1
|
Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA. Club Cell Protein 16 (CC16) Augmentation: A Potential Disease-modifying Approach for Chronic Obstructive Pulmonary Disease (COPD). Expert Opin Ther Targets 2016; 20:869-83. [PMID: 26781659 DOI: 10.1517/14728222.2016.1139084] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Club cell protein 16 (CC16) is the most abundant protein in bronchoalveolar lavage fluid. CC16 has anti-inflammatory properties in smoke-exposed lungs, and chronic obstructive pulmonary disease (COPD) is associated with CC16 deficiency. Herein, we explored whether CC16 is a therapeutic target for COPD. AREAS COVERED We reviewed the literature on the factors that regulate airway CC16 expression, its biologic functions and its protective activities in smoke-exposed lungs using PUBMED searches. We generated hypotheses on the mechanisms by which CC16 limits COPD development, and discuss its potential as a new therapeutic approach for COPD. EXPERT OPINION CC16 plasma and lung levels are reduced in smokers without airflow obstruction and COPD patients. In COPD patients, airway CC16 expression is inversely correlated with severity of airflow obstruction. CC16 deficiency increases smoke-induced lung pathologies in mice by its effects on epithelial cells, leukocytes, and fibroblasts. Experimental augmentation of CC16 levels using recombinant CC16 in cell culture systems, plasmid and adenoviral-mediated over-expression of CC16 in epithelial cells or smoke-exposed murine airways reduces inflammation and cellular injury. Additional studies are necessary to assess the efficacy of therapies aimed at restoring airway CC16 levels as a new disease-modifying therapy for COPD patients.
Collapse
Affiliation(s)
- Maria E Laucho-Contreras
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA
| | - Francesca Polverino
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA.,c Department of Medicine , University of Parma , Parma , Italy
| | - Yohannes Tesfaigzi
- b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Aprile Pilon
- d Therabron Therapeutics Inc. , Rockville , MD , USA
| | - Bartolome R Celli
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Caroline A Owen
- a Division of Pulmonary and Critical Care Medicine , Brigham and Women's Hospital/Harvard Medical School , Boston , MA , USA.,b COPD Program , Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| |
Collapse
|
2
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
3
|
Lazic T, Matic M, Gallup JM, Van Geelen A, Meyerholz DK, Grubor B, Imerman PM, de-Macedo MMMA, Ackermann MR. Effects of nicotine on pulmonary surfactant proteins A and D in ovine lung epithelia. Pediatr Pulmonol 2010; 45:255-62. [PMID: 20131324 PMCID: PMC2981073 DOI: 10.1002/ppul.21153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal smoking during pregnancy increases the incidence and severity of respiratory infections in neonates. Surfactant proteins A and D (SP-A and SP-D, respectively) are components of pulmonary innate immunity and have an important role in defense against inhaled pathogens. The purpose of this study was to determine if nicotine exposure during the third trimester of pregnancy alters the expression of SP-A and SP-D of fetal lung epithelia. Pregnant ewes were assigned to four groups; a nicotine-exposed full-term and pre-term group, and control full-term and pre-term group. Lung tissue was collected for Western blot and IHC analysis of SP-A level, Western blot analysis of SP-D level and qPCR analysis of SP-A and SP-D mRNA expression. Exposure to nicotine significantly decreased SP-A gene expression (P = 0.01) and SP-A protein level in pre-term lambs. This finding suggests that maternal nicotine exposure during the last trimester of pregnancy alters a key component of lung innate immunity in offspring.
Collapse
Affiliation(s)
- Tatjana Lazic
- Department of Veterinary Pathology, 2740 College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
Low molecular-mass plasma proteins play a key role in health and disease. Cystatin C is an endogenous cysteine proteinase inhibitor belonging to the type 2 cystatin superfamily. The mature, active form of human cystatin C is a single non-glycosylated polypeptide chain consisting of 120 amino acid residues, with a molecular mass of 13,343-13,359 Da, and containing four characteristic disulfide-paired cysteine residues. Human cystatin C is encoded by the CST3 gene, ubiquitously expressed at moderate levels. Cystatin C monomer is present in all human body fluids; it is preferentially abundant in cerebrospinal fluid, seminal plasma, and milk. Cystatin C L68Q variant is an amyloid fibril-forming protein with a high tendency to dimerize. It forms self-aggregates with massive amyloid deposits in the brain arteries of young adults, leading to lethal cerebral hemorrhage. The main catabolic site of cystatin C is the kidney: more than 99% of the protein is cleared from the circulation by glomerular ultrafiltration and tubular reabsorption. The diagnostic value of cystatin C as a marker of kidney dysfunction has been extensively investigated in multiple clinical studies on adults, children, and in the elderly. In almost all the clinical studies, cystatin C demonstrated a better diagnostic accuracy than serum creatinine in discriminating normal from impaired kidney function, but controversial results have been obtained by comparing this protein with other indices of kidney disease, especially serum creatinine-based equations. In this review, we present and discuss most of the available data from the literature, critically reviewing conclusions and suggestions for the use of cystatin C in clinical practice. Despite the multitude of clinical data in the literature, cystatin C has not been widely used, perhaps because of a combination of factors, such as a general diffidence among clinicians, the absence of definitive cut-off values, conflicting results in clinical studies, no clear evidence on when and how to request the test, the poor commutability of results, and no accurate examination of costs and of its routine use in a stat laboratory.
Collapse
Affiliation(s)
- Michele Mussap
- Department of Laboratory Medicine, University-Hospital of Padua, Padua, Italy
| | | |
Collapse
|
5
|
Rehan VK, Wang Y, Sugano S, Santos J, Patel S, Sakurai R, Boros LG, Boros LW, Lee WP, Torday JS. In utero nicotine exposure alters fetal rat lung alveolar type II cell proliferation, differentiation, and metabolism. Am J Physiol Lung Cell Mol Physiol 2007; 292:L323-33. [PMID: 17215434 DOI: 10.1152/ajplung.00071.2006] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently suggested that alveolar interstitial fibroblast-to-myofibroblast transdifferentiation may be a key mechanism underlying in utero nicotine-induced lung injury. However, the effects of in utero nicotine exposure on fetal alveolar type II (ATII) cells have not been fully determined. Placebo, nicotine (1 mg/kg), or nicotine (1 mg/kg) + the peroxisome proliferator-activated receptor (PPAR)-γ agonist prostaglandin J2 (PGJ2, 0.3 mg/kg) was administered intraperitoneally once daily to time-mated pregnant Sprague-Dawley rats from embryonic day 6 until their death on embryonic day 20. Fetal ATII cells were isolated, and ATII cell proliferation, differentiation (surfactant synthesis), and metabolism (metabolic profiling with the stable isotope [1,2-13C2]-d-glucose) were determined after nicotine exposure in utero or in vitro. In utero nicotine exposure significantly stimulated ATII cell proliferation, differentiation, and metabolism. Although the effects on ATII cell proliferation and metabolism were almost completely prevented by concomitant treatment with PGJ2, the effects on surfactant synthesis were not. On the basis of in utero and in vitro data, we conclude that surfactant synthesis is stimulated by nicotine's direct effect on ATII cells, whereas cell proliferation and metabolism are affected via a paracrine mechanism(s) secondary to its effects on the adepithelial fibroblasts. These data provide evidence for direct and indirect effects of in utero nicotine exposure on fetal ATII cells that could permanently alter the “developmental program” of the developing lung. More importantly, concomitant administration of PPAR-γ agonists can effectively attenuate many of the effects of in utero exposure to nicotine on ATII cells.
Collapse
Affiliation(s)
- Virender K Rehan
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, University of California-Los Angeles, 1124 West Carson St., Torrance, CA 90502, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Perni SC, Vardhana S, Kalish R, Chasen S, Witkin SS. Clara cell protein 16 concentration in mid-trimester amniotic fluid: Association with fetal gender, fetal G>A +38 CC16 gene polymorphism and pregnancy outcome. J Reprod Immunol 2005; 68:85-90. [PMID: 16236364 DOI: 10.1016/j.jri.2005.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 08/01/2005] [Accepted: 08/02/2005] [Indexed: 11/25/2022]
Abstract
Clara cell protein 16 (CC16) is a major immunomodulatory protein produced in the fetal lung. We hypothesized that the mid-trimester amniotic fluid concentration of CC16 would vary according to a +38 CC16 polymorphism in the fetal genome and that increased levels would be an early indicator of subsequent adverse pregnancy outcome. Mid-trimester singleton amniotic fluids from 244 women were assayed for CC16 by ELISA. DNA from fetal cells in 179 amniotic fluids were tested for the A>G polymorphism at position +38 in exon 1 by PCR. Outcome data were obtained from 233 women after completion of laboratory testing. Median CC16 levels were higher in amniotic fluids containing male fetuses than in those with females (p=0.0005). Median amniotic fluid CC16 levels were higher in Hispanics than in Whites and Asians (p<0.05). CC16*G homozygosity was associated with elevated amniotic fluid CC16 concentrations compared to CC16*A homozygotes (p=0.02). Intraamniotic CC16 levels were highest in pregnancies that subsequently resulted in preterm premature rupture of membranes (PPROM) (p=0.01). We conclude that mid-trimester intraamniotic CC16 concentrations vary by gender, ethnicity and fetal CC16 gene polymorphism. Elevated CC16 levels are predictive of subsequent development of PPROM.
Collapse
Affiliation(s)
- Sriram C Perni
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Weill Medical College of Cornell University, 525 East 68th Street, Box 35, NY 10021, USA
| | | | | | | | | |
Collapse
|
7
|
Quelles sont les conséquences à court, moyen et long terme du tabagisme pendant la grossesse ? ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0368-2315(05)83011-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Current awareness. Prenat Diagn 2002; 22:168-74. [PMID: 11857634 DOI: 10.1002/pd.265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|