes after restoration of spontaneous circulation, 24 pigs randomly received either 4 mg of sodium nitroprusside (IT‐SNP group) or saline placebo (IT‐saline group) via subdural intracranial catheters and were observed for 5 hours. The same dose of sodium nitroprusside was administered intravenously in another 5 pigs. Compared with the IT‐saline group, the IT‐SNP group had larger areas under the curve for tissue oxygen tension and percent changes of arteriole diameter and number of perfused microvessels from baseline (all P<0.05) monitored on the cerebral cortex during the 5‐hour period, without severe hemodynamic instability. This group also showed faster recovery of electrocortical activity measured using amplitude‐integrated electroencephalography. Repeated‐measures analysis of variance revealed significant group–time interactions for these parameters. Intravenously administered sodium nitroprusside caused profound hypotension but did not appear to increase the cerebral parameters. Conclusions Sodium nitroprusside administered via a subdural intracranial catheter increased post–restoration of spontaneous circulation cerebral cortical microcirculation and oxygenation and hastened electrocortical activity recovery in a pig model of cardiac arrest. Further studies are required to determine its impact on the long‐term neurologic outcomes.
Collapse
Affiliation(s)
- Hyoung Youn Lee
- Trauma Center Chonnam National University Hospital Gwangju Republic of Korea
| | - Yong Hun Jung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Najmiddin Mamadjonov
- Department of Medical Science Chonnam National University Graduate School Gwangju Republic of Korea
| | - Kyung Woon Jeung
- Department of Emergency Medicine Chonnam National University Hospital Gwangju Republic of Korea.,Department of Emergency Medicine Chonnam National University Medical School Gwangju Republic of Korea
| | - Min Chul Kim
- Division of Cardiology Department of Internal Medicine Chonnam National University Hospital Gwangju Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center Korea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Youngjeon Lee
- National Primate Research CenterKorea Research Institute of Bioscience and Biotechnology Ochang Republic of Korea
| | - Hyung Joong Kim
- Medical Science Research InstituteKyung Hee University Hospital Seoul Republic of Korea
| |
Collapse
|
14
|
Campion S, Inselman A, Hayes B, Casiraghi C, Joseph D, Facchinetti F, Salomone F, Schmitt G, Hui J, Davis-Bruno K, Van Malderen K, Morford L, De Schaepdrijver L, Wiesner L, Kourula S, Seo S, Laffan S, Urmaliya V, Chen C. The benefits, limitations and opportunities of preclinical models for neonatal drug development. Dis Model Mech 2022; 15:dmm049065. [PMID: 35466995 PMCID: PMC9066504 DOI: 10.1242/dmm.049065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Increased research to improve preclinical models to inform the development of therapeutics for neonatal diseases is an area of great need. This article reviews five common neonatal diseases - bronchopulmonary dysplasia, retinopathy of prematurity, necrotizing enterocolitis, perinatal hypoxic-ischemic encephalopathy and neonatal sepsis - and the available in vivo, in vitro and in silico preclinical models for studying these diseases. Better understanding of the strengths and weaknesses of specialized neonatal disease models will help to improve their utility, may add to the understanding of the mode of action and efficacy of a therapeutic, and/or may improve the understanding of the disease pathology to aid in identification of new therapeutic targets. Although the diseases covered in this article are diverse and require specific approaches, several high-level, overarching key lessons can be learned by evaluating the strengths, weaknesses and gaps in the available models. This Review is intended to help guide current and future researchers toward successful development of therapeutics in these areas of high unmet medical need.
Collapse
Affiliation(s)
- Sarah Campion
- Pfizer Worldwide Research, Development, and Medical, Groton, CT 06340, USA
| | - Amy Inselman
- U.S. Food and Drug Administration, National Center for Toxicological Research, Division of Systems Biology, Jefferson, AR 72079, USA
| | - Belinda Hayes
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Costanza Casiraghi
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - David Joseph
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Fabrizio Facchinetti
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Fabrizio Salomone
- Department of Experimental Pharmacology and Translational Science, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Georg Schmitt
- Pharma Research and Early Development, Roche Innovation Center Basel, Pharmaceutical Sciences, F. Hoffmann-La Roche, 4070 Basel, Switzerland
| | - Julia Hui
- Bristol Myers Squibb, Nonclinical Research and Development, Summit, NJ 07901, USA
| | - Karen Davis-Bruno
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Karen Van Malderen
- Federal Agency for Medicines and Health Products (FAMHP), Department DG PRE authorization, 1210 Brussels, Belgium
| | - LaRonda Morford
- Eli Lilly, Global Regulatory Affairs, Indianapolis, IN 46285, USA
| | | | - Lutz Wiesner
- Federal Institute for Drugs and Medical Devices, Clinical Trials, 53175 Bonn, Germany
| | - Stephanie Kourula
- Janssen R&D, Drug Metabolism & Pharmacokinetics, 2340 Beerse, Belgium
| | - Suna Seo
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of New Drugs, Silver Spring, MD 20993, USA
| | - Susan Laffan
- GlaxoSmithKline, Non-Clinical Safety, Collegeville, PA 19406, USA
| | | | - Connie Chen
- Health and Environmental Sciences Institute, Washington, DC 20005, USA
| |
Collapse
|
15
|
Kyng KJ, Wellmann S, Lehnerer V, Hansen LH, Kuhle J, Henriksen TB. Neurofilament Light Chain serum levels after Hypoxia-Ischemia in a newborn piglet model. Front Pediatr 2022; 10:1068380. [PMID: 36699314 PMCID: PMC9869944 DOI: 10.3389/fped.2022.1068380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
AIM Neurofilament light Chain (NfL) is a promising brain injury biomarker which may assist diagnosis and prognostication in hypoxic-ischemic encephalopathy (HIE). The aim of this study was to investigate serum NfL levels after hypoxia-ischemia (HI) in a newborn piglet model. Second, to characterize the influence of sex, weight, and treatment with remote ischemic postconditioning (RIPC) on NfL and the correlation between NfL, brain imaging and histologic brain injury. METHODS We used serum from 48 newborn piglets of both sexes subjected to 45 min of global HI, and 4 sham piglets. Blood was collected pre-HI, 2 h post-HI and 72 h post-HI. NfL was measured by single-molecule array (Simoa™). We analysed the temporal profile of NfL after HI, and correlations between NfL, magnetic resonance spectroscopy brain Lac/NAA ratios and histologic brain injury 72 h after HI. RESULTS Median (IQR) NfL levels were: pre-HI: 66 pg/ml (45-87), 2 h post-HI: 105 pg/ml (77-140), and 72 h post-HI: 380 pg/ml (202-552). The increase in NfL after HI was statistically significant (p < 0.0001, mixed-effects ANOVA). Median NfL levels in sham animals were 41.4 pg/ml at baseline and 92.4 pg/ml at 72 h (p = 0.11, paired t-test). Neither sex, nor treatment with RIPC influenced NfL levels. Weight had a small, not biologically important, influence. NfL levels at 72 h were moderately correlated with histologic brain injury and brain Lac/NAA ratios. NfL 72 h post-HI > 330 pg/ml had a sensitivity of 89% (95% CI, 57%-99%) and a specificity of 52% (95% CI, 34%-69%) for predicting basal ganglia Lac/NAA ratio in the highest quartile. NfL 72 h post-HI > 445 pg/ml had a sensitivity of 90% (95% CI, 60%-99%) and a specificity of 74% (95% CI, 58%-86%) for predicting cortical brain histopathology injury in the highest quartile. CONCLUSION NfL increased after HI, with the largest values at 72 h post-HI. Early NfL was sensitive but not very specific, whereas NfL at 72 h was both highly sensitive and specific for exposure to moderate-severe HI in this model of HI-induced brain injury. This was supported by a moderate correlation of NfL at 72 h with brain Lac/NAA ratio and histopathology.
Collapse
Affiliation(s)
- Kasper Jacobsen Kyng
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| | - Sven Wellmann
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Verena Lehnerer
- Department of Neonatology, University Children's Hospital Regensburg (KUNO), Hospital St. Hedwig of the Order of St. John, University of Regensburg, Regensburg, Germany
| | - Lærke Hjøllund Hansen
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Tine Brink Henriksen
- Aarhus University Hospital and Aarhus University, Department of Pediatrics and Adolescent Medicine and Department of Clinical Medicine, Aarhus, Denmark
| |
Collapse
|
16
|
Tetorou K, Sisa C, Iqbal A, Dhillon K, Hristova M. Current Therapies for Neonatal Hypoxic-Ischaemic and Infection-Sensitised Hypoxic-Ischaemic Brain Damage. Front Synaptic Neurosci 2021; 13:709301. [PMID: 34504417 PMCID: PMC8421799 DOI: 10.3389/fnsyn.2021.709301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/19/2021] [Indexed: 12/15/2022] Open
Abstract
Neonatal hypoxic-ischaemic brain damage is a leading cause of child mortality and morbidity, including cerebral palsy, epilepsy, and cognitive disabilities. The majority of neonatal hypoxic-ischaemic cases arise as a result of impaired cerebral perfusion to the foetus attributed to uterine, placental, or umbilical cord compromise prior to or during delivery. Bacterial infection is a factor contributing to the damage and is recorded in more than half of preterm births. Exposure to infection exacerbates neuronal hypoxic-ischaemic damage thus leading to a phenomenon called infection-sensitised hypoxic-ischaemic brain injury. Models of neonatal hypoxia-ischaemia (HI) have been developed in different animals. Both human and animal studies show that the developmental stage and the severity of the HI insult affect the selective regional vulnerability of the brain to damage, as well as the subsequent clinical manifestations. Therapeutic hypothermia (TH) is the only clinically approved treatment for neonatal HI. However, the number of HI infants needed to treat with TH for one to be saved from death or disability at age of 18-22 months, is approximately 6-7, which highlights the need for additional or alternative treatments to replace TH or increase its efficiency. In this review we discuss the mechanisms of HI injury to the immature brain and the new experimental treatments studied for neonatal HI and infection-sensitised neonatal HI.
Collapse
Affiliation(s)
| | | | | | | | - Mariya Hristova
- Perinatal Brain Repair Group, Department of Maternal and Fetal Medicine, UCL Institute for Women’s Health, London, United Kingdom
| |
Collapse
|
17
|
Non-invasive diffuse optical neuromonitoring during cardiopulmonary resuscitation predicts return of spontaneous circulation. Sci Rep 2021; 11:3828. [PMID: 33589662 PMCID: PMC7884428 DOI: 10.1038/s41598-021-83270-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Neurologic injury is a leading cause of morbidity and mortality following pediatric cardiac arrest. In this study, we assess the feasibility of quantitative, non-invasive, frequency-domain diffuse optical spectroscopy (FD-DOS) neuromonitoring during cardiopulmonary resuscitation (CPR), and its predictive utility for return of spontaneous circulation (ROSC) in an established pediatric swine model of cardiac arrest. Cerebral tissue optical properties, oxy- and deoxy-hemoglobin concentration ([HbO2], [Hb]), oxygen saturation (StO2) and total hemoglobin concentration (THC) were measured by a FD-DOS probe placed on the forehead in 1-month-old swine (8–11 kg; n = 52) during seven minutes of asphyxiation followed by twenty minutes of CPR. ROSC prediction and time-dependent performance of prediction throughout early CPR (< 10 min), were assessed by the weighted Youden index (Jw, w = 0.1) with tenfold cross-validation. FD-DOS CPR data was successfully acquired in 48/52 animals; 37/48 achieved ROSC. Changes in scattering coefficient (785 nm), [HbO2], StO2 and THC from baseline were significantly different in ROSC versus No-ROSC subjects (p < 0.01) after 10 min of CPR. Change in [HbO2] of + 1.3 µmol/L from 1-min of CPR achieved the highest weighted Youden index (0.96) for ROSC prediction. We demonstrate feasibility of quantitative, non-invasive FD-DOS neuromonitoring, and stable, specific, early ROSC prediction from the third minute of CPR.
Collapse
|
18
|
Kyng KJ, Kerrn-Jespersen S, Bennedsgaard K, Skajaa T, Pedersen M, Holm IE, Henriksen TB. Short-term outcomes of remote ischemic postconditioning 1 h after perinatal hypoxia-ischemia in term piglets. Pediatr Res 2021; 89:150-156. [PMID: 32294662 DOI: 10.1038/s41390-020-0878-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/19/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND We aimed to assess remote ischemic postconditioning (RIPC) as a neuroprotective strategy after perinatal hypoxia-ischemia (HI) in a piglet model. METHODS Fifty-four newborn piglets were subjected to global HI for 45 min. One hour after HI, piglets were randomized to four cycles of 5 min of RIPC or supportive treatment only. The primary outcome was brain lactate/N-acetylaspartate (Lac/NAA) ratios measured by magnetic resonance spectroscopy at 72 h. Secondary outcomes included diffusion-weighted imaging and neuropathology. RESULTS RIPC was associated with a reduction in overall and basal ganglia Lac/NAA ratios at 72 h after HI, but no effect on diffusion-weighted imaging, neuropathology scores, neurological recovery, or mortality. CONCLUSIONS The selective effect of RIPC on Lac/NAA ratios may suggest that the metabolic effect is greater than the structural and functional improvement at 72 h after HI. Further studies are needed to address whether there is an add-on effect of RIPC to hypothermia, together with the optimal timing, number of cycles, and duration of RIPC. IMPACT RIPC after HI was associated with a reduction in overall and basal ganglia Lac/NAA ratios at 72 h, but had no effect on diffusion-weighted imaging, neuropathology scores, neurological recovery, or mortality. RIPC may have a selective metabolic effect, ameliorating lactate accumulation without improving other short-term outcomes assessed at 72 h after HI. We applied four cycles of 5 min RIPC, complementing existing data on other durations of RIPC. This study adds to the limited data on RIPC after perinatal HI and highlights that knowledge gaps, including timing and duration of RIPC, must be addressed together with exploring the combined effects with hypothermia.
Collapse
Affiliation(s)
- Kasper J Kyng
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
| | - Sigrid Kerrn-Jespersen
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Kristine Bennedsgaard
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torjus Skajaa
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Pedersen
- Comparative Medicine Lab, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ida E Holm
- Department of Pathology, Randers Hospital and Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Henriksen
- Department of Paediatrics, Institute of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
19
|
Kratimenos P, Goldstein EZ, Koutroulis I, Knoblach S, Jablonska B, Banerjee P, Malaeb SN, Bhattacharya S, Almira-Suarez MI, Gallo V, Delivoria-Papadopoulos M. Epidermal Growth Factor Receptor Inhibition Reverses Cellular and Transcriptomic Alterations Induced by Hypoxia in the Neonatal Piglet Brain. iScience 2020; 23:101766. [PMID: 33294779 PMCID: PMC7683340 DOI: 10.1016/j.isci.2020.101766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 02/04/2023] Open
Abstract
Acute hypoxia (HX) causes extensive cellular damage in the developing human cerebral cortex. We found increased expression of activated-EGFR in affected cortical areas of neonates with HX and investigated its functional role in the piglet, which displays a highly evolved, gyrencephalic brain, with a human-like maturation pattern. In the piglet, HX-induced activation of EGFR and Ca2+/calmodulin kinase IV (CaMKIV) caused cell death and pathological alterations in neurons and glia. EGFR blockade inhibited CaMKIV activation, attenuated neuronal loss, increased oligodendrocyte proliferation, and reversed HX-induced astrogliosis. We performed for the first time high-throughput transcriptomic analysis of the piglet cortex to define molecular responses to HX and to uncover genes specifically involved in EGFR signaling in piglet and human brain injury. Our results indicate that specific molecular responses modulated by EGFR may be targeted as a therapeutic strategy for HX injury in the neonatal brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Department of Pediatrics, Division of Neonatology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-602-4889, USA
- Corresponding author
| | - Evan Z. Goldstein
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Susan Knoblach
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
| | - Payal Banerjee
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - Shadi N. Malaeb
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Surajit Bhattacharya
- Research Center for Genetic Medicine, Children's National Research Institute, Washington, DC, USA
| | - M. Isabel Almira-Suarez
- Department of Pathology, Children's National Hospital and George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC 20010 P 202-476-5922, USA
- Corresponding author
| | | |
Collapse
|
20
|
Dingley J, Okano S, Lee-Kelland R, Scull-Brown E, Thoresen M, Chakkarapani E. Closed circuit xenon delivery for 72h in neonatal piglets following hypoxic insult using an ambient pressure automated control system: Development, technical evaluation and pulmonary effects. PLoS One 2020; 15:e0224447. [PMID: 31961878 PMCID: PMC6974042 DOI: 10.1371/journal.pone.0224447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/14/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Therapeutic hypothermia (TH) for 72h is the standard treatment following neonatal encephalopathy (NE). However, one-third do not benefit and adjunctive therapies are urgently needed. Xenon enhances neuroprotection with TH when administered at 50% concentration within 5hours of hypoxia in experimental studies. Delayed initiation (~10 hours of age) of 30% xenon for 24 hours during TH did not improve early adverse biomarkers in a clinical trial of Xenon+TH vs TH. After hypoxia-ischemia, excitotoxic injury via N-methyl-D-aspartate receptor overactivation lasts days. Since xenon partially inhibits this receptor, we hypothesised that giving 50% xenon throughout the entire 72h TH and rewarming periods would enhance neuroprotection. Xenon costs $30/litre, so a closed-circuit breathing system is desirable with automated fresh gas delivery. METHODS Seven mechanically ventilated newborn pigs were randomized to receive 50% inhaled xenon for 72h during hypothermia (rectal-temperature 35°C) and subsequent rewarming following a global hypoxic-ischemic insult (XeHT, N = 4) or under normothermia for 72h (rectal-temperature 38.5°C) following sham insult (XeNT, N = 3). An automated fresh gas delivery system injected oxygen/air/xenon boluses into a closed-circuit based on measured gas concentrations. RESULTS AND DISCUSSION Median (IQR) xenon consumption was 0.31 L/h (0.18, 0.50) and 0.34L/h (0.32, 0.49) for hypothermic and normothermic groups respectively, 0.34L/h (0.25, 0.53) overall. 92% of 9626 xenon and 69% of 9635 oxygen measurements were within 20% variation from targets. For xenon concentration, the median absolute performance errors for the XeHT and XeNT groups were 6.14% and 3.84% respectively and 4.31% overall. For oxygen these values were 13.42%, 15.05% and 12.4% respectively. There were no adverse pulmonary pathophysiology findings. Clinical problems over the total period included three related to sensors, seven breathing system leaks, ten partial and one complete tracheal tube occlusion episodes. CONCLUSION The automated controller functioned as intended maintaining an inhaled xenon concentration close to the 50% target for 72-78h at a xenon cost of $11.1/h.
Collapse
Affiliation(s)
- John Dingley
- Department of Anaesthetics ABM University Health Board, Swansea and College of Medicine, Swansea University, Swansea, Wales, United Kingdom
- * E-mail: ,
| | - Satomi Okano
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, United Kingdom
| | - Emma Scull-Brown
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, United Kingdom
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, England, United Kingdom
| |
Collapse
|
21
|
Yamato SH, Nakamura S, Htun Y, Nakamura M, Jinnai W, Nakao Y, Mitsuie T, Koyano K, Wakabayashi T, Morimoto AH, Sugino M, Iwase T, Kondo SI, Yasuda S, Ueno M, Miki T, Kusaka T. Intravenous Edaravone plus Therapeutic Hypothermia Offers Limited Neuroprotection in the Hypoxic-Ischaemic Newborn Piglet. Neonatology 2020; 117:713-720. [PMID: 33113527 DOI: 10.1159/000511085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/22/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Therapeutic hypothermia (TH) is a standard therapy for neonatal hypoxic-ischaemic encephalopathy. One potential additional therapy is the free radical scavenger edaravone (EV; 3-methyl-1-phenyl-2-pyrazolin-5-one). OBJECTIVES AND METHODS This study aimed to compare the neuroprotective effects of edaravone plus therapeutic hypothermia (TH + EV) with those of TH alone after a hypoxic-ischaemic insult in the newborn piglet. Anaesthetized piglets were subjected to 40 min of hypoxia (3-5% inspired oxygen), and cerebral ischaemia was assessed using cerebral blood volume. Body temperature was maintained at 39.0 ± 0.5°C in the normothermia group (NT, n = 8) and at 33.5 ± 0.5°C (24 h after the insult) in the TH (n = 7) and TH + EV (3 mg/kg intravenous every 12 h for 3 days after the insult; n = 6) groups under mechanical ventilation. RESULTS Five days after the insult, the mean (standard deviation) neurological scores were 10.9 (5.7) in the NT group, 17.0 (0.4) in the TH group (p = 0.025 vs. NT), and 15.0 (3.9) in the TH + EV group. The histopathological score of the TH + EV group showed no significant improvement compared with that of the other groups. CONCLUSION TH + EV had no additive neuroprotective effects after hypoxia-ischaemia in neurological and histopathological assessments.
Collapse
Affiliation(s)
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan,
| | - Yinmon Htun
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Makoto Nakamura
- Department of Neonatology, National Hospital Organization Okayama Medical Center, Okayam, Japan
| | - Wataru Jinnai
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yasuhiro Nakao
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tsutomu Mitsuie
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | - Masashiro Sugino
- Division of Neonatology, Shikoku Medical Center for Children and Adults, Kagawa, Japan
| | - Takashi Iwase
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Sonoko Ijichi Kondo
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saneyuki Yasuda
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
22
|
Spatial T-maze identifies cognitive deficits in piglets 1 month after hypoxia-ischemia in a model of hippocampal pyramidal neuron loss and interneuron attrition. Behav Brain Res 2019; 369:111921. [PMID: 31009645 DOI: 10.1016/j.bbr.2019.111921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 12/19/2022]
Abstract
Neonatal brain injury from hypoxia-ischemia (HI) causes major morbidity. Piglet HI is an established method for testing neuroprotective treatments in large, gyrencephalic brain. Though many neurobehavior tests exist for rodents, such tests and their associations with neuropathologic injury remain underdeveloped and underutilized in large, neonatal HI animal models. We examined whether spatial T-maze and inclined beam tests distinguish cognitive and motor differences between HI and sham piglets and correlate with neuropathologic injury. Neonatal piglets were randomized to whole-body HI or sham procedure, and they began T-maze and inclined beam testing 17 days later. HI piglets had more incorrect T-maze turns than did shams. Beam walking time did not differ between groups. Neuropathologic evaluations at 33 days validated the injury with putamen neuron loss after HI to below that of sham procedure. HI decreased the numbers of CA3 pyramidal neurons but not CA1 pyramidal neurons or dentate gyrus granule neurons. Though the number of hippocampal parvalbumin-positive interneurons did not differ between groups, HI reduced the number of CA1 interneuron dendrites. Piglets with more incorrect turns had greater CA3 neuron loss, and piglets that took longer in the maze had fewer CA3 interneurons. The number of putamen neurons was unrelated to T-maze or beam performance. We conclude that neonatal HI causes hippocampal CA3 neuron loss, CA1 interneuron dendritic attrition, and putamen neuron loss at 1-month recovery. The spatial T-maze identifies learning and memory deficits that are related to loss of CA3 pyramidal neurons and fewer parvalbumin-positive interneurons independent of putamen injury.
Collapse
|
23
|
Plomgaard AM, Andersen AD, Petersen TH, van de Looij Y, Thymann T, Sangild PT, Thomsen C, Sizonenko SV, Greisen G. Structural brain maturation differs between preterm and term piglets, whereas brain activity does not. Acta Paediatr 2019; 108:637-644. [PMID: 30144173 DOI: 10.1111/apa.14556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 06/14/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
AIM The aim of the study was to investigate whether amplitude-integrated electroencephalography (aEEG) and cerebral magnetic resonance imaging (MRI) in preterm piglets would provide measures of cerebral functional, microstructural and anatomical maturation, which might reflect the signs of functional brain immaturity, documented in preterm piglets. METHODS During July-October 2013 at the NEOMUNE Centre, Copenhagen University, Denmark, 31 preterm (90% gestation) and 10 term piglets underwent aEEG on days 1, 2, 4 and 11, and MRI on day 25. Physical activity levels were recorded. RESULTS Preterm showed delayed neonatal arousal and physical activity, relative to term piglets. Preterm piglets had lower growth rates and brain volume than term piglets, but aEEG patterns were similar. MRI mean diffusivity was also similar, but fractional anisotropy (FA) was lower in preterm piglets (p < 0.001). CONCLUSION Functional brain maturation, as assessed by aEEG, was relatively advanced in preterm piglets. Conversely, the low FA in the preterm piglets suggests that the white matter microstructure remains less mature in preterm compared to term piglets at postnatal day 25. The results might be utilised to define whether and how preterm piglets may contribute to preclinical models for brain development in preterm infants.
Collapse
Affiliation(s)
- A M Plomgaard
- Department of Neonatology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - A D Andersen
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - T H Petersen
- Research Unit on Brain Injury Neurorehabilitation Copenhagen; Department of Neurorehabilitation; TBI Unit; Rigshospitalet; Copenhagen University Hospital; Hvidovre Denmark
| | - Y van de Looij
- Division of Child Development and Growth; University Children's Hospital Geneva; Geneva Switzerland
- Functional and Metabolic Imaging Laboratory; EPFL-SB-IPSB-LIFMET CH; Lausanne Switzerland
| | - T Thymann
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - P T Sangild
- Comparative Pediatrics and Nutrition; Department of Veterinary Clinical and Animal Science; Frederiksberg C Denmark
| | - C Thomsen
- Department of Radiology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| | - S V Sizonenko
- Division of Child Development and Growth; University Children's Hospital Geneva; Geneva Switzerland
| | - G Greisen
- Department of Neonatology; Rigshospitalet; Copenhagen University Hospital; Copenhagen Denmark
| |
Collapse
|
24
|
Hydrogen ventilation combined with mild hypothermia improves short-term neurological outcomes in a 5-day neonatal hypoxia-ischaemia piglet model. Sci Rep 2019; 9:4088. [PMID: 30858437 PMCID: PMC6411734 DOI: 10.1038/s41598-019-40674-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/20/2019] [Indexed: 01/21/2023] Open
Abstract
Despite its poor outcomes, therapeutic hypothermia (TH) is the current standard treatment for neonatal hypoxic-ischaemic encephalopathy (HIE). In this study, due to its antioxidant, anti-inflammatory, and antiapoptotic properties, the effectiveness of molecular hydrogen (H2) combined with TH was evaluated by means of neurological and histological assessments. Piglets were divided into three groups: hypoxic-ischaemic insult with normothermia (NT), insult with hypothermia (TH, 33.5 ± 0.5 °C), and insult with hypothermia with H2 ventilation (TH-H2, 2.1–2.7%). H2 ventilation and TH were administered for 24 h. After ventilator weaning, neurological assessment was performed every 6 h for 5 days. On day 5, the brains of the piglets were harvested for histopathological analysis. Regarding the neurological score, the piglets in the TH-H2 group consistently had the highest score from day 2 to 5 and showed a significantly higher neurological score from day 3 compared with the NT group. Most piglets in the TH-H2 group could walk at day 3 of recovery, whereas walking ability was delayed in the two other groups. The histological results revealed that TH-H2 tended to improve the status of cortical gray matter and subcortical white matter, with a considerable reduction in cell death. In this study, the combination of TH and H2 improved short-term neurological outcomes in neonatal hypoxic-ischaemic piglets.
Collapse
|
25
|
Koehler RC, Yang ZJ, Lee JK, Martin LJ. Perinatal hypoxic-ischemic brain injury in large animal models: Relevance to human neonatal encephalopathy. J Cereb Blood Flow Metab 2018; 38:2092-2111. [PMID: 30149778 PMCID: PMC6282216 DOI: 10.1177/0271678x18797328] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Perinatal hypoxia-ischemia resulting in death or lifelong disabilities remains a major clinical disorder. Neonatal models of hypoxia-ischemia in rodents have enhanced our understanding of cellular mechanisms of neural injury in developing brain, but have limitations in simulating the range, accuracy, and physiology of clinical hypoxia-ischemia and the relevant systems neuropathology that contribute to the human brain injury pattern. Large animal models of perinatal hypoxia-ischemia, such as partial or complete asphyxia at the time of delivery of fetal monkeys, umbilical cord occlusion and cerebral hypoperfusion at different stages of gestation in fetal sheep, and severe hypoxia and hypoperfusion in newborn piglets, have largely overcome these limitations. In monkey, complete asphyxia produces preferential injury to cerebellum and primary sensory nuclei in brainstem and thalamus, whereas partial asphyxia produces preferential injury to somatosensory and motor cortex, basal ganglia, and thalamus. Mid-gestational fetal sheep provide a valuable model for studying vulnerability of progenitor oligodendrocytes. Hypoxia followed by asphyxia in newborn piglets replicates the systems injury seen in term newborns. Efficacy of post-insult hypothermia in animal models led to the success of clinical trials in term human neonates. Large animal models are now being used to explore adjunct therapy to augment hypothermic neuroprotection.
Collapse
Affiliation(s)
- Raymond C Koehler
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zeng-Jin Yang
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer K Lee
- 1 Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA.,2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA
| | - Lee J Martin
- 2 The Pathobiology Graduate Training Program, Johns Hopkins University, Baltimore, MD, USA.,3 Department of Pathology, Division of Neuropathology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
26
|
Ji J, Hong X, Su L, Liu Z. Proteomic identification of hippocalcin and its protective role in heatstroke-induced hypothalamic injury in mice. J Cell Physiol 2018; 234:3775-3789. [PMID: 30256386 DOI: 10.1002/jcp.27143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
Heatstroke is a devastating condition that is characterized by severe hyperthermia and central nervous system dysfunction. However, the mechanism of thermoregulatory center dysfunction of the hypothalamus in heatstroke is unclear. In this study, we established a heatstroke mouse model and a heat-stressed neuronal cellular model on the pheochromocytoma-12 (PC12) cell line. These models revealed that HS promoted obvious neuronal injury in the hypothalamus, with high pathological scores. In addition, PC12 cell apoptosis was evident by decreased cell viability, increased caspase-3 activity, and high apoptosis rates. Furthermore, 14 differentially expressed proteins in the hypothalamus were analyzed by fluorescence two-dimensional difference gel electrophoresis and identified by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Expression changes in hippocalcin (HPAC), a downregulated neuron-specific calcium-binding protein, were confirmed in the hypothalamus of the heatstroke mice and heat-stressed PC12 cells by immunochemistry and western blot. Moreover, HPAC overexpression and HPAC-targeted small interfering RNA experiments revealed that HPAC functioned as an antiapoptotic protein in heat-stressed PC12 cells and hypothalamic injury. Lastly, ulinastatin (UTI), a cell-protective drug that is clinically used to treat patients with heatstroke, was used in vitro and in vivo to confirm the role of HPAC; UTI inhibited heat stress (HS)-induced downregulation of HPAC expression, protected hypothalamic neurons and PC12 cells from HS-induced apoptosis and increased heat tolerance in the heatstroke animals. In summary, our study has uncovered and demonstrated the protective role of HPAC in heatstroke-induced hypothalamic injury in mice.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Departement of Pathophysiology, Southern Medical University, Guangzhou, China
| | - Xinxin Hong
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Department of Graduate School, Guangzhou University of Chinese Medicine, China
| | - Lei Su
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, China
| | - Zhifeng Liu
- Department of Critical Care Medicine, General Hospital of Guangzhou Military Command, Guangzhou, China.,Key Laboratory of Hot Zone Trauma Care and Tissue Repair of PLA, General Hospital of Guangzhou Military Command, Guangzhou, China
| |
Collapse
|
27
|
Huun MU, Garberg H, Løberg EM, Escobar J, Martinez-Orgado J, Saugstad OD, Solberg R. DHA and therapeutic hypothermia in a short-term follow-up piglet model of hypoxia-ischemia: Effects on H+MRS biomarkers. PLoS One 2018; 13:e0201895. [PMID: 30086156 PMCID: PMC6080779 DOI: 10.1371/journal.pone.0201895] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Background Therapeutic hypothermia has become the standard of care for newborns with hypoxic-ischemic encephalopathy in high and middle income countries. Docosahexaenoic acid (DHA) has neuroprotective properties of reducing excitotoxicity, neuroinflammation and apoptosis in rodent models. We aim to study whether post hypoxic administration of i.v. DHA will reduce H+MRS biomarkers and gene expression of inflammation and apoptosis both with and without hypothermia in a large animal model. Methods Fifty-five piglets were randomized to severe global hypoxia (N = 48) or not (Sham, N = 7). Hypoxic piglets were further randomized by factorial design: Vehicle (VEH), DHA, VEH + Hypothermia (HT), or DHA + HT. 5 mg/kg DHA was given intravenously 210 min after end of hypoxia. Two-way ANOVA analyses were performed with DHA and hypothermia as main effects. Results Cortical lactate/N-acetylaspartate (Lac/NAA) was significantly reduced in DHA + HT compared to HT. DHA had significant main effects on increasing N-acetylaspartate and glutathione in hippocampus. Therapeutic hypothermia significantly reduced the Lac/NAA ratio and protein expression of IL-1β and TNFα in hippocampus and reduced Troponin T in serum. Neuropathology showed significant differences between sham and hypoxia, but no differences between intervention groups. Conclusion DHA and therapeutic hypothermia significantly improve specific H+MRS biomarkers in this short-term follow up model of hypoxia-ischemia. Longer recovery periods are needed to evaluate whether DHA can offer translational neuroprotection.
Collapse
Affiliation(s)
- Marianne Ullestad Huun
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
- * E-mail:
| | - Håvard Garberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Else Marit Løberg
- Department of Pathology, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Javier Escobar
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Neonatal Research Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Ola Didrik Saugstad
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Women and Children's Division and Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
28
|
Noninvasive monitoring of brain edema after hypoxia in newborn piglets. Pediatr Res 2018; 83:484-490. [PMID: 29069074 DOI: 10.1038/pr.2017.264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 09/25/2017] [Indexed: 01/09/2023]
Abstract
BackgroundDevelopment of cerebral edema after brain injury carries a high risk for brain damage and death. The present study tests the ability of a noninvasive cerebral edema monitoring system that uses near-infrared spectroscopy (NIRS) with water as the chromophore of interest to detect brain edema following hypoxia.MethodsVentilated piglets were exposed to hypoxia for 1 h, and then returned to normal oxygen levels for 4 h. An NIRS sensor was placed on the animal's head at baseline, and changes in light attenuation were converted to changes in H2O. Cerebral water content and aquaporin-4 protein (AQP4) expression were measured.ResultsThe system detected changes in NIRS-derived water signal as early as 2 h after hypoxia, and provided fivefold signal amplification, representing a 10% increase in brain water content and a sixfold increase in AQP4, 4 h after hypoxia. Changes in water signal correlated well with changes in cerebral water content (R=0.74) and AQP4 expression (R=0.97) in the piglet brain.ConclusionThe data show that NIRS can detect cerebral edema early in the injury process, thus providing an opportunity to initiate therapy at an earlier and more effective time-point after an insult than is available with current technology.
Collapse
|
29
|
Kratimenos P, Koutroulis I, Jain A, Malaeb S, Delivoria-Papadopoulos M. Effect of Concurrent Src Kinase Inhibition with Short-Duration Hypothermia on Ca2+/Calmodulin Kinase IV Activity and Neuropathology after Hypoxia-Ischemia in the Newborn Swine Brain. Neonatology 2018; 113:37-43. [PMID: 29024930 PMCID: PMC5729087 DOI: 10.1159/000480067] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/08/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hypoxia-ischemia (HI) results in increased activation of Ca2+/calmodulin kinase IV (CaM kinase IV) mediated by Src kinase. Therapeutic hypothermia ameliorates neuronal injury in the newborn. HYPOTHESIS Inhibition of Src kinase concurrently with hypothermia further attenuates the hypoxia-induced increased activation of CaM kinase IV compared with hypothermia alone. DESIGN/METHODS Ventilated piglets were exposed to HI, received saline or a selective Src kinase inhibitor (PP2), and were cooled to 33°C. Neuropathology, adenosine triphosphate (ATP) and phosphocreatine (PCr) concentrations, and CaM kinase IV activity were determined. RESULTS The neuropathology mean score (mean ± SD) was 0.4 ± 0.43 in normoxia-normothermia (p < 0.05 vs. hypoxia-normothermia), 3.5 ± 0.89 in hypoxia-normothermia (p < 0.05 vs. normoxia-normothermia), 0.7 ± 0.73 in hypoxia-hypothermia (p < 0.05 vs. normoxia-normothermia), and 0.5 ± 0.70 in normoxia-hypothermia (p < 0.05 vs. hypoxia-normothermia). The CaM kinase IV activity in cerebral tissue (pmol Pi/mg protein/min; mean ± SD) was 2,002 ± 729 in normoxia-normothermia, 1,704 ± 18 in normoxia-hypothermia, 6,017 ± 2,510 in hypoxia-normothermia, 4,104 ± 542 in hypoxia-hypothermia (p < 0.05 vs. normoxia-hypothermia), and 2,165 ± 415 in hypoxia-hypothermia with PP2 (p < 0.05 vs. hypoxia-hypothermia). The hypoxic groups with and without hypothermia or Src kinase inhibitor were comparable in the levels of ATP and PCr, indicating that they were similar in their degree of energy failure prior to treatments. Hypothermia or Src kinase inhibitor (PP2) did not restore the ATP and PCr levels. CONCLUSIONS Hypothermia and Src kinase inhibition attenuated apoptotic cell death and improved neuropathology after hypoxia. The combination of short-duration hypothermia with Src kinase inhibition following hypoxia further attenuates the increased activation of CaM kinase IV compared to hypothermia alone in the newborn swine brain.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC, USA
| | | | | | | | | |
Collapse
|
30
|
Kratimenos P, Koutroulis I, Agarwal B, Theocharis S, Delivoria-Papadopoulos M. Effect of Src Kinase inhibition on Cytochrome c, Smac/DIABLO and Apoptosis Inducing Factor (AIF) Following Cerebral Hypoxia-Ischemia in Newborn Piglets. Sci Rep 2017; 7:16664. [PMID: 29192254 PMCID: PMC5709433 DOI: 10.1038/s41598-017-16983-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/21/2017] [Indexed: 12/04/2022] Open
Abstract
We have previously shown that cerebral Hypoxia-ischemia (HI) results in activation of Src kinase in the newborn piglet brain. We investigated the regulatory mechanism by which the pre-apoptotic proteins translocate from mitochondria to the cytosol during HI through the Src kinase. Newborn piglets were divided into 3 groups (n = 5/group): normoxic (Nx), HI and HI pre-treated with Src kinase inhibitor PP2 (PP2 + HI). Brain tissue HI was verified by neuropathological analysis and by Adenosine Triphosphate (ATP) and Phosphocreatine (PCr) levels. We used western blots, immunohistochemistry, H&E and biochemical enzyme assays to determine the role of Src kinase on mitochondrial membrane apoptotic protein trafficking. HI resulted in decreased ATP and PCr levels, neuropathological changes and increased levels of cytochrome c, Smac/DIABLO and AIF in the cytosol while their levels were decreased in mitochondria compared to Nx. PP2 decreased the cytosolic levels of pre-apoptotic proteins, attenuated the neuropathological changes and apoptosis and decreased the HI-induced increased activity of caspase-3. Our data suggest that Src kinase may represent a potential target that could interrupt the enzymatic activation of the caspase dependent cell death pathway.
Collapse
Affiliation(s)
- Panagiotis Kratimenos
- Department of Pediatrics, Division of Neonatology, Children's National Medical Center, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA. .,Department of Pediatrics, Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Ioannis Koutroulis
- Department of Pediatrics, Division of Emergency Medicine, Children's National Medical Center, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Beamon Agarwal
- Department of Hematopathology, Montefiore Medical Center, Bronx, NY, USA
| | - Stamatios Theocharis
- First Department of Pathology, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | |
Collapse
|
31
|
Jain A, Kratimenos P, Koutroulis I, Jain A, Buddhavarapu A, Ara J. Effect of Intranasally Delivered rh-VEGF165 on Angiogenesis Following Cerebral Hypoxia-Ischemia in the Cerebral Cortex of Newborn Piglets. Int J Mol Sci 2017; 18:ijms18112356. [PMID: 29112164 PMCID: PMC5713325 DOI: 10.3390/ijms18112356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background: Vascular endothelial growth factor (VEGF) stimulates vascular genesis and angiogenesis. Cerebral Hypoxia-Ischemia (HI) leads to the reduction of vasculature in the cerebral cortex of newborn piglets. Objective: The present study tests the hypothesis that post-hypoxia intranasal administration of recombinant human VEGF165 (rh-VEGF165) for 3 days increases the vascular density in the cerebral cortex of newborn piglets without promoting neovascularization. Design/Methods: Ventilated newborn piglets were divided into three groups (n = 5/group): normoxic (Nx), hypoxic-ischemic (HI), and HI treated with intranasal rh-VEGF165rh-VEGF165 (HI-VEGF). HI piglets were exposed to HI (0.05 FiO2) for 30 min. Recombinant h-VEGF165 (100 ng/kg) was administered 15 min after HI and then once daily for 3 days. The animals were perfused transcardially and coronal brains sections were processed for Isolectin, Hoechst, and ki-67 cell proliferation marker staining. To assess the vascular density, 30–35 fields per animal section were manually counted using image J software. Results: The vascular density (vessels/mm2) was 42.0 ± 8.0 in the Nx group, 26.4 ± 4.8 (p < 0.05 vs. Nx) in the HI group, and 46.0 ± 11.9 (p < 0.05 vs. HI) in the HI-VEGF group. When stained for newly formed vessels, via Ki-67 staining, the vascular density was 5.4 ± 3.6 in the Nx group (p < 0.05 vs. HI), 10.2 ± 2.1 in the HI group, and 10.9 ± 2.9 in the HI-VEGF group (p = 0.72 vs. HI). HI resulted in a decrease in vascular density. Intranasal rh-VEGF165rh-VEGF165 resulted in the attenuation of the HI-induced decrease in vascular density. However, rh-VEGF165 did not result in the formation of new vascularity, as evident by ki-67 staining. Conclusions: Intranasal rh-VEGF165 may prevent the HI-induced decrease in the vascular density of the brain and could serve as a promising adjuvant therapy for hypoxic-ischemic encephalopathy (HIE).
Collapse
Affiliation(s)
- Amit Jain
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sanford Children's Hospital, Sioux Falls, SD 57105, USA.
| | - Panagiotis Kratimenos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Division of Neonatology, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA.
| | - Ioannis Koutroulis
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics and Emergency Medicine, Children's National Medical Center, School of Medicine and Health Sciences, George Washington University, Washington, DC 20010, USA.
| | - Amishi Jain
- College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA.
| | - Amulya Buddhavarapu
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
- Department of Pediatrics, Driscoll Children's Hospital, Texas A&M College of Medicine, Corpus Christi, TX 77807, USA.
| | - Jahan Ara
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA 19134, USA.
| |
Collapse
|
32
|
Dingley J, Okano S, Planas S, Chakkarapani E. Feasibility of a Miniature Esophageal Heat Exchange Device for Rapid Therapeutic Cooling in Newborns: Preliminary Investigations in a Piglet Model. Ther Hypothermia Temp Manag 2017; 8:36-44. [PMID: 29058556 DOI: 10.1089/ther.2017.0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Therapeutic hypothermia (TH) after neonatal encephalopathy, commonly provided by 72 hours of whole-body cooling using a wrap, limits parents' physical contact with their infants affecting bonding and may not be suitable for encephalopathic preterm infants with fragile skin. Alternative cooling methods are unavailable for this population. We investigated in a neonatal pig model the feasibility of achieving a 3.5°C reduction in rectal temperature (Trectal) similar to clinical TH protocols from 38.5°C (normothermia for pigs) to a target of 35°C ± 0.2°C, using a novel neonatal esophageal heat exchanger (NEHE), compared its efficacy to passive cooling, and investigated its ability to maintain target Trectal. Ventilated and anesthetized Landrace/Large white newborn pigs had the NEHE inserted. Water at adjustable temperatures and rates flowed down a central tube, returning up a surrounding distensible blind ending latex tube in a continuous loop. An initial experiment guided four subsequent cycles of passive cooling (30 minutes), rewarming to 38.5°C, active esophageal cooling to 35°C ± 0.2°C, active maintenance of target Trectal (30 minutes), and rewarming. We compared surface, rectal temperature, and hemodynamic changes among passive, active, and maintenance phases, and esophageal histopathology against control. Compared with passive cooling, esophageal cooling achieved target Trectal significantly earlier (71.3 minutes vs. 17.25 minutes, p = 0.003) with significantly greater rates of reduction in rectal (p = 0.0002) and surface (p = 0.005) temperatures and heart rate (p = 0.04). A water temperature of 39.1°C-40.2°C at a flow of 108-120 mL/min maintained Trectal around 35°C ± 0.2°C. The higher peak heart rate and blood pressure within 8 minutes of the maintenance phase (p = 0.04) subsequently stabilized. Histopathology showed congestion, edema, and neutrophil infiltration with increasing cycles. Esophageal cooling is feasible and effective in achieving rapid cooling in newborns. Subsequent maintenance at this temperature required continued circulation of warm water. Esophageal histopathology needs further evaluation after 72 hours servo-control cooling with a narrower range of water temperatures in a larger group of animals.
Collapse
Affiliation(s)
- John Dingley
- 1 The School of Medicine, Swansea University , Swansea, United Kingdom
| | - Satomi Okano
- 2 School of Clinical Sciences, University of Bristol , Bristol, United Kingdom
| | - Silvia Planas
- 3 North Bristol Hospital NHS Trust , Bristol, United Kingdom
| | | |
Collapse
|
33
|
Liu X, Jary S, Cowan F, Thoresen M. Reduced infancy and childhood epilepsy following hypothermia-treated neonatal encephalopathy. Epilepsia 2017; 58:1902-1911. [PMID: 28961316 DOI: 10.1111/epi.13914] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate what proportion of a regional cohort of cooled infants with neonatal encephalopathy develop epilepsy (determined by the International League Against Epilepsy [ILAE] definition and the number of antiepileptic drugs [AEDs]) up to 8 years of age. METHODS From 2006-2013, 151 infants with perinatal asphyxia underwent 72 h cooling. Clinical and amplitude-integrated electroencepalography (aEEG) with single-channel EEG-verified neonatal seizures were treated with AEDs. Brain magnetic resonance imaging (MRI) was assessed using a 0-11 severity score. Postneonatal seizures, epilepsy rates, and AED treatments were documented. One hundred thirty-four survivors were assessed at 18-24 months; adverse outcome was defined as death or Bayley III composite Cognition/Language or Motor scores <85 and/or severe cerebral palsy or severely reduced vision/hearing. Epilepsy rates in 103 children age 4-8 years were also documented. RESULTS aEEG confirmed seizures occurred precooling in 77 (57%) 151 of neonates; 48% had seizures during and/or after cooling and received AEDs. Only one infant was discharged on AEDs. At 18-24 months, one third of infants had an adverse outcome including 11% mortality. At 2 years, 8 (6%) infants had an epilepsy diagnosis (ILAE definition), of whom 3 (2%) received AEDs. Of the 103 4- to 8-year-olds, 14 (13%) had developed epilepsy, with 7 (7%) receiving AEDs. Infants/children on AEDs had higher MRI scores than those not on AEDs (median [interquartile range] 9 [8-11] vs. 2 [0-4]) and poorer outcomes. Nine (64%) of 14 children with epilepsy had cerebral palsy compared to 13 (11%) of 120 without epilepsy, and 10 (71%) of 14 children with epilepsy had adverse outcomes versus 23 (19%) of 120 survivors without epilepsy. The number of different AEDs given to control neonatal seizures, aEEG severity precooling, and MRI scores predicted childhood epilepsy. SIGNIFICANCE We report, in a regional cohort of infants cooled for perinatal asphyxia, 6% with epilepsy at 2 years (2% on AEDs) increasing to 13% (7% on AEDs) at early school age. These AED rates are much lower than those reported in the cooling trials, even with adjusting for our cohort's milder asphyxia. Long-term follow-up is needed to document final epilepsy rates.
Collapse
Affiliation(s)
- Xun Liu
- Neonatal Neuroscience, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Neonatal Neuroscience, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Frances Cowan
- Neonatal Neuroscience, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Neonatal Neuroscience, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Division of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
34
|
Lemmon ME, Wagner MW, Bosemani T, Carson KA, Northington FJ, Huisman TAGM, Poretti A. Diffusion Tensor Imaging Detects Occult Cerebellar Injury in Severe Neonatal Hypoxic-Ischemic Encephalopathy. Dev Neurosci 2017; 39:207-214. [PMID: 28095379 DOI: 10.1159/000454856] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite the benefits of whole-body hypothermia therapy, many infants with hypoxic-ischemic encephalopathy (HIE) die or have significant long-term neurodevelopmental impairment. Prospectively identifying neonates at risk of poor outcome is essential but not straightforward. The cerebellum is not classically considered to be a brain region vulnerable to hypoxic-ischemic insults; recent literature suggests, however, that the cerebellum may be involved in neonatal HIE. In this study, we aimed to assess the microstructural integrity of cerebellar and linked supratentorial structures in neonates with HIE compared to neurologically healthy neonatal controls. METHODS In this prospective cohort study, we performed a quantitative diffusion tensor imaging (DTI) analysis of the structural pathways of connectivity, which may be affected in neonatal cerebellar injury by measuring fractional anisotropy (FA) and mean diffusivity (MD) within the superior, middle, and inferior cerebellar peduncles, dentate nuclei, and thalami. All magnetic resonance imaging (MRI) studies were grouped into 4 categories of severity based on a qualitative evaluation of conventional and advanced MRI sequences. Multivariable linear regression analysis of cerebellar scalars of patients and controls was performed, controlling for gestational age, age at the time of MRI, and HIE severity. Spearman rank correlation was performed to correlate DTI scalars of the cerebellum and thalami. RESULTS Fifty-seven (23 females, 40%) neonates with HIE and 12 (6 females, 50%) neonatal controls were included. There were 8 patients (14%) in HIE severity groups 3 and 4 (injury of the basal ganglia/thalamus and/or cortex). Based on a qualitative analysis of conventional and DTI images, no patients had evidence of cerebellar injury. No significant differences between patients and controls were found in the FA and MD scalars. However, FA values of the middle cerebellar peduncles (0.294 vs. 0.380, p < 0.001) and MD values of the superior cerebellar peduncles (0.920 vs. 1.007 × 10-3 mm/s2, p = 0.001) were significantly lower in patients with evidence of moderate or severe injury on MRI (categories 3 and 4) than in controls. In patients, cerebellar DTI scalars correlated positively with DTI scalars within the thalami. CONCLUSION Our results suggest that infants with moderate-to-severe HIE may have occult injury of cerebellar white-matter tracts, which is not detectable by the qualitative analysis of neuroimaging data alone. Cerebellar DTI scalars correlate with thalamic measures, highlighting that cerebellar injury is unlikely to occur in isolation and may reflect the severity of HIE. The impact of concomitant cerebellar injury in HIE on long-term neurodevelopmental outcome warrants further study.
Collapse
Affiliation(s)
- Monica E Lemmon
- Division of Pediatric Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Miller SM, Sullivan SM, Ireland Z, Chand KK, Colditz PB, Bjorkman ST. Neonatal seizures are associated with redistribution and loss of GABA A α-subunits in the hypoxic-ischaemic pig. J Neurochem 2016; 139:471-484. [PMID: 27456541 DOI: 10.1111/jnc.13746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 01/24/2023]
Abstract
Seizures are a common manifestation of hypoxic-ischaemic brain injury in the neonate. In status epilepticus models alterations to GABAA R subunit expression have been suggested to contribute to (i) abnormal development of the GABAergic system, (ii) why seizures become self-sustaining and (iii) the development of pharmacoresistance. Detailed investigation of GABAA R subunit protein expression after neonatal hypoxia-ischaemia (HI) is currently insufficient. Using our pig model of HI and subsequent spontaneous neonatal seizures, we investigated changes in protein expression of the three predominant α-subunits of the GABAA R; α1 , α2 and α3 . Anaesthetized, ventilated newborn pigs (< 24 h old) were subjected to 30 min HI and subsequently recovered to 24 or 72 h. Amplitude-integrated electroencephalography was used to monitor brain activity and identify seizure activity. Brain tissue was collected post-mortem and GABAA R α-subunit protein expression was analysed using western blot and immunohistochemistry. GABAA R α1 and α3 protein expression was significantly reduced in animals that developed seizures after HI; HI animals that did not develop seizures did not exhibit the same reductions. Immunohistochemistry revealed decreased α1 and α3 expression, and α1 redistribution from the cell membrane to the cytosol, in the hippocampus of seizure animals. Multivariate analyses, controlling for HI severity and neuronal injury, revealed that seizures were independently associated with significant GABAA R α3 reduction. This is the first study to show loss and redistribution of GABAA R α-subunits in a neonatal brain experiencing seizures. Our findings are similar to those reported in models of SE and in chronic epilepsy.
Collapse
Affiliation(s)
- Stephanie M Miller
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia.
| | - Susan M Sullivan
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Zoe Ireland
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Kirat K Chand
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - Paul B Colditz
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia
| | - S Tracey Bjorkman
- The University of Queensland, Perinatal Research Centre, UQ Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
36
|
Rumajogee P, Bregman T, Miller SP, Yager JY, Fehlings MG. Rodent Hypoxia-Ischemia Models for Cerebral Palsy Research: A Systematic Review. Front Neurol 2016; 7:57. [PMID: 27199883 PMCID: PMC4843764 DOI: 10.3389/fneur.2016.00057] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/03/2016] [Indexed: 12/28/2022] Open
Abstract
Cerebral palsy (CP) is a complex multifactorial disorder, affecting approximately 2.5-3/1000 live term births, and up to 22/1000 prematurely born babies. CP results from injury to the developing brain incurred before, during, or after birth. The most common form of this condition, spastic CP, is primarily associated with injury to the cerebral cortex and subcortical white matter as well as the deep gray matter. The major etiological factors of spastic CP are hypoxia/ischemia (HI), occurring during the last third of pregnancy and around birth age. In addition, inflammation has been found to be an important factor contributing to brain injury, especially in term infants. Other factors, including genetics, are gaining importance. The classic Rice-Vannucci HI model (in which 7-day-old rat pups undergo unilateral ligation of the common carotid artery followed by exposure to 8% oxygen hypoxic air) is a model of neonatal stroke that has greatly contributed to CP research. In this model, brain damage resembles that observed in severe CP cases. This model, and its numerous adaptations, allows one to finely tune the injury parameters to mimic, and therefore study, many of the pathophysiological processes and conditions observed in human patients. Investigators can recreate the HI and inflammation, which cause brain damage and subsequent motor and cognitive deficits. This model further enables the examination of potential approaches to achieve neural repair and regeneration. In the present review, we compare and discuss the advantages, limitations, and the translational value for CP research of HI models of perinatal brain injury.
Collapse
Affiliation(s)
- Prakasham Rumajogee
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Tatiana Bregman
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network , Toronto, ON , Canada
| | - Steven P Miller
- Department of Pediatrics, Hospital for Sick Children , Toronto, ON , Canada
| | - Jerome Y Yager
- Division of Pediatric Neurosciences, Stollery Children's Hospital, University of Alberta , Edmonton, AB , Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada; Division of Neurosurgery, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Wood T, Smit E, Maes E, Osredkar D, Falck M, Elstad M, Thoresen M. Monitoring of cerebral blood flow during hypoxia-ischemia and resuscitation in the neonatal rat using laser speckle imaging. Physiol Rep 2016; 4:e12749. [PMID: 27081159 PMCID: PMC4831323 DOI: 10.14814/phy2.12749] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 11/24/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) is associated with alterations in cerebral blood flow (CBF) as a result of perinatal asphyxia. The extent to whichCBFchanges contribute to injury, and whether treatments that ameliorate these changes might be neuroprotective, is still unknown. Higher throughput techniques to monitorCBFchanges in rodent models ofHIEcan help elucidate the underlying pathophysiology. We developed a laser speckle imaging (LSI) technique to continuously monitorCBFin six postnatal-day 10 (P10) rats simultaneously before, during, and after unilateral hypoxia-ischemia (HI, ligation of the left carotid artery followed by hypoxia in 8% oxygen). After ligation,CBFto the ligated side fell by 30% compared to the unligated side (P < 0.0001). Hypoxia induced a bilateral 55% reduction inCBF, which was partially restored by resuscitation. Compared to resuscitation in air, resuscitation in 100% oxygen increasedCBFto the ligated side by 45% (P = 0.033). Individual variability inCBFresponse to hypoxia between animals accounted for up to 24% of the variability in hemispheric area loss to the ligated side. In both P10 and P7 models of unilateralHI, resuscitation in 100% oxygen did not affect hemispheric area loss, or hippocampalCA1 pyramidal neuron counts, after 1-week survival. ContinuousCBFmonitoring usingLSIin multiple rodents simultaneously can screen potential treatment modalities that affectCBF, and provide insight into the pathophysiology ofHI.
Collapse
Affiliation(s)
- Thomas Wood
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elisa Smit
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Elke Maes
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Damjan Osredkar
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Mari Falck
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja Elstad
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Marianne Thoresen
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
38
|
Blasina F, Vaamonde L, Silvera F, Tedesco AC, Dajas F. Intravenous nanosomes of quercetin improve brain function and hemodynamic instability after severe hypoxia in newborn piglets. Neurochem Int 2015; 89:149-56. [PMID: 26297982 DOI: 10.1016/j.neuint.2015.08.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 08/06/2015] [Accepted: 08/07/2015] [Indexed: 11/17/2022]
Abstract
Perinatal asphyxia is a major cause of death and neurological morbidity in newborns and oxidative stress is one of the critical mechanisms leading to permanent brain lesions in this pathology. In this context we have chosen quercetin, a natural antioxidant, known also by its brain protective effects to study its potential as a therapy for brain pathology provoked by severe hypoxia in the brain. To overcame the difficulties of quercetin to access the brain, we have developed lecithin/cholesterol/cyclodextrin nanosomes as a safe and protective vehicle. We have applied the nanosomal preparation intravenously to newborn piglets submitted to a severe hypoxic or ischemic/hypoxic episode and followed them for 8 or 72 h, respectively. Either towards the end of 8 h after hypoxia or up to 72 h after, electroencephalographic amplitude records in animals that received the nanosomes improved significantly. Animals receiving quercetin also stabilized blood pressure and recovered spontaneous breathing. In this experimental group mechanical ventilation assistance was withdrawn in the first 24 h while the hypoxic and vehicle groups required more than 24 h of mechanical ventilation. Three days after the hypoxia the suckling and walking capacity in the group that received quercetin recovered significantly compared with the hypoxic groups. Pathological studies did not show significant differences in the brain of newborn piglets treated with nanosomes compared with hypoxic groups. The beneficial effects of quercetin nanosomal preparation after experimental perinatal asphyxia show it as a promising putative treatment for the damaged brain in development.
Collapse
Affiliation(s)
- Fernanda Blasina
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Department of Neonatology, University Hospital, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| | - Lucía Vaamonde
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay; Department of Neonatology, University Hospital, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Fernando Silvera
- Department of Neonatology, University Hospital, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Antonio Claudio Tedesco
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - Federico Dajas
- Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Uruguay
| |
Collapse
|
39
|
Kyng KJ, Skajaa T, Kerrn-Jespersen S, Andreassen CS, Bennedsgaard K, Henriksen TB. A Piglet Model of Neonatal Hypoxic-Ischemic Encephalopathy. J Vis Exp 2015:e52454. [PMID: 26068784 DOI: 10.3791/52454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Birth asphyxia, which causes hypoxic-ischemic encephalopathy (HIE), accounts for 0.66 million deaths worldwide each year, about a quarter of the world's 2.9 million neonatal deaths. Animal models of HIE have contributed to the understanding of the pathophysiology in HIE, and have highlighted the dynamic process that occur in brain injury due to perinatal asphyxia. Thus, animal studies have suggested a time-window for post-insult treatment strategies. Hypothermia has been tested as a treatment for HIE in pdiglet models and subsequently proven effective in clinical trials. Variations of the model have been applied in the study of adjunctive neuroprotective methods and piglet studies of xenon and melatonin have led to clinical phase I and II trials(1,2). The piglet HIE model is further used for neonatal resuscitation- and hemodynamic studies as well as in investigations of cerebral hypoxia on a cellular level. However, it is a technically challenging model and variations in the protocol may result in either too mild or too severe brain injury. In this article, we demonstrate the technical procedures necessary for establishing a stable piglet model of neonatal HIE. First, the newborn piglet (< 24 hr old, median weight 1500 g) is anesthetized, intubated, and monitored in a setup comparable to that found in a neonatal intensive care unit. Global hypoxia-ischemia is induced by lowering the inspiratory oxygen fraction to achieve global hypoxia, ischemia through hypotension and a flat trace amplitude integrated EEG (aEEG) indicative of cerebral hypoxia. Survival is promoted by adjusting oxygenation according to the aEEG response and blood pressure. Brain injury is quantified by histopathology and magnetic resonance imaging after 72 hr.
Collapse
Affiliation(s)
- Kasper J Kyng
- The Perinatal Research Unit, Department of Pediatrics, Institute of Clinical Medicine, Aarhus University Hospital;
| | - Torjus Skajaa
- The Perinatal Research Unit, Department of Pediatrics, Institute of Clinical Medicine, Aarhus University Hospital
| | - Sigrid Kerrn-Jespersen
- The Perinatal Research Unit, Department of Pediatrics, Institute of Clinical Medicine, Aarhus University Hospital
| | - Christer S Andreassen
- Department of Otorhinolaryngology and Head & Neck Surgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Kristine Bennedsgaard
- The Perinatal Research Unit, Department of Pediatrics, Institute of Clinical Medicine, Aarhus University Hospital
| | - Tine B Henriksen
- The Perinatal Research Unit, Department of Pediatrics, Institute of Clinical Medicine, Aarhus University Hospital
| |
Collapse
|
40
|
Hoque N, Liu X, Chakkarapani E, Thoresen M. Minimal systemic hypothermia combined with selective head cooling evaluated in a pig model of hypoxia-ischemia. Pediatr Res 2015; 77:674-80. [PMID: 25665052 DOI: 10.1038/pr.2015.31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 11/03/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Selective head cooling (SHC) with moderate hypothermia (HT) and whole-body cooling are beneficial following perinatal asphyxia. SHC with systemic normothermia (NT) or minimal HT is under-investigated, could obviate systemic complications of moderate HT, and be applicable to preterm infants. We hypothesized that minimal systemic HT with SHC following hypoxia-ischemia (HI) would be neuroprotective compared with systemic NT. METHODS Newborn pigs underwent global HI causing permanent brain injury before being randomized to NT (rectal temperature (Trectal) 38.5 °C) or minimal HT (Trectal 37.0 °C) with SHC (cooling cap and body wrap) for 48 h followed by 24-h NT with 72-h survival. RESULTS SHC did not reduce global or regional neuropathology score when correcting for insult severity or compared with a NT group matched for HI severity but increased mortality by 26%. During 48 h, the SHC mean ± SD Trectal was 37.0 ± 0.2 °C, and Tdeep brain and Tsuperficial brain were 35.0 ± 1.1 °C and 31.5 ± 1.6 °C, respectively, with stable Tbrain achieved ≥ 3 h after starting cooling. CONCLUSION This is the first study in newborn pigs of minimal systemic HT with SHC for 48 h and a further 24 h of NT following HI. Mortality was increased in the cooled group with no neuroprotection in survivors.
Collapse
Affiliation(s)
- Nicholas Hoque
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, Avon, UK
| | - Xun Liu
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, Avon, UK
| | - Ela Chakkarapani
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, Avon, UK
| | - Marianne Thoresen
- 1] Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, Bristol, Avon, UK [2] Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Nakamura M, Jinnai W, Hamano S, Nakamura S, Koyano K, Chiba Y, Kanenishi K, Yasuda S, Ueno M, Miki T, Hata T, Kusaka T. Cerebral blood volume measurement using near-infrared time-resolved spectroscopy and histopathological evaluation after hypoxic-ischemic insult in newborn piglets. Int J Dev Neurosci 2015; 42:1-9. [PMID: 25702525 DOI: 10.1016/j.ijdevneu.2015.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to assess the relationship between the cerebral blood volume (CBV) measured by near-infrared time-resolved spectroscopy (TRS) and pathological change of the brain in a hypoxic-ischemic (HI) piglet model. Twenty-one anesthetized newborn piglets, including three sham controls, were studied. An HI event was induced by low inspired oxygen. CBV was measured using TRS (Hamamatsu TRS-10). Data were collected before, during, and 6h after the insult. CBV was calculated as the change from the end of the insult. The piglets were allowed to recover from anesthesia for 6h after the insult. At the age of 5 days, the brains of the piglets were perfusion-fixed, and histologic evaluations of brain tissue were performed. The extent of histopathological damage was graded in 0.5-unit intervals on a 9-step scale. CBV increments were well correlated with histopathological scores, especially at 1 and 3h after resuscitation. Spearman's rank-correlation coefficients at 1, 3, and 6h after resuscitation in the gray matter were 0.9016, 0.9127, and 0.6907, respectively. We conclude that an increased CBV after HI insult indicates more marked histological brain damage. CBV measurement immediately after resuscitation provides a more precise prediction of the histological outcome.
Collapse
Affiliation(s)
- Makoto Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Neonatology, National Hospital Organization Okayama Medical Center, Okayama, Japan
| | - Wataru Jinnai
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Satoshi Hamano
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yoichi Chiba
- Departments of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenji Kanenishi
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saneyuki Yasuda
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Departments of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Departments of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Toshiyuki Hata
- Departments of Perinatology and Gynecology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
42
|
Conrad MS, Johnson RW. The domestic piglet: an important model for investigating the neurodevelopmental consequences of early life insults. Annu Rev Anim Biosci 2014; 3:245-64. [PMID: 25387115 DOI: 10.1146/annurev-animal-022114-111049] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Insults in the prenatal and early postnatal period increase the risk for behavioral problems later in life. One hypothesis is that pre- and postnatal stressors influence structural and functional brain plasticity. Understanding the mechanisms is important, but progress has lagged because certain studies in human infants are impossible, while others are extremely difficult. Furthermore, results from popular rodent models are difficult to translate to human infants owing to the substantial differences in brain development and morphology. Because it overcomes some of these obstacles, the domestic piglet has emerged as an important model. Piglets have a gyrencephalic brain that develops similar to the human brain and that can be assessed in vivo by using clinical-grade neuroimaging instruments. Furthermore, owing to their precocial nature, piglets can be weaned at birth and used in behavioral testing paradigms to assess cognitive behavior at an early age. Thus, the domestic piglet represents an important translational model for investigating the neurodevelopmental consequences of early life insults.
Collapse
|
43
|
Nakamura S, Kusaka T, Koyano K, Miki T, Ueno M, Jinnai W, Yasuda S, Nakamura M, Okada H, Isobe K, Itoh S. Relationship between early changes in cerebral blood volume and electrocortical activity after hypoxic-ischemic insult in newborn piglets. Brain Dev 2014; 36:563-71. [PMID: 24121014 DOI: 10.1016/j.braindev.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 08/14/2013] [Accepted: 08/16/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Early changes in cerebral hemodynamics and depressed electrocortical activity have been reported after a hypoxic-ischemic (HI) insult. However, the relationship between these two parameters is unclear. This study aimed to examine the relationship between changes in cerebral blood volume (CBV) and cerebral Hb oxygen saturation (ScO2) after a HI insult and the low amplitude-integrated electroencephalography (aEEG) duration concomitantly observed. METHODS Sixteen newborn piglets obtained within 24h of birth were used (n=3 controls). Thirteen piglets were subjected to a HI insult of 20-min low-amplitude aEEG (<5 μV, LAEEG), after which a low mean arterial blood pressure (<70% of baseline) was maintained for 10 min. We measured changes in CBV and ScO2 using near-infrared time-resolved spectroscopy (TRS) and cerebral electrocortical activities using aEEG until 6h after the insult. RESULTS A positive correlation was observed between the LAEEG duration and CBV increase, but not ScO2, after the insult. CONCLUSION These results suggest that a larger increase in CBV reflected a more severe failure in cerebral circulation to maintain cell membrane action potentials, which induced a more extended recovery period of electrocortical activity after the insult. We conclude that an early increase in CBV and longer LAEEG indicate severe brain injury.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takashi Kusaka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Kosuke Koyano
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Wataru Jinnai
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Saneyuki Yasuda
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Makoto Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hitoshi Okada
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kenichi Isobe
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Susumu Itoh
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
44
|
Hoque N, Sabir H, Maes E, Bishop S, Thoresen M. Validation of a neuropathology score using quantitative methods to evaluate brain injury in a pig model of hypoxia ischaemia. J Neurosci Methods 2014; 230:30-6. [PMID: 24747875 DOI: 10.1016/j.jneumeth.2014.04.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/30/2014] [Accepted: 04/05/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Neuropathological examination is the classic outcome measure in experimental studies of newborn brain injury to evaluate novel therapies. We have used a graded neuropathology score in an established global model of perinatal hypoxic-ischaemic (HI) injury. We wished to validate the score using cell counting in our model. NEW METHOD 32 newborn pigs underwent a 45 min global HI insult then maintained at normothermia (NT, rectal temperature, Trectal 38.5 °C) for 72 h or mild total body hypothermia (HT, Trectal 37.0 °C) combined with selective head cooling for 48 h and subsequently maintained at NT for 24h before brain perfusion fixation. A perinatal pathologist scored haematoxylin and eosin stained 6 μm histological sections for injury in the hippocampus and basal ganglia on a 9-step scale (0.0=no injury, 4.0=>75% injury). We counted the number of healthy neurons in the hippocampus CA1 region and putamen using morphological criteria in eight random, non-overlapping fields from representative sections. RESULTS Healthy neuronal cell density correlated with neuropathology score in the hippocampus CA1 (r = -0.74) and in the putamen (r = -0.75) and both measures detected a difference between groups. The correlation coefficients were better for the NT compared to the HT group in both the hippocampus (r = -0.87 vs. -0.53) and putamen (r = -0.77 vs. -0.54). COMPARISON WITH EXISTING METHOD We have validated a histological neuropathological scoring system in our model of perinatal HI by showing correlation between neuronal cell count and estimated injury. CONCLUSIONS Our neuropathology score is a valid method to assess brain injury with good reproducibility and sensitivity.
Collapse
Affiliation(s)
- Nicholas Hoque
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, Avon BS2 8EG, United Kingdom
| | - Hemmen Sabir
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, Avon BS2 8EG, United Kingdom
| | - Elke Maes
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, Avon BS2 8EG, United Kingdom; Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Postboks 1103, Blindern, 0317 Oslo, Norway
| | - Sarah Bishop
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, Avon BS2 8EG, United Kingdom
| | - Marianne Thoresen
- Neonatal Neuroscience, School of Clinical Sciences, University of Bristol, St Michael's Hospital, Southwell Street, Bristol, Avon BS2 8EG, United Kingdom; Department of Physiology, Institute of Basic Medical Sciences, University of Oslo, Postboks 1103, Blindern, 0317 Oslo, Norway.
| |
Collapse
|
45
|
Chakkarapani E, Dingley J, Aquilina K, Osredkar D, Liu X, Thoresen M. Effects of xenon and hypothermia on cerebrovascular pressure reactivity in newborn global hypoxic-ischemic pig model. J Cereb Blood Flow Metab 2013; 33:1752-60. [PMID: 23899927 PMCID: PMC3824173 DOI: 10.1038/jcbfm.2013.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/22/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
Abstract
Autoregulation of cerebral perfusion is impaired in hypoxic-ischemic encephalopathy. We investigated whether cerebrovascular pressure reactivity (PRx), an element of cerebral autoregulation that is calculated as a moving correlation coefficient between averages of intracranial and mean arterial blood pressure (MABP) with values between -1 and +1, is impaired during and after a hypoxic-ischemic insult (HI) in newborn pigs. Associations between end-tidal CO2, seizures, neuropathology, and PRx were investigated. The effect of hypothermia (HT) and Xenon (Xe) on PRx was studied. Pigs were randomized to Sham, and after HI to normothermia (NT), HT, Xe or xenon hypothermia (XeHT). We defined PRx >0.2 as peak and negative PRx as preserved. Neuropathology scores after 72 hours of survival was grouped as 'severe' or 'mild.' Secondary PRx peak during recovery, predictive of severe neuropathology and associated with insult severity (P=0.05), was delayed in HT (11.5 hours) than in NT (6.5 hours) groups. Seizures were associated with impaired PRx in NT pigs (P=0.0002), but not in the HT/XeHT pigs. PRx was preserved during normocapnia and impaired during hypocapnia. Xenon abolished the secondary PRx peak, increased (mean (95% confidence interval (CI)) MABP (6.5 (3.8, 9.4) mm Hg) and cerebral perfusion pressure (5.9 (2.9, 8.9) mm Hg) and preserved the PRx (regression coefficient, -0.098 (95% CI (-0.18, -0.01)), independent of the insult severity.
Collapse
|
46
|
Abstract
Abstract
Background:
Some inhalation anesthetics increase apoptotic cell death in the developing brain. Xenon, an inhalation anesthetic, increases neuroprotection when combined with therapeutic hypothermia after hypoxic-ischemic brain injury in newborn animals. The authors, therefore, examined whether there was any neuroapoptotic effect of breathing 50% xenon with continuous fentanyl sedation for 24 h at normothermia or hypothermia on newborn pigs.
Methods:
Twenty-six healthy pigs (<24-h old) were randomized into four groups: (1) 24 h of 50% inhaled xenon with fentanyl at hypothermia (Trec = 33.5°C), (2) 24 h of 50% inhaled xenon with fentanyl at normothermia (Trec = 38.5°C), (3) 24 h of fentanyl at normothermia, or (4) nonventilated juvenile controls at normothermia. Five additional nonrandomized pigs inhaled 2% isoflurane at normothermia for 24 h to verify any proapoptotic effect of inhalation anesthetics in our model. Pathological cells were morphologically assessed in cortex, putamen, hippocampus, thalamus, and white matter. To quantify the findings, immunostained cells (caspase-3 and terminal deoxynucleotidyl transferase–mediated deoxyuridine-triphosphate nick-end labeling) were counted in the same brain regions.
Results:
For groups (1) to (4), the total number of apoptotic cells was less than 5 per brain region, representing normal developmental neuroapoptosis. After immunostaining and cell counting, regression analysis showed that neither 50% xenon with fentanyl nor fentanyl alone increased neuroapoptosis. Isoflurane caused on average a 5- to 10-fold increase of immunostained cells.
Conclusion:
At normothermia or hypothermia, neither 24 h of inhaled 50% xenon with fentanyl sedation nor fentanyl alone induces neuroapoptosis in the neonatal pig brain. Breathing 2% isoflurane increases neuroapoptosis in neonatal pigs.
Collapse
|
47
|
Nakamura S, Kusaka T, Yasuda S, Ueno M, Miki T, Koyano K, Nakamura M, Okada H, Okazaki K, Isobe K, Itoh S. Cerebral blood volume combined with amplitude-integrated EEG can be a suitable guide to control hypoxic/ischemic insult in a piglet model. Brain Dev 2013. [PMID: 23199679 DOI: 10.1016/j.braindev.2012.10.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The purposes of this study are to compare two hypoxic/ischemic (H/I) insults using amplitude-integrated EEG (aEEG), alone or combined with cerebral blood volume (CBV), as a guide to control hypoxia and to determine which protocol most effectively produces a consistent degree of survivable neuropathological damage in a newborn piglet model of perinatal asphyxia. METHODS Eighteen piglets were subjected to H/I insult of 20-min low aEEG (LAEEG). After the 20-min, the aEEG group was maintained with low mean arterial blood pressure for 10min. The procedure for the aEEG plus CBV group was stopped if CBV became the rated value after 20min of LAEEG. We measured changes in CBV using a near-infrared time-resolved spectroscopy (TRS) and cerebral electrocortical activity using aEEG until 6h post-insult. At 5days post insult, the piglets' brains were perfusion-fixed and stained with hematoxylin/eosin. Piglets were grouped as undamaged or damaged; piglets that did not survive to 5days were grouped separately as dead. RESULTS Among surviving piglets, CBV combined with aEEG resulted in significantly greater percentage of damaged piglets than aEEG alone. CONCLUSIONS We conclude that combining CBV with aEEG may be a more effective guide to control H/I insult in a newborn piglet model than aEEG alone.
Collapse
Affiliation(s)
- Shinji Nakamura
- Department of Pediatrics, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Evidence for therapeutic intervention in the prevention of cerebral palsy: hope from animal model research. Semin Pediatr Neurol 2013; 20:75-83. [PMID: 23948682 DOI: 10.1016/j.spen.2013.06.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knowledge translation, as defined by the Canadian Institute of Health Research, is defined as the exchange, synthesis, and ethically sound application of knowledge--within a complex system of interactions among researchers and users--to accelerate the capture of the benefits of research through improved health, more effective services and products, and a strengthened healthcare system. The requirement for this to occur lies in the ability to continue to determine mechanistic actions at the molecular level, to understand how they fit at the in vitro and in vivo levels, and for disease states, to determine their safety, efficacy, and long-term potential at the preclinical animal model level. In this regard, particularly as it relates to long-term disabilities such as cerebral palsy that begin in utero, but only express their full effect in adulthood, animal models must be used to understand and rapidly evaluate mechanisms of injury and therapeutic interventions. In this review, we hope to provide the reader with a background of animal data upon which therapeutic interventions for the prevention and treatment of cerebral palsy, benefit this community, and increasingly do so in the future.
Collapse
|
49
|
Brain inflammation induced by severe asphyxia in newborn pigs and the impact of alternative resuscitation strategies on the newborn central nervous system. Pediatr Res 2013; 73:163-70. [PMID: 23168577 DOI: 10.1038/pr.2012.167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND We compared the current guidelines for neonatal resuscitation with alternative measures and aimed to find out whether this modulated brain inflammation. METHODS Progressive asphyxia was induced in 94 newborn pigs until asystole. With the reference being resuscitation guidelines, 30 s of initial positive-pressure ventilation before compression (C) and ventilation (V) (C:V; 3:1) in 21% oxygen, pigs were randomized to (i) ventilation for 30, 60, or 90 s before chest compressions; (ii) C:V ratios of 3:1, 9:3, or 15:2; or (iii) 21% or 100% oxygen. Concentrations of inflammatory markers in the cerebrospinal fluid (CSF) and gene expression in the hippocampus and frontal cortex were measured for different interventions. RESULTS In CSF, S100 was higher with 90 s than with 30 or 60 s of initial positive-pressure ventilation, whereas concentrations of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were higher with 30 than with 60 s. Matrix metalloproteinase-2 (MMP-2) and intracellular adhesion molecule 1 (ICAM-1) were higher with 30 than with 60 s. No other comparison between ratios and oxygen concentrations used yielded significant results. CONCLUSION With respect to signs of brain inflammation, newly born pigs at asystole should be ventilated for longer than 30 s before chest compressions start. C:V ratios of 9:3 and 15:2 as compared with 3:1, or air instead of pure oxygen, did not modulate inflammatory markers.
Collapse
|
50
|
Aquilina K, Chakkarapani E, Thoresen M. Early deterioration of cerebrospinal fluid dynamics in a neonatal piglet model of intraventricular hemorrhage and posthemorrhagic ventricular dilation. J Neurosurg Pediatr 2012; 10:529-37. [PMID: 23020227 DOI: 10.3171/2012.8.peds11386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The optimal management of neonatal intraventricular hemorrhage (IVH) and posthemorrhagic ventricular dilation is challenging. The importance of early treatment has been demonstrated in a recent randomized study, involving early ventricular irrigation and drainage, which showed significant cognitive improvement at 2 years. The objective of this study was to define the changes in CSF absorption capacity over time in a neonatal piglet model of IVH. METHODS Ten piglets (postnatal age 9-22 hours) underwent intraventricular injection of homologous blood. A ventricular access device was inserted 7-10 days later. Ventricular dilation was measured by ultrasonography. Serial constant flow infusion studies were performed through the access device from Week 2 to Week 8. RESULTS Seven piglets survived long term, 43-60 days, and developed ventricular dilation; this reached a maximum by Week 6. There was no significant difference in baseline intracranial pressure throughout this period. The resistance to CSF outflow, R(out), increased from 63.5 mm Hg/ml/min in Week 2 to 118 mm Hg/ml/min in Week 4. Although R(out) decreased after Week 5, the ventriculomegaly persisted. CONCLUSIONS In this neonatal piglet model, reduction in CSF absorptive capacity occurs early after IVH and accompanies progressive and irreversible ventriculomegaly. This suggests that early treatment of premature neonates with IVH is desirable.
Collapse
Affiliation(s)
- Kristian Aquilina
- University of Bristol School of Clinical Sciences, Frenchay Hospital, Bristol, England.
| | | | | |
Collapse
|