1
|
Nguyen TC, Madappa R, Siefkes HM, Lim MJ, Siddegowda KM, Lakshminrusimha S. Oxygen saturation targets in neonatal care: A narrative review. Early Hum Dev 2024; 199:106134. [PMID: 39481153 DOI: 10.1016/j.earlhumdev.2024.106134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Optimal oxygenation requires the delivery of oxygen to meet tissue metabolic demands while minimizing hypoxic pulmonary vasoconstriction and oxygen toxicity. Oxygen saturation by pulse oximetry (SpO2) is a continuous, non-invasive method for monitoring oxygenation. The optimal SpO2 target varies during pregnancy and neonatal period. Maternal SpO2 should ideally be ≥95 % to ensure adequate fetal oxygenation. Term neonates can be resuscitated with an initial oxygen concentration of 21 %, while moderately preterm infants require 21-30 %. Extremely preterm infants may need higher FiO2, followed by titration to desired SpO2 targets. During the NICU course, extremely preterm infants managed with an 85-89 % SpO2 target compared to 90-94 % are associated with a reduced incidence of severe retinopathy of prematurity (ROP) requiring treatment, but with higher mortality. During the later stages of ROP progression, studies suggest that higher SpO2 targets may help limit progression. A target SpO2 of 90-95 % is generally reasonable for term infants with respiratory disease or pulmonary hypertension, with few exceptions such as severe acidosis, therapeutic hypothermia, and possibly dark skin pigmentation, where 93-98 % may be preferred. Infants with cyanotic heart disease and single-ventricle physiology have lower SpO2 targets to avoid pulmonary over-circulation. In low- and middle-income countries (LMICs), the scarcity of oxygen blenders and continuous monitoring may pose a challenge, increasing the risks of both hypoxia and hyperoxia, which can lead to mortality and ROP, respectively. Strategies to mitigate hyperoxia among preterm infants in LMICs are urgently needed to reduce the incidence of ROP.
Collapse
Affiliation(s)
- Tri C Nguyen
- Kaiser Permanente North California, 1640, Eureka Rd, Roseville, CA 95661, USA
| | - Rajeshwari Madappa
- Department of Pediatrics, SIGMA Hospital, P8/D, Kamakshi Hospital Road, Mysore 570009, India
| | - Heather M Siefkes
- Department of Pediatrics, UC Davis Children's Hospital, 2516 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Michelle J Lim
- Department of Pediatrics, UC Davis Children's Hospital, 2516 Stockton Blvd, Sacramento, CA 95817, USA.
| | - Kanya Mysore Siddegowda
- Department of Pediatrics, SIGMA Hospital, P8/D, Kamakshi Hospital Road, Mysore 570009, India
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children's Hospital, 2516 Stockton Blvd, Sacramento, CA 95817, USA.
| |
Collapse
|
2
|
Sotiropoulos JX, Oei JL, Schmölzer GM, Libesman S, Hunter KE, Williams JG, Webster AC, Vento M, Kapadia V, Rabi Y, Dekker J, Vermeulen MJ, Sundaram V, Kumar P, Kaban RK, Rohsiswatmo R, Saugstad OD, Seidler AL. Initial Oxygen Concentration for the Resuscitation of Infants Born at Less Than 32 Weeks' Gestation: A Systematic Review and Individual Participant Data Network Meta-Analysis. JAMA Pediatr 2024; 178:774-783. [PMID: 38913382 PMCID: PMC11197034 DOI: 10.1001/jamapediatrics.2024.1848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/03/2024] [Indexed: 06/25/2024]
Abstract
Importance Resuscitation with lower fractional inspired oxygen (FiO2) reduces mortality in term and near-term infants but the impact of this practice on very preterm infants is unclear. Objective To evaluate the relative effectiveness of initial FiO2 on reducing mortality, severe morbidities, and oxygen saturations (SpO2) in preterm infants born at less than 32 weeks' gestation using network meta-analysis (NMA) of individual participant data (IPD). Data Sources MEDLINE, Embase, CENTRAL, CINAHL, ClinicalTrials.gov, and WHO ICTRP from 1980 to October 10, 2023. Study Selection Eligible studies were randomized clinical trials enrolling infants born at less than 32 weeks' gestation comparing at least 2 initial oxygen concentrations for delivery room resuscitation, defined as either low (≤0.3), intermediate (0.5-0.65), or high (≥0.90) FiO2. Data Extraction and Synthesis Investigators from eligible studies were invited to provide IPD. Data were processed and checked for quality and integrity. One-stage contrast-based bayesian IPD-NMA was performed with noninformative priors and random effects and adjusted for key covariates. Main Outcomes and Measures The primary outcome was all-cause mortality at hospital discharge. Secondary outcomes were morbidities of prematurity and SpO2 at 5 minutes. Results IPD were provided for 1055 infants from 12 of the 13 eligible studies (2005-2019). Resuscitation with high (≥0.90) initial FiO2 was associated with significantly reduced mortality compared to low (≤0.3) (odds ratio [OR], 0.45; 95% credible interval [CrI], 0.23-0.86; low certainty) and intermediate (0.5-0.65) FiO2 (OR, 0.34; 95% CrI, 0.11-0.99; very low certainty). High initial FiO2 had a 97% probability of ranking first to reduce mortality. The effects on other morbidities were inconclusive. Conclusions and Relevance High initial FiO2 (≥0.90) may be associated with reduced mortality in preterm infants born at less than 32 weeks' gestation compared to low initial FiO2 (low certainty). High initial FiO2 is possibly associated with reduced mortality compared to intermediate initial FiO2 (very low certainty) but more evidence is required.
Collapse
Affiliation(s)
- James X. Sotiropoulos
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Kensington, New South Wales, Australia
- Department of Newborn Care, the Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Ju Lee Oei
- School of Women’s and Children’s Health, Faculty of Medicine and Health, University of New South Wales, Kensington, New South Wales, Australia
- Department of Newborn Care, the Royal Hospital for Women, Randwick, New South Wales, Australia
| | - Georg M. Schmölzer
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for the Studies of Asphyxia and Resuscitation, Neonatology, Royal Alexandra Hospital, Edmonton, Alberta, Canada
| | - Sol Libesman
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Kylie E. Hunter
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Jonathan G. Williams
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Angela C. Webster
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Maximo Vento
- University and Polytechnic Hospital La Fe, Valencia, Spain
- Health Research Institute La Fe, Valencia, Spain
| | - Vishal Kapadia
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Yacov Rabi
- Department of Pediatrics, University of Calgary, Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Janneke Dekker
- Willem-Alexander Children’s Hospital, Department of Pediatrics, Division of Neonatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marijn J. Vermeulen
- Department of Neonatal and Pediatric Intensive Care, Division of Neonatology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Venkataseshan Sundaram
- Division of Neonatology, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Praveen Kumar
- Division of Neonatology, Department of Pediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Risma K. Kaban
- Department of Child Health, University of Indonesia Medical School/Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Rinawati Rohsiswatmo
- Department of Child Health, University of Indonesia Medical School/Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Ola D. Saugstad
- Department of Pediatric Research, University of Oslo, Oslo, Norway
- Ann and Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Anna Lene Seidler
- National Health and Medical Research Council Clinical Trials Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
3
|
de Jager J, Brouwer F, Reijman J, van der Palen RLF, Steggerda SJ, Visser R, Te Pas AB, Dekker J. Occurrence of hyperoxia during iNO treatment for persistent pulmonary hypertension of the newborn: a cohort study. Eur J Pediatr 2024; 183:2455-2461. [PMID: 38470520 PMCID: PMC11035448 DOI: 10.1007/s00431-024-05506-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024]
Abstract
High concentrations of oxygen are often needed to optimize oxygenation in infants with persistent pulmonary hypertension (PPHN), but this can also increase the risk of hyperoxemia. We determined the occurrence of hyperoxemia in infants treated for PPHN. Medical records of infants ≥ 34 + 0 weeks gestational age (GA) who received inhaled nitric oxide (iNO) were retrospectively reviewed for oxygenation parameters during iNO therapy. Oxygen was manually titrated to target arterial oxygen tension (PaO2) 10-13 kPa and peripheral oxygen saturation (SpO2) 92-98%. The main study outcomes were the incidence and duration of hyperoxemia and hypoxemia and the fraction of inspired oxygen (FiO2). A total of 181 infants were included. The median FiO2 was 0.43 (IQR 0.34-0.56) and the maximum FiO2 was 1.0 in 156/181 (86%) infants, resulting in at least one PaO2 > 13 kPa in 149/181 (82%) infants, of which 46/149 (31%) infants had minimal one PaO2 > 30 kPa. SpO2 was > 98% in 179/181 (99%) infants for 17.7% (8.2-35.6%) of the iNO time. PaO2 < 10 kPa occurred in 160/181 (88%) infants, of which 81/160 (51%) infants had minimal one PaO2 < 6.7 kPa. SpO2 was < 92% in 169/181 (93%) infants for 1.6% (0.5-4.3%) of the iNO time. Conclusion: While treatment of PPHN is focused on preventing and reversing hypoxemia, hyperoxemia occurs inadvertently in most patients. What is Known: • High concentrations of oxygen are often needed to prevent hypoxemia-induced deterioration of PPHN, but this can also increase the risk of hyperoxemia. • Infants with persistent pulmonary hypertension may be particularly vulnerable to the toxic effects of oxygen, and hyperoxemia could further induce pulmonary vasoconstriction, potentially worsening the condition. What is New: • Hyperoxemia occurs in the majority of infants with PPHN during treatment with iNO. • Infants with PPHN spent a considerably longer period with saturations above the target range compared to saturations below the target range.
Collapse
Affiliation(s)
- Justine de Jager
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fleur Brouwer
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen Reijman
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Roel L F van der Palen
- Division of Pediatric Cardiology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Sylke J Steggerda
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Remco Visser
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan B Te Pas
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Janneke Dekker
- Division of Neonatology, Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
4
|
Zhang H, Keszler M. Mechanical ventilation in special populations. Semin Perinatol 2024; 48:151888. [PMID: 38555219 DOI: 10.1016/j.semperi.2024.151888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Optimal respiratory support can only be achieved if the ventilator strategy utilized for each individual patient at any given point in the evolution of their disease process is tailored to the underlying pathophysiology. The critically ill newborn infant requires individualized patient care when it comes to mechanical ventilation. This can only occur if the clinician has a good understanding of the different pathophysiologies of a variety of conditions that can lead to respiratory failure. In this chapter we describe the key pathophysiological features of bronchopulmonary dysplasia, meconium aspiration syndrome and lung hypoplasia syndromes with emphasis on congenital diaphragmatic hernia. We review available evidence to guide management an provide specific recommendations for pathophysiologically-based mechanical ventilation support.
Collapse
Affiliation(s)
- Hyayan Zhang
- Department of Neonatology, Perelman School of Medicine at the University of Pennsylvania, Newborn and Infant Chronic Lung Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Neonatology, Guangzhou Women and Children Medical Center, Guangzhou, China
| | - Martin Keszler
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
5
|
Lakshminrusimha S, Abman SH. Oxygen Targets in Neonatal Pulmonary Hypertension: Individualized, "Precision-Medicine" Approach. Clin Perinatol 2024; 51:77-94. [PMID: 38325948 PMCID: PMC10857735 DOI: 10.1016/j.clp.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Oxygen is a specific pulmonary vasodilator. Hypoxemia causes pulmonary vasoconstriction, and normoxia leads to pulmonary vasodilation. However, hyperoxia does not enhance pulmonary vasodilation but causes oxidative stress. There are no clinical trials evaluating optimal oxygen saturation or Pao2 in pulmonary hypertension. Data from translational studies and case series suggest that oxygen saturation of 90% to 97% or Pao2 between 50 and 80 mm Hg is associated with the lowest pulmonary vascular resistance.
Collapse
Affiliation(s)
- Satyan Lakshminrusimha
- Department of Pediatrics, University of California, UC Davis Children's Hospital, 2516 Stockton Boulevard, Sacramento, CA 95817, USA.
| | - Steven H Abman
- Department of Pediatrics, The Pediatric Heart Lung Center, University of Colorado Anschutz Medical Campus, Mail Stop B395, 13123 East 16th Avenue, Aurora, CO 80045, USA
| |
Collapse
|
6
|
Osman A, Halling C, Crume M, Al Tabosh H, Odackal N, Ball MK. Meconium aspiration syndrome: a comprehensive review. J Perinatol 2023; 43:1211-1221. [PMID: 37543651 DOI: 10.1038/s41372-023-01708-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 08/07/2023]
Abstract
Meconium aspiration syndrome (MAS) is a complex respiratory disease that continues to be associated with significant morbidities and mortality. The pathophysiological mechanisms of MAS include airway obstruction, local and systemic inflammation, surfactant inactivation and persistent pulmonary hypertension of the newborn (PPHN). Supplemental oxygen and non-invasive respiratory support are the main therapies for many patients. The management of the patients requiring invasive mechanical ventilation could be challenging because of the combination of atelectasis and air trapping. While studies have explored various ventilatory modalities, evidence to date does not clearly support any singular modality as superior. Patient's pathophysiology, symptom severity, and clinician/unit expertise should guide the respiratory management. Early identification and concomitant management of PPHN is critically important as it contributes significantly to mortality and morbidities.
Collapse
Affiliation(s)
- Ahmed Osman
- Department of Pediatrics, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA.
| | - Cecilie Halling
- Department of Pediatrics, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Mary Crume
- Neonatal-Perinatal Fellowship Program, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Hayat Al Tabosh
- Pediatrics Residency Program, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Namrita Odackal
- Department of Pediatrics, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| | - Molly K Ball
- Department of Pediatrics, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43205, USA
| |
Collapse
|
7
|
Ball MK, Seabrook RB, Bonachea EM, Chen B, Fathi O, Nankervis CA, Osman A, Schlegel AB, Magers J, Kulpa T, Sharpin P, Snyder ML, Gajarski RJ, Nandi D, Backes CH. Evidence-Based Guidelines for Acute Stabilization and Management of Neonates with Persistent Pulmonary Hypertension of the Newborn. Am J Perinatol 2023; 40:1495-1508. [PMID: 34852367 DOI: 10.1055/a-1711-0778] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Persistent pulmonary hypertension of the newborn, or PPHN, represents a challenging condition associated with high morbidity and mortality. Management is complicated by complex pathophysiology and limited neonatal specific evidence-based literature, leading to a lack of universal contemporary clinical guidelines for the care of these patients. To address this need and to provide consistent high-quality clinical care for this challenging population in our neonatal intensive care unit, we sought to develop a comprehensive clinical guideline for the acute stabilization and management of neonates with PPHN. Utilizing cross-disciplinary expertise and incorporating an extensive literature search to guide best practice, we present an approachable, pragmatic, and clinically relevant guide for the bedside management of acute PPHN. KEY POINTS: · PPHN is associated with several unique diagnoses; the associated pathophysiology is different for each unique diagnosis.. · PPHN is a challenging, dynamic, and labile process for which optimal care requires frequent reassessment.. · Key management goals are adequate tissue oxygen delivery, avoiding harm..
Collapse
Affiliation(s)
- Molly K Ball
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Ruth B Seabrook
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Elizabeth M Bonachea
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Bernadette Chen
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
- Department of Pediatrics Pulmonary Hypertension Group, Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio
| | - Omid Fathi
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Craig A Nankervis
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Ahmed Osman
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Amy B Schlegel
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
| | - Jacqueline Magers
- Department of Pharmacy, Nationwide Children's Hospital, Columbus, Ohio
| | - Taylor Kulpa
- Division of Neonatology Nationwide Children's Hospital Neonatal Intensive Care Unit, Neonatal Service Line, Columbus, Ohio
| | - Paula Sharpin
- Division of Neonatology Nationwide Children's Hospital Neonatal Intensive Care Unit, Neonatal Service Line, Columbus, Ohio
| | - Mary Lindsay Snyder
- Division of Neonatology Nationwide Children's Hospital Neonatal Intensive Care Unit, Neonatal Service Line, Columbus, Ohio
| | - Robert J Gajarski
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Cardiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Deipanjan Nandi
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Cardiology, Nationwide Children's Hospital, Columbus, Ohio
| | - Carl H Backes
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio
- Division of Neonatology, Nationwide Children's Hospital, Columbus, Ohio
- Division of Cardiology, Nationwide Children's Hospital, Columbus, Ohio
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Department of Pediatrics, Columbus, Ohio
| |
Collapse
|
8
|
Sankaran D, Rawat M, Lakshminrusimha S. Optimal oxygen use in neonatal advanced cardiopulmonary resuscitation-a literature review. PEDIATRIC MEDICINE (HONG KONG, CHINA) 2023; 6:16. [PMID: 39364342 PMCID: PMC11449427 DOI: 10.21037/pm-21-74] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Background and Objectives Oxygen (O2) use during neonatal cardiopulmonary resuscitation (CPR) remains a subject of controversy. The inspired O2 concentration during neonatal CPR, that hastens return of spontaneous circulation (ROSC), allows adequate cerebral and myocardial O2 delivery, and enhances survival to discharge, is not known. The optimal FiO2 during CPR should decrease incidence of hypoxia but also avoid hyperoxia, and ultimately lead to improved neurodevelopmental outcomes. Due to infrequent need for extensive resuscitation, and emergent circumstances surrounding neonatal CPR, conducting randomized clinical trials continues to be a challenge. The goal of this study was to review the evolution of oxygen use during neonatal CPR, the evidence from animal and clinical studies on oxygen use during neonatal CPR and after ROSC, the pertinent physiology including myocardial oxygen consumption and cerebral oxygen delivery during CPR, and outcomes following CPR in the DR and in the neonatal intensive care unit. Methods This narrative review is based on recent and historic English literature in PubMed and Google scholar over the past 35 years (January 1, 1985 - May 1, 2021). Key Content and Findings Several studies in animal models have compared ventilation with different inspired O2 concentrations (mostly 21% and 100%) during chest compressions and after ROSC. These studies reported no difference in short-term outcomes, even with as low as 18% O2. However, in lamb models of cardiac arrest and CPR, 100% O2 during chest compressions is associated with better oxygen delivery to the brain compared to 21% O2. Abrupt weaning to 21% O2 following ROSC followed by titration to achieve preductal SpO2 of 85-95% minimizes systemic hyperoxia and oxidative stress compared to slow weaning from 100% O2 following ROSC. Conclusions Clinical research is needed to arrive at the best strategy for assessment of oxygenation and choice of FiO2 during neonatal CPR that lead to improved survival and outcomes. In this article, we have reviewed the literature on evidence behind O2 use during neonatal advanced CPR and after ROSC.
Collapse
Affiliation(s)
- Deepika Sankaran
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Munmun Rawat
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
9
|
Sankaran D, Lakshminrusimha S, Saugstad OD. Physiology of neonatal resuscitation: Giant strides with small breaths. Semin Perinatol 2022; 46:151620. [PMID: 35715254 PMCID: PMC11884264 DOI: 10.1016/j.semperi.2022.151620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transition of a fetus to a newborn involves a sequence of well-orchestrated physiological events. Most neonates go through this transition without assistance but 5-10% may require varying degrees of resuscitative interventions at birth. The most crucial event during this transition is lung inflation with optimal concentrations of oxygen. Rarely, extensive resuscitation including chest compressions and medication may be required. In the past few decades, significant strides have been made in our understanding of the cardiorespiratory transition at birth from a fetus to a newborn and the subsequent resuscitation. This article reviews the physiology behind neonatal transition at birth and various interventions during neonatal resuscitation.
Collapse
Affiliation(s)
- Deepika Sankaran
- Department of Pediatrics, University of California, 2516 Stockton Blvd, Davis, Sacramento, CA 95817, United States.
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California, 2516 Stockton Blvd, Davis, Sacramento, CA 95817, United States
| | - Ola D Saugstad
- Department of Pediatric Research, The University of Oslo, Oslo University Hospital, Oslo, Norway; Department of Pediatrics, Northwestern University, Chicago, IL, United States
| |
Collapse
|
10
|
Oxygen Therapy Lowers Right Ventricular Afterload in Experimental Acute Pulmonary Embolism. Crit Care Med 2021; 49:e891-e901. [PMID: 33870917 DOI: 10.1097/ccm.0000000000005057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To investigate if oxygen could unload the right ventricle and improve right ventricle function in a porcine model mimicking intermediate-high risk acute pulmonary embolism. DESIGN Controlled, blinded, animal study. SETTING Tertiary university hospital, animal research laboratory. SUBJECTS Female, Danish pigs (n = 16, approximately 60 kg). INTERVENTIONS Acute autologous pulmonary embolism was induced until doubling of baseline mean pulmonary arterial pressure. Group 1 animals (n = 8) received increasing Fio2 (40%, 60%, and 100%) for time intervals of 15 minutes returning to atmospheric air between each level of Fio2. In group 2 (n = 8), the effects of Fio2 40% maintained over 75 minutes were studied. In both groups, pulmonary vasodilatation from inhaled nitric oxide (40 parts per million) was used as a positive control. MEASUREMENTS AND MAIN RESULTS Effects were evaluated by biventricular pressure-volume loop recordings, right heart catheterization, and arterial and mixed venous blood gasses. Pulmonary embolism increased mean pulmonary arterial pressure from 15 ± 4 to 33 ± 6 mm Hg (p = 0.0002) and caused right ventricle dysfunction (p < 0.05) with troponin release (p < 0.0001). In group 1, increasing Fio2 lowered mean pulmonary arterial pressure (p < 0.0001) and pulmonary vascular resistance (p = 0.0056) and decreased right ventricle volumes (p = 0.0018) and right ventricle mechanical work (p = 0.034). Oxygenation was improved and pulmonary shunt was lowered (p < 0.0001). Maximal hemodynamic effects were seen at Fio2 40% with no additional benefit from higher fractions of oxygen. In group 2, the effects of Fio2 40% were persistent over 75 minutes. Supplemental oxygen showed the same pulmonary vasodilator efficacy as inhaled nitric oxide (40 parts per million). No adverse effects were observed. CONCLUSIONS In a porcine model mimicking intermediate-high risk pulmonary embolism, oxygen therapy reduced right ventricle afterload and lowered right ventricle mechanical work. The effects were immediately present and persistent and were similar to inhaled nitric oxide. The intervention is easy and safe. The study motivates extended clinical evaluation of supplemental oxygen in acute pulmonary embolism.
Collapse
|
11
|
Resuscitation with an Intact Cord Enhances Pulmonary Vasodilation and Ventilation with Reduction in Systemic Oxygen Exposure and Oxygen Load in an Asphyxiated Preterm Ovine Model. CHILDREN-BASEL 2021; 8:children8040307. [PMID: 33920664 PMCID: PMC8073339 DOI: 10.3390/children8040307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
(1) Background: Optimal initial oxygen (O2) concentration in preterm neonates is controversial. Our objectives were to compare the effect of delayed cord clamping with ventilation (DCCV) to early cord clamping followed by ventilation (ECCV) on O2 exposure, gas exchange, and hemodynamics in an asphyxiated preterm ovine model. (2) Methods: Asphyxiated preterm lambs (127-128 d) with heart rate <90 bpm were randomly assigned to DCCV or ECCV. In DCCV, positive pressure ventilation (PPV) was initiated with 30-60% O2 and titrated based on preductal saturations (SpO2) with an intact cord for 5 min, followed by clamping. In ECCV, the cord was clamped, and PPV was initiated. (3) Results: Fifteen asphyxiated preterm lambs were randomized to DCCV (N = 7) or ECCV (N = 8). The inspired O2 (40 ± 20% vs. 60 ± 20%, p < 0.05) and oxygen load (520 (IQR 414-530) vs. 775 (IQR 623-868), p-0.03) in the DCCV group were significantly lower than ECCV. Arterial oxygenation and carbon dioxide (PaCO2) levels were significantly lower and peak pulmonary blood flow was higher with DCCV. (4) Conclusion: In asphyxiated preterm lambs, resuscitation with an intact cord decreased O2 exposure load improved ventilation with an increase in peak pulmonary blood flow in the first 5 min.
Collapse
|
12
|
Abstract
The development of the control of breathing begins in utero and continues postnatally. Fetal breathing movements are needed for establishing connectivity between the lungs and central mechanisms controlling breathing. Maturation of the control of breathing, including the increase of hypoxia chemosensitivity, continues postnatally. Insufficient oxygenation, or hypoxia, is a major stressor that can manifest for different reasons in the fetus and neonate. Though the fetus and neonate have different hypoxia sensing mechanisms and respond differently to acute hypoxia, both responses prevent deviations to respiratory and other developmental processes. Intermittent and chronic hypoxia pose much greater threats to the normal developmental respiratory processes. Gestational intermittent hypoxia, due to maternal sleep-disordered breathing and sleep apnea, increases eupneic breathing and decreases the hypoxic ventilatory response associated with impaired gasping and autoresuscitation postnatally. Chronic fetal hypoxia, due to biologic or environmental (i.e. high-altitude) factors, is implicated in fetal growth restriction and preterm birth causing a decrease in the postnatal hypoxic ventilatory responses with increases in irregular eupneic breathing. Mechanisms driving these changes include delayed chemoreceptor development, catecholaminergic activity, abnormal myelination, increased astrocyte proliferation in the dorsal respiratory group, among others. Long-term high-altitude residents demonstrate favorable adaptations to chronic hypoxia as do their offspring. Neonatal intermittent hypoxia is common among preterm infants due to immature respiratory systems and thus, display a reduced drive to breathe and apneas due to insufficient hypoxic sensitivity. However, ongoing intermittent hypoxia can enhance hypoxic sensitivity causing ventilatory overshoots followed by apnea; the number of apneas is positively correlated with degree of hypoxic sensitivity in preterm infants. Chronic neonatal hypoxia may arise from fetal complications like maternal smoking or from postnatal cardiovascular problems, causing blunting of the hypoxic ventilatory responses throughout at least adolescence due to attenuation of carotid body fibers responses to hypoxia with potential roles of brainstem serotonin, microglia, and inflammation, though these effects depend on the age in which chronic hypoxia initiates. Fetal and neonatal intermittent and chronic hypoxia are implicated in preterm birth and complicate the respiratory system through their direct effects on hypoxia sensing mechanisms and interruptions to the normal developmental processes. Thus, precise regulation of oxygen homeostasis is crucial for normal development of the respiratory control network. © 2021 American Physiological Society. Compr Physiol 11:1653-1677, 2021.
Collapse
Affiliation(s)
- Gary C. Mouradian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, UC Davis Children’s Hospital, UC Davis Health, UC Davis, Davis, California, USA
| | - Girija G. Konduri
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children’s Research Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
13
|
DeKoninck PLJ, Horn-Oudshoorn EJJ, Knol R, Crossley KJ, Reiss IKM. Knowledge Gaps in the Fetal to Neonatal Transition of Infants With a Congenital Diaphragmatic Hernia. Front Pediatr 2021; 9:784810. [PMID: 34970518 PMCID: PMC8712749 DOI: 10.3389/fped.2021.784810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Clinical research for infants born with a congenital diaphragmatic hernia (CDH) has until recently mainly focused on advances in prenatal and postnatal treatment. However, during the early perinatal transition period there are major physiological adaptations. For most infants these changes will happen uneventfully, but for CDH infants this marks the beginning of serious respiratory complications. In recent years, there is emerging evidence that the clinical management during the perinatal stabilization period in the delivery room may influence postnatal outcomes. Herein, we discuss major knowledge gaps and novel concepts that aim to optimize fetal to neonatal transition for infants with CDH. One such novel and interesting approach is performing resuscitation with an intact umbilical cord, the efficacy of this procedure is currently being investigated in several clinical trials. Furthermore, close evaluation of neonatal physiological parameters in the first 24 h of life might provide early clues concerning the severity of lung hypoplasia and the risk of adverse outcomes. We will provide an overview of trending concepts and discuss potential areas for future research.
Collapse
Affiliation(s)
- Philip L J DeKoninck
- Department of Obstetrics and Gynecology, Division Fetal Medicine, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands.,The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Emily J J Horn-Oudshoorn
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Ronny Knol
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Kelly J Crossley
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
14
|
How Do We Monitor Oxygenation during the Management of PPHN? Alveolar, Arterial, Mixed Venous Oxygen Tension or Peripheral Saturation? CHILDREN-BASEL 2020; 7:children7100180. [PMID: 33066076 PMCID: PMC7600440 DOI: 10.3390/children7100180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/21/2020] [Accepted: 10/11/2020] [Indexed: 02/01/2023]
Abstract
Oxygen is a pulmonary vasodilator and plays an important role in mediating circulatory transition from fetal to postnatal period. Oxygen tension (PO2) in the alveolus (PAO2) and pulmonary artery (PaO2) are the main factors that influence hypoxic pulmonary vasoconstriction (HPV). Inability to achieve adequate pulmonary vasodilation at birth leads to persistent pulmonary hypertension of the newborn (PPHN). Supplemental oxygen therapy is the mainstay of PPHN management. However, optimal monitoring and targeting of oxygenation to achieve low pulmonary vascular resistance (PVR) and optimizing oxygen delivery to vital organs remains unknown. Noninvasive pulse oximetry measures peripheral saturations (SpO2) and a target range of 91-95% are recommended during acute PPHN management. However, for a given SpO2, there is wide variability in arterial PaO2, especially with variations in hemoglobin type (HbF or HbA due to transfusions), pH and body temperature. This review evaluates the role of alveolar, preductal, postductal, mixed venous PO2, and SpO2 in the management of PPHN. Translational and clinical studies suggest maintaining a PaO2 of 50-80 mmHg decreases PVR and augments pulmonary vasodilator management. Nevertheless, there are no randomized clinical trials evaluating outcomes in PPHN targeting SpO2 or PO2. Also, most critically ill patients have umbilical arterial catheters and postductal PaO2 may not be an accurate assessment of oxygen delivery to vital organs or factors influencing HPV. The mixed venous oxygen tension from umbilical venous catheter blood gas may assess pulmonary arterial PO2 and potentially predict HPV. It is crucial to conduct randomized controlled studies with different PO2/SpO2 target ranges for the management of PPHN and compare outcomes.
Collapse
|
15
|
Rawat M, Chandrasekharan P, Gugino SF, Koenigsknecht C, Nielsen L, Wedgwood S, Mathew B, Nair J, Steinhorn R, Lakshminrusimha S. Optimal Oxygen Targets in Term Lambs with Meconium Aspiration Syndrome and Pulmonary Hypertension. Am J Respir Cell Mol Biol 2020; 63:510-518. [PMID: 32609558 PMCID: PMC7528912 DOI: 10.1165/rcmb.2019-0449oc] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/01/2020] [Indexed: 12/13/2022] Open
Abstract
Optimal oxygen saturation as measured by pulse oximetry (SpO2) in neonatal lung injury, such as meconium aspiration syndrome (MAS) and persistent pulmonary hypertension of newborn (PPHN), is not known. Our goal was to determine the SpO2 range in lambs with MAS and PPHN that results in the highest brain oxygen delivery (bDO2) and pulmonary blood flow (Qp) and the lowest pulmonary vascular resistance and oxidative stress. Meconium was instilled into endotracheal tubes in 25 near-term gestation lambs, and the umbilical cord was occluded to induce asphyxia and gasping, causing MAS and PPHN. Lambs were randomized into four groups and ventilated for 6 hours with fixed fraction of inspired oxygen (FiO2) = 1.0 irrespective of SpO2, and three groups had FiO2 titrated to keep preductal SpO2 between 85% and 89%, 90% and 94%, and 95% and 99%, respectively. Tissues were collected to measure nitric oxide synthase activity, 3-nitrotyrosine, and 8-isoprostanes. Throughout the 6-hour exposure period, lambs in the 95-99% SpO2 target group had the highest Qp, lowest pulmonary vascular resistance, and highest bDO2 but were exposed to higher FiO2 (0.5 ± 0.21 vs. 0.29 ± 0.17) with higher lung 3-nitrotyrosine (0.67 [interquartile range (IQR), 0.43-0.73] ng/mcg protein vs. 0.1 [IQR, 0.09-0.2] ng/mcg protein) and lower lung nitric oxide synthase activity (196 [IQR, 192-201] mMol nitrite/mg protein vs. 270 [IQR, 227-280] mMol nitrite/mg protein) compared with the 90-94% target group. Brain 3-nitrotyrosine was lower in the 85-89% target group, and brain/lung 8-isoprostane levels were not significantly different. In term lambs with MAS and PPHN, Qp and bDO2 through the first 6 hours are higher with target SpO2 in the 95-99% range. However, the 90-94% target range is associated with significantly lower FiO2 and lung oxidative stress. Clinical trials comparing the 90-94% versus the 95-99% SpO2 target range in term infants with PPHN are warranted.
Collapse
Affiliation(s)
| | | | - Sylvia F. Gugino
- Department of Pediatrics and
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | | | - Lori Nielsen
- Department of Pediatrics and
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California; and
| | | | | | - Robin Steinhorn
- Department of Pediatrics, Rady Children’s Hospital, University of California San Diego, California
| | - Satyan Lakshminrusimha
- Department of Pediatrics, University of California Davis Medical Center, Sacramento, California; and
| |
Collapse
|
16
|
Yang MJ, Fenton S, Russell K, Yost CC, Yoder BA. Left-sided congenital diaphragmatic hernia: can we improve survival while decreasing ECMO? J Perinatol 2020; 40:935-942. [PMID: 32066841 DOI: 10.1038/s41372-020-0615-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Mortality and ECMO rates for congenital diaphragmatic hernia (CDH) remain ~30%. In 2016, we changed our CDH guidelines to minimize stimulation while relying on preductal oxygen saturation, lower mean airway pressures, stricter criteria for nitric oxide (iNO), and inotrope use. We compared rates of ECMO, survival, and survival without ECMO between the two epochs. DESIGN/METHODS Retrospective review of left-sided CDH neonates at the University of Utah/Primary Children's Hospital NICUs during pre (2003-2015, n = 163) and post (2016-2019, n = 53) epochs was conducted. Regression analysis controlled for defect size and intra-thoracic liver. RESULTS Following guideline changes, we identified a decrease in ECMO (37 to 13%; p = 0.001) and an increase in survival without ECMO (53 to 79%, p = 0.0001). Overall survival increased from 74 to 89% (p = 0.035). CONCLUSION(S) CDH management guideline changes focusing on minimizing stimulation, using preductal saturation and less aggressive ventilator/inotrope support were associated with decreased ECMO use and improved survival.
Collapse
Affiliation(s)
- Michelle J Yang
- Division of Neonatology, University of Utah School of Medicine and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA.
| | - Stephen Fenton
- Division of Pediatric Surgery, University of Utah School of Medicine and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA
| | - Katie Russell
- Division of Pediatric Surgery, University of Utah School of Medicine and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA
| | - Christian Con Yost
- Division of Neonatology, University of Utah School of Medicine and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA
| | - Bradley A Yoder
- Division of Neonatology, University of Utah School of Medicine and Primary Children's Hospital, Intermountain Health, Salt Lake City, UT, USA
| |
Collapse
|
17
|
Abstract
Premature infants undergo a complex postnatal adaptation at birth. For last two centuries, oxygen has been integral to respiratory support of preterm infants at birth. Excess oxygen can cause oxidative stress and tissue injury. Preterm infants due to lung immaturity may need oxygen for successful transition at birth. Although, considerable progress has been made in the last 3 decades, optimum oxygen therapy for preterm delivery room resuscitation remains unknown. In this review, we discuss the history and physiology behind oxygen therapy in the delivery room, evaluate current literature, provide practice points and point out knowledge gaps of oxygen therapy in preterm infant at birth.
Collapse
|
18
|
Steinhorn RH, Lakshminrusimha S. Oxygen and pulmonary vasodilation: The role of oxidative and nitrosative stress. Semin Fetal Neonatal Med 2020; 25:101083. [PMID: 31983672 DOI: 10.1016/j.siny.2020.101083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Respiratory failure complicates up to 2% of live births and contributes significantly to neonatal morbidity and mortality. Under these conditions, supplemental oxygen is required to support oxygen delivery to the brain and other organs, and to prevent hypoxic pulmonary vasoconstriction. However, therapeutic oxygen is also a source of reactive oxygen species that produce oxidative stress, along with multiple intracellular systems that contribute to the production of free radicals in pulmonary endothelium and vascular smooth muscle. These free radicals cause vasoconstriction, act on multiple sites of the nitric oxide pathway to reduce cGMP-mediated vasodilation, and nitrate and inactivate essential proteins such as surfactant. In addition to oxygen, antenatal stressors such as placental insufficiency, maternal diabetes, and fetal growth restriction increase pulmonary and vascular oxidant stress and may amplify the adverse effects of oxygen. Moreover, the effects of free radical damage may extend well beyond infancy as suggested by the increased risk of childhood malignancy after neonatal exposure to hyperoxia. Antioxidant therapy is theoretically promising, but there are not yet clinical trials to support this approach. Targeting the abnormal sources of increased oxidant stress that trigger abnormal pulmonary vascular responses may be more effective in treating disease and preventing long term consequences.
Collapse
Affiliation(s)
- Robin H Steinhorn
- George Washington University, Senior Vice President, Children's National Hospital, Washington, DC, 20010, USA.
| | | |
Collapse
|
19
|
Oxygen for respiratory support of moderate and late preterm and term infants at birth: Is air best? Semin Fetal Neonatal Med 2020; 25:101074. [PMID: 31843378 DOI: 10.1016/j.siny.2019.101074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxygen has been used for newborn infant resuscitation for more than two centuries. In the last two decades, concerns about oxidative stress and injury have changed this practice. Air (FiO2 0.21) is now preferred as the starting point for respiratory support of infants 34 weeks gestation and above. These recommendations are derived from studies that were conducted on asphyxiated, term infants, recruited more than 10 years ago using strategies that are not commonly used today. The applicability of these recommendations to current practice, is uncertain. In addition, whether initiating respiratory support with air for infants with pulmonary disorders provides sufficient oxygenation is also unclear. This review will address these concerns and provide suggestions for future steps to address knowledge and practice gaps.
Collapse
|
20
|
Gien J, Nuxoll C, Kinsella JP. Inhaled Nitric Oxide in Emergency Medical Transport of the Newborn. Neoreviews 2020; 21:e157-e164. [PMID: 32123120 DOI: 10.1542/neo.21-3-e157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Randomized controlled trials in the 1990s confirmed the safety and efficacy of inhaled nitric oxide (iNO) in near-term and term newborns with hypoxemic respiratory failure and pulmonary hypertension, demonstrating improved oxygenation and reduced need for extracorporeal membrane oxygenation (ECMO) therapy. However, in about 30% to 40% of sick newborns, these improvements in oxygenation and hemodynamics are not sustained and affected infants often require rapid transfer to an ECMO center despite the initiation of iNO. Abrupt discontinuation of iNO therapy before transport in patients who have had little apparent clinical benefit can be harmful because of acute deterioration with severe hypoxemia. Thus, continued use of iNO therapy during hospital transfer of infants with pulmonary hypertension is important. In this review, we describe: 1) the history of iNO use during transport; 2) a practical approach to iNO during transport; and 3) guidelines for the initiation of iNO before or during transport.
Collapse
Affiliation(s)
- Jason Gien
- Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
- Children's Hospital Colorado, Aurora, CO
| | | | - John P Kinsella
- Section of Neonatology, University of Colorado School of Medicine, Aurora, CO
- Children's Hospital Colorado, Aurora, CO
| |
Collapse
|
21
|
Sekar K, Szyld E, McCoy M, Wlodaver A, Dannaway D, Helmbrecht A, Riley J, Manfredo A, Anderson M, Lakshminrusimha S, Noori S. Inhaled nitric oxide as an adjunct to neonatal resuscitation in premature infants: a pilot, double blind, randomized controlled trial. Pediatr Res 2020; 87:523-528. [PMID: 31666688 PMCID: PMC7223624 DOI: 10.1038/s41390-019-0643-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND Nitric oxide (NO) plays an important role in normal postnatal transition. Our aims were to determine whether adding inhaled NO (iNO) decreases supplemental oxygen exposure in preterm infants requiring positive pressure ventilation (PPV) during resuscitation and to study iNO effects on heart rate (HR), oxygen saturation (SpO2), and need for intubation during the first 20 min of life. METHODS This was a pilot, double-blind, randomized, placebo-controlled trial. Infants 25 0/7-31 6/7 weeks' gestational age requiring PPV with supplemental oxygen during resuscitation were enrolled. PPV was initiated with either oxygen (FiO2-0.30) + iNO at 20 ppm (iNO group) or oxygen (FiO2-0.30) + nitrogen (placebo group). Oxygen was titrated targeting defined SpO2 per current guidelines. After 10 min, iNO/nitrogen was weaned stepwise per protocol and terminated at 17 min. RESULTS Twenty-eight infants were studied (14 per group). The mean gestational age in both groups was similar. Cumulative FiO2 and rate of exposure to high FiO2 (>0.60) were significantly lower in the iNO group. There were no differences in HR, SpO2, and need for intubation. CONCLUSIONS Administration of iNO as an adjunct during neonatal resuscitation is feasible without side effects. It diminishes exposure to high levels of supplemental oxygen.
Collapse
Affiliation(s)
- Krishnamurthy Sekar
- Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Edgardo Szyld
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael McCoy
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Anne Wlodaver
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Douglas Dannaway
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Ashley Helmbrecht
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Julee Riley
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Amy Manfredo
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Michael Anderson
- 0000 0001 2179 3618grid.266902.9Neonatal Perinatal Section, Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Satyan Lakshminrusimha
- 0000 0004 0413 7653grid.416958.7Department of Pediatrics, UC Davis Health, Sacramento, CA USA
| | - Shahab Noori
- 0000 0001 2156 6853grid.42505.36Fetal and Neonatal Institute, Division of Neonatology, Children’s Hospital of Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA USA
| |
Collapse
|
22
|
Wedgwood S, Steinhorn RH, Lakshminrusimha S. Optimal oxygenation and role of free radicals in PPHN. Free Radic Biol Med 2019; 142:97-106. [PMID: 30995536 PMCID: PMC6761018 DOI: 10.1016/j.freeradbiomed.2019.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
Effective ventilation of the lungs is essential in mediating pulmonary vasodilation at birth to allow effective gas exchange and an increase in systemic oxygenation. Unsuccessful transition prevents the increase in pulmonary blood flow after birth resulting in hypoxemia and persistent pulmonary hypertension of the newborn (PPHN). Management of neonates with PPHN includes ventilation of the lungs with supplemental oxygen to correct hypoxemia. Optimal oxygenation should meet oxygen demand to the tissues and avoid hypoxic pulmonary vasoconstriction (HPV) while preventing oxidative stress. The optimal target for oxygenation in PPHN is not known. Animal models have demonstrated that PaO2<45 mmHg exacerbates HPV. However, there are no practical methods of assessing oxygen levels associated with oxidant stress. Oxidant stress can be due to free radical generation from underlying lung disease or from free radicals generated by supplemental oxygen. Free radicals act on the nitric oxide pathway reducing cGMP and promoting pulmonary vasoconstriction. Antioxidant therapy improves systemic oxygenation in an animal model of PPHN but there are no clinical trials to support such therapy. Targeting preductal SpO2 between 90 and 97% and PaO2 at 50-80 mmHg appears prudent in PPHN but clinical trials to support this practice are lacking. Preterm infants with PPHN present unique challenges due to lack of antioxidant defenses and functional and structural immaturity of the lungs. This review highlights the need for additional studies to mitigate the impact of oxidative stress in the lung and pulmonary vasculature in PPHN.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, UC Davis School of Medicine, Sacramento, CA, USA
| | - Robin H Steinhorn
- Department of Hospitalist Medicine, Children's National Health System, Washington DC, USA
| | | |
Collapse
|
23
|
Baumann P, Wiegert S, Greco F, Wellmann S, L'Abate P, Cannizzaro V. Mechanical ventilation strategies alter cardiovascular biomarkers in an infant rat model. Physiol Rep 2019; 6. [PMID: 29380954 PMCID: PMC5789718 DOI: 10.14814/phy2.13553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/23/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Abstract
Mechanical ventilation (MV) is routinely used in pediatric general anesthesia and critical care, but may adversely affect the cardiocirculatory system. Biomarkers are increasingly measured to assess cardiovascular status and improve clinical treatment decision-making. As the impact of mechanical ventilation strategies on cardiovascular biomarkers in ventilated infants is largely unknown, we conducted this retrospective study in a healthy in vivo infant rat ventilation model using 14-days old Wistar rats. We hypothesized that 2 h of mechanical ventilation with high and low positive end-expiratory pressure (PEEP), hyperoxemia, hypoxemia, hypercapnia, and hypocapnia would significantly impact B-type natriuretic peptide (BNP), vascular endothelial growth factor (VEGF), and endothelin-1 (ET-1). We found BNP to be driven by both high (9 cmH2 O) and low (1 cmH2 O) PEEP compared to ventilated control animals (P < 0.05). VEGF concentrations were associated with high PEEP, hyperoxemia, hypoxemia, and hypocapnia (P < 0.05), whereas ET-1 levels were changed only in response to hypoxemia (P < 0.05). In conclusion, the mode of mechanical ventilation alters plasma biomarker concentrations. Moreover, BNP and VEGF might serve as surrogate parameters for ventilation induced cardiovascular compromise and lung tissue damage. Furthermore, our data support the hypothesis, that sudden onset of hyperoxemia may trigger a quick VEGF release as a possible cellular survival reflex.
Collapse
Affiliation(s)
- Philipp Baumann
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital of Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Susanne Wiegert
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital of Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, Zurich, Switzerland
| | - Francesco Greco
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital of Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, Zurich, Switzerland
| | - Sven Wellmann
- Department of Neonatology, University Children's Hospital of Basel, Basel, Switzerland
| | - Pietro L'Abate
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital of Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital of Zurich, Zurich, Switzerland
| | - Vincenzo Cannizzaro
- Department of Intensive Care Medicine and Neonatology, University Children's Hospital of Zurich, Zurich, Switzerland.,Children's Research Centre, University Children's Hospital of Zurich, Zurich, Switzerland.,Zurich Centre for Integrative Human Physiology, Zurich, Switzerland
| |
Collapse
|
24
|
Chandrasekharan P, Rawat M, Gugino SF, Koenigsknecht C, Helman J, Nair J, Vali P, Lakshminrusimha S. Effect of various inspired oxygen concentrations on pulmonary and systemic hemodynamics and oxygenation during resuscitation in a transitioning preterm model. Pediatr Res 2018; 84:743-750. [PMID: 29967523 PMCID: PMC6275138 DOI: 10.1038/s41390-018-0085-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND The Neonatal Resuscitation Program recommends initial resuscitation of preterm infants with low oxygen (O2) followed by titration to target preductal saturations (SpO2). We studied the effect of resuscitation with titrated O2 on gas exchange, pulmonary, and systemic hemodynamics. METHODOLOGY Twenty-nine preterm lambs (127 d gestation) were randomized to resuscitation with 21% O2 (n = 7), 100% O2 (n = 6), or initiation at 21% and titrated to target SpO2 (n = 16). Seven healthy term control lambs were ventilated with 21% O2. RESULTS Preductal SpO2 achieved by titrating O2 was within the desired range similar to term lambs in 21% O2. Resuscitation of preterm lambs with 21% and 100% O2 resulted in SpO2 below and above the target, respectively. Ventilation of preterm lambs with 100% O2 and term lambs with 21% O2 effectively decreased pulmonary vascular resistance (PVR). In contrast, preterm lambs with 21% O2 and titrated O2 demonstrated significantly higher PVR than term lambs on 21% O2. CONCLUSION(S) Initial resuscitation with 21% O2 followed by titration of O2 led to suboptimal pulmonary vascular transition at birth in preterm lambs. Ventilation with 100% O2 in preterm lambs caused hyperoxia but reduced PVR similar to term lambs on 21% O2. Studies evaluating the initiation of resuscitation at a higher O2 concentration followed by titration based on SpO2 in preterm neonates are needed.
Collapse
Affiliation(s)
| | - Munmun Rawat
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| | | | | | - Justin Helman
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| | - Jayasree Nair
- Department of Pediatrics, University at Buffalo, Buffalo, NY
| | - Payam Vali
- Department of Pediatrics, UC Davis, Sacramento, CA
| | | |
Collapse
|
25
|
Vali P, Gugino S, Koenigsknecht C, Helman J, Chandrasekharan P, Rawat M, Lakshminrusimha S, Nair J. The Perinatal Asphyxiated Lamb Model: A Model for Newborn Resuscitation. J Vis Exp 2018. [PMID: 30175999 DOI: 10.3791/57553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Birth asphyxia accounts for nearly one million deaths worldwide each year, and is one of the primary causes of early neonatal morbidity and mortality. Many aspects of the current neonatal resuscitation guidelines remain controversial given the difficulties in conducting randomized clinical trials owing to the infrequent and often unpredictable need for extensive resuscitation. Most studies on neonatal resuscitation stem from manikin models that fail to truly reflect physiologic changes or piglet models that have cleared their lung fluid and that have completed the transition from fetal to neonatal circulation. The present protocol provides a detailed step-by-step description on how to create a perinatal asphyxiated fetal lamb model. The proposed model has a transitioning circulation and fluid-filled lungs, which mimics human newborns following delivery, and is, therefore, an excellent animal model to study newborn physiology. An important limitation to lamb experiments is the higher associated cost.
Collapse
Affiliation(s)
- Payam Vali
- Department of Pediatrics, University of California Davis
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reduced oxygen concentration for the resuscitation of infants with congenital diaphragmatic hernia. J Perinatol 2018; 38:834-843. [PMID: 29887609 DOI: 10.1038/s41372-017-0031-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To evaluate whether infants with congenital diaphragmatic hernia (CDH) can be safely resuscitated with a reduced starting fraction of inspired oxygen (FiO2) of 0.5. STUDY DESIGN A retrospective cohort study comparing 68 patients resuscitated with starting FiO2 0.5 to 45 historical controls resuscitated with starting FiO2 1.0. RESULTS Reduced starting FiO2 had no adverse effect upon survival, duration of intubation, need for ECMO, duration of ECMO, or time to surgery. Furthermore, it produced no increase in complications, adverse neurological events, or neurodevelopmental delay. The need to subsequently increase FiO2 to 1.0 was associated with female sex, lower gestational age, liver up, lower lung volume-head circumference ratio, decreased survival, a higher incidence of ECMO, longer time to surgery, periventricular leukomalacia, and lower neurodevelopmental motor scores. CONCLUSION Starting FiO2 0.5 may be safe for the resuscitation of CDH infants. The need to increase FiO2 to 1.0 during resuscitation is associated with worse outcomes.
Collapse
|
27
|
Ruangkit C, Soonsawad S, Tutchamnong T, Swatesutipun B. Decreased oxygen exposure during transportation of newborns. Arch Dis Child 2018; 103:269-271. [PMID: 29175819 DOI: 10.1136/archdischild-2017-314179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/27/2017] [Accepted: 11/07/2017] [Indexed: 11/03/2022]
Abstract
Oxygen is the most common treatment for newborns in need of respiratory support. However, oxygen can cause tissue injury through reactive oxygen species formation, especially in premature infants with reduced antioxidant defences, and may result in short-term and long-term toxic effects in multiple organ systems. Although most hospitals have the capability to tightly control oxygen delivery to hospitalised neonates, in many circumstances, the need is overlooked during infant transport. Lack of awareness of harm or appropriate medical equipment invariably results in excessive oxygen exposure. We developed a quality improvement programme to decrease oxygen exposure to newborns during their transportation, thus improving patient safety and quality of care.
Collapse
Affiliation(s)
- Chayatat Ruangkit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Sasivimon Soonsawad
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakan, Thailand
| | - Thavatchai Tutchamnong
- Ventilator and Respiratory Care Equipment Unit, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Buranee Swatesutipun
- Department of Pediatrics, Division of Neonatology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Lai MY, Chu SM, Lakshminrusimha S, Lin HC. Beyond the inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Pediatr Neonatol 2018; 59:15-23. [PMID: 28923474 DOI: 10.1016/j.pedneo.2016.09.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 08/16/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022] Open
Abstract
Persistent pulmonary hypertension (PPHN) is a consequence of failed pulmonary vascular transition at birth and leads to pulmonary hypertension with shunting of deoxygenated blood across the ductus arteriosus (DA) and foramen ovale (FO) resulting in severe hypoxemia, and it may eventually lead to life-threatening circulatory failure. PPHN is a serious event affecting both term and preterm infants in the neonatal intensive care unit. It is often associated with diseases such as congenital diaphragmatic hernia, meconium aspiration, sepsis, congenital pneumonia, birth asphyxia and respiratory distress syndrome. The diagnosis of PPHN should include echocardiographic evidence of increased pulmonary pressure, with demonstrable right-to-left shunt across the DA or FO, and the absence of cyanotic heart diseases. The mainstay therapy of PPHN includes treatment of underlying causes, maintenance of adequate systemic blood pressure, optimized ventilator support for lung recruitment and alveolar ventilation, and pharmacologic measures to increase pulmonary vasodilation and decrease pulmonary vascular resistance. Inhaled nitric oxide has been proved to treat PPHN successfully with improved oxygenation in 60-70% of patients and to significantly reduce the need for extracorporeal membrane oxygenation (ECMO). About 14%-46% of the survivors develop long-term impairments such as hearing deficits, chronic lung disease, cerebral palsy and other neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Mei-Yin Lai
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shih-Ming Chu
- Division of Neonatology, Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, Women and Children's Hospital of Buffalo, NY, USA
| | - Hung-Chih Lin
- China Medical University Children Hospital, Taiwan; School of Chinese Medicine, China Medical University, Taiwan; Asia University Hospital, Asia University, Taichung, Taiwan.
| |
Collapse
|
29
|
Kanaan U, Srivatsa B, Huckaby J, Kelleman M. Association of unit-wide oxygen saturation target on incidence of pulmonary hypertension in very low birthweight premature infants. J Perinatol 2018; 38:148-153. [PMID: 29048404 DOI: 10.1038/jp.2017.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Assess the effect of increasing pulse oximetry targets on incidence of pulmonary hypertension in very low birthweight premature infants. STUDY DESIGN Retrospective cohort study comparing pulmonary hypertension incidence among three cohorts of premature infants exposed to varying oxygen saturation targets (Cohort 1: n=459, 1 May 2009 to 30 April 2011, 85-94%; Cohort 2: n=474, 1 May 2011 to 31 May 2013, 88-94%; Cohort 3: n=387, 1 June 2013 to 31 May 2015, 90-95%). Subjects had birth weight <1500 g and gestational age 23-32 weeks. Chi-square, Kruskall-Wallis and Anderson-Darling tests were used, as well as multivariable logistic regression. RESULTS Incidence of pulmonary hypertension declined with higher oxygen saturation targets (19.0% Cohort 1, 7.9% Cohort 2, 9.6% Cohort 3, P<0.001). Other parameters were largely not different between cohorts though rates of chorioamnionitis and prenatal steroids increased and oxygen use, inhaled nitric oxide use, necrotizing enterocolitis and patent ductus arteriosus ligation decreased over time. CONCLUSION Higher oxygen saturation targets for very low-birthweight premature infants were associated with reduced rates of pulmonary hypertension in this retrospective cohort study.
Collapse
Affiliation(s)
- U Kanaan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Children's Healthcare of Atlanta, Atlanta, GA, USA.,Northside Hospital, Atlanta, GA, USA
| | - B Srivatsa
- Northside Hospital, Atlanta, GA, USA.,Mednax, Sunrise, FL, USA
| | - J Huckaby
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - M Kelleman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Ghanian Z, Konduri GG, Audi SH, Camara AKS, Ranji M. Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2018; 11:1750018. [PMID: 30123329 PMCID: PMC6097638 DOI: 10.1142/s1793545817500183] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reactive oxygen species (ROS) play a vital role in cell signaling and redox regulation, but when present in excess, lead to numerous pathologies. Detailed quantitative characterization of mitochondrial superoxide anion ( O2•- ) production in fetal pulmonary artery endothelia cells (PAECs) has never been reported. The aim of this study is to assess mitochondrial O2•- production in cultured PAECs over time using a novel quantitative optical approach. The rate, the sources, and the dynamics of O2•- production were assessed using targeted metabolic modulators of the mitochondrial electron transport chain (ETC) complexes, specifically an uncoupler and inhibitors of the various ETC complexes, and inhibitors of extra-mitochondrial sources of O2•- . After stabilization, the cells were loaded with nanomolar mitochondrial-targeted hydroethidine (Mito-HE, MitoSOX) online during the experiment without washout of the residual dye. Time-lapse fluorescence microscopy was used to monitor the dynamic changes in O2•- fluorescence intensity over time in PAECs. The transient behaviors of the fluorescence time course showed exponential increases in the rate of O2•- production in the presence of the ETC uncoupler or inhibitors. The most dramatic and the fastest increase in O2•- production was observed when the cells were treated with the uncoupling agent, PCP. We also showed that only the complex IV inhibitor, KCN, attenuated the marked surge in O2•- production induced by PCP. The results showed that mitochondrial respiratory complexes I, III and IV are sources of O2•- production in PAECs, and a new observation that ROS production during uncoupling of mitochondrial respiration is mediated in part via complex IV. This novel method can be applied in other studies that examine ROS production under stress condition and during ROS-mediated injuries in vitro.
Collapse
Affiliation(s)
- Zahra Ghanian
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Girija Ganesh Konduri
- Department of Pediatrics, Division of Neonatology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Said Halim Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin, USA
| | - Amadou K. S. Camara
- Department of Anesthesiology and Anesthesia Research, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Mahsa Ranji
- Department of Electrical Engineering, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
31
|
The Fetus Can Teach Us: Oxygen and the Pulmonary Vasculature. CHILDREN-BASEL 2017; 4:children4080067. [PMID: 28771211 PMCID: PMC5575589 DOI: 10.3390/children4080067] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/22/2017] [Accepted: 07/31/2017] [Indexed: 11/17/2022]
Abstract
Neonates suffering from pulmonary hypertension of the newborn (PPHN) continue to represent an important proportion of patients requiring intensive neonatal care, and have an increased risk of morbidity and mortality. The human fetus has evolved to maintain a high pulmonary vascular resistance (PVR) in utero to allow the majority of the fetal circulation to bypass the lungs, which do not participate in gas exchange, towards the low resistance placenta. At birth, oxygen plays a major role in decreasing PVR to enhance pulmonary blood flow and establish the lungs as the organ of gas exchange. The failure of PVR to fall following birth results in PPHN, and oxygen remains the mainstay therapeutic intervention in the management of PPHN. Knowledge gaps on what constitutes the optimal oxygenation target leads to a wide variation in practices, and often leads to excessive oxygen use. Owing to the risk of oxygen toxicity, avoiding hyperoxemia is as important as avoiding hypoxemia in the management of PPHN. Current evidence supports maintaining arterial oxygen tension in the range of 50–80 mm Hg, and oxygen saturation between 90–97% in term infants with hypoxemic respiratory failure. Clinical studies evaluating the optimal oxygenation in the treatment of PPHN will be enthusiastically awaited.
Collapse
|
32
|
Mathew B, Lakshminrusimha S. Persistent Pulmonary Hypertension in the Newborn. CHILDREN-BASEL 2017; 4:children4080063. [PMID: 28788074 PMCID: PMC5575585 DOI: 10.3390/children4080063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/18/2017] [Accepted: 07/25/2017] [Indexed: 11/16/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a syndrome of failed circulatory adaptation at birth due to delay or impairment in the normal fall in pulmonary vascular resistance (PVR) that occurs following birth. The fetus is in a state of physiological pulmonary hypertension. In utero, the fetus receives oxygenated blood from the placenta through the umbilical vein. At birth, following initiation of respiration, there is a sudden precipitous fall in the PVR and an increase of systemic vascular resistance (SVR) due to the removal of the placenta from circulation. There is dramatic increase in pulmonary blood flow with a decrease in, and later reversal of shunts at the foramen ovale and ductus arteriosus. The failure of this normal physiological pulmonary transition leads to the syndrome of PPHN. PPHN presents with varying degrees of hypoxemic respiratory failure. Survival of infants with PPHN has significantly improved with the use of gentle ventilation, surfactant and inhaled nitric oxide (iNO). PPHN is associated with significant mortality and morbidity among survivors. Newer agents that target different enzymatic pathways in the vascular smooth muscle are in different stages of development and testing. Further research using these agents is likely to further reduce morbidity and mortality associated with PPHN.
Collapse
Affiliation(s)
- Bobby Mathew
- Department of Pediatrics, University at Buffalo, Buffalo, NY 14222, USA.
| | | |
Collapse
|
33
|
Morini F, Capolupo I, van Weteringen W, Reiss I. Ventilation modalities in infants with congenital diaphragmatic hernia. Semin Pediatr Surg 2017. [PMID: 28641754 DOI: 10.1053/j.sempedsurg.2017.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neonates with congenital diaphragmatic hernia are among the more complex patients to support with mechanical ventilation. They have particular features that add to the difficulties already present in the neonatal patient. A ventilation strategy tailored to the patient's underlying physiology rather than mode of ventilation is a crucial issue for clinicians treating these delicate patients.
Collapse
Affiliation(s)
- Francesco Morini
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Irma Capolupo
- Department of Medical and Surgical Neonatology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Willem van Weteringen
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irwin Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
34
|
Luecke C, McPherson C. Treatment of Persistent Pulmonary Hypertension of the Newborn: Use of Pulmonary Vasodilators in Term Neonates. Neonatal Netw 2017; 36:160-168. [PMID: 28494828 DOI: 10.1891/0730-0832.36.3.160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) represents a challenging condition associated with significant morbidity. A successful transition from intrauterine to extrauterine life is contingent on adequate pulmonary vasodilation. Several pathophysiologies contribute to the failure of this cascade and may result in life-threatening hypoxia and acidosis in the newborn. Management includes optimal respiratory support, adequate sedation and analgesia, and support of vascular tone and cardiac function. Pulmonary vasodilation has the potential to overcome the cycle of hypoxia and acidosis, improving outcome in these infants. Oxygen and inhaled nitric oxide represent the foundation of therapy. Tertiary pulmonary vasodilators represent a greater challenge, selecting between therapies that include prostanoids, sildenafil, and milrinone. Variable levels of evidence exist for each agent. Thorough review of available data informing efficacy and adverse effects contributes to the development of an informed approach to neonates with refractory PPHN.
Collapse
|
35
|
Hanouni M, Bernal G, McBride S, Narvaez VRF, Ibe BO. Hypoxia and hyperoxia potentiate PAF receptor-mediated effects in newborn ovine pulmonary arterial smooth muscle cells: significance in oxygen therapy of PPHN. Physiol Rep 2016; 4:4/12/e12840. [PMID: 27354543 PMCID: PMC4923239 DOI: 10.14814/phy2.12840] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 05/30/2016] [Indexed: 11/24/2022] Open
Abstract
Platelet-activating factor (PAF) acting via its receptor (PAFR) is implicated in the pathogenesis of persistent pulmonary hypertension of the newborn (PPHN). Effects of long-term oxygen therapy on newborn lung are not well understood; therefore, we studied the effect of oxygen tension on ovine newborn pulmonary artery smooth muscle cells (NBPASMC). Our global hypothesis is that PPHN results from failure of newborn lamb pulmonary system to downregulate PAFR activity or to upregulate vasodilatory cyclic nucleotides (Cnucs) activity. NBPASMC from newborns 6-12 days old were studied in vitro at three different oxygen tensions (pO2, [Torr]: hypoxia, <40; normoxia, 80-100; and hyperoxia, >100 Torr often clinically imposed upon newborns with PPHN) PAFR- and Cnucs mediated effects were determined. PAFR and PKA Cα mRNA expression as well as prostacyclin, thromboxane, cAMP production, and DNA synthesis was studied to assess PAFR-mediated hypertrophy and/or hyperplasia. Hypoxia and hyperoxia increased specific PAFR binding. PAF treatment during hyperoxia increased PAFR gene, but decreased PKA-Cα gene expression. Hypoxia and hyperoxia increased NBPASMC proliferation via PAFR signaling. Baseline prostacyclin level was ninefold greater than in fetal PASMC, whereas baseline thromboxane was sevenfold less suggesting greater postnatal cyclooxygenase activity in NBPASMC PAF decreased, while forskolin and 8-Br-cAMP increased cAMP production. Decrease of PAFR effects by Cnucs indicates that normal newborn PA physiology favors vasodilator pathways to minimize PAF-induced hypertrophy or hyperplasia. We speculate that failure of newborn lung to anchor downregulation of vasoconstrictors with upregulation of vasodilators leads to PPHN.
Collapse
Affiliation(s)
- Mona Hanouni
- Division of Neonatology, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Gilberto Bernal
- Division of Neonatology, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Shaemion McBride
- Division of Neonatology, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Vincent Reginald F Narvaez
- Division of Neonatology, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| | - Basil O Ibe
- Division of Neonatology, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California
| |
Collapse
|
36
|
Considerations in the management of hypoxemic respiratory failure and persistent pulmonary hypertension in term and late preterm neonates. J Perinatol 2016; 36 Suppl 2:S12-9. [PMID: 27225960 DOI: 10.1038/jp.2016.44] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 01/12/2023]
Abstract
Recent advances in our understanding of neonatal pulmonary circulation and the underlying pathophysiology of hypoxemic respiratory failure (HRF)/persistent pulmonary hypertension of the newborn (PPHN) have resulted in more effective management strategies. Results from animal studies demonstrate that low alveolar oxygen tension (PAO2) causes hypoxic pulmonary vasoconstriction, whereas an increase in oxygen tension to normoxic levels (preductal arterial partial pressure of oxygen (PaO2) between 60 and 80 mm Hg and/or preductal peripheral capillary oxygen saturation between 90% and 97%) results in effective pulmonary vasodilation. Hyperoxia (preductal PaO2 >80 mm Hg) does not cause further pulmonary vasodilation, and oxygen toxicity may occur when high concentrations of inspired oxygen are used. It is therefore important to avoid both hypoxemia and hyperoxemia in the management of PPHN. In addition to oxygen supplementation, therapeutic strategies used to manage HRF/PPHN in term and late preterm neonates may include lung recruitment with optimal mean airway pressure and surfactant, inhaled and intravenous vasodilators and 'inodilators'. Clinical evidence suggests that administration of surfactant or inhaled nitric oxide (iNO) therapy at a lower acuity of illness can decrease the risk of extracorporeal membrane oxygenation/death, progression of HRF and duration of hospital stay. Milrinone may be beneficial as an inodilator and may have specific benefits following prolonged exposure to iNO plus oxygen owing to inhibition of phosphodiesterase (PDE)-3A. Additionally, sildenafil, and, in selected cases, hydrocortisone may be appropriate options after hyperoxia and oxidative stress owing to their effects on PDE-5 activity and expression. Continued investigation into these and other interventions is needed to optimize treatment and improve outcomes.
Collapse
|
37
|
Lakshminrusimha S, Saugstad OD. The fetal circulation, pathophysiology of hypoxemic respiratory failure and pulmonary hypertension in neonates, and the role of oxygen therapy. J Perinatol 2016; 36 Suppl 2:S3-S11. [PMID: 27225963 DOI: 10.1038/jp.2016.43] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 12/31/2022]
Abstract
Neonatal hypoxemic respiratory failure (HRF), a deficiency of oxygenation associated with insufficient ventilation, can occur due to a variety of etiologies. HRF can result when pulmonary vascular resistance (PVR) fails to decrease at birth, leading to persistent pulmonary hypertension of newborn (PPHN), or as a result of various lung disorders including congenital abnormalities such as diaphragmatic hernia, and disorders of transition such as respiratory distress syndrome, transient tachypnea of newborn and perinatal asphyxia. PVR changes throughout fetal life, evident by the dynamic changes in pulmonary blood flow at different gestational ages. Pulmonary vascular transition at birth requires an interplay between multiple vasoactive mediators such as nitric oxide, which can be potentially inactivated by superoxide anions. Superoxide anions have a key role in the pathophysiology of HRF. Oxygen (O2) therapy, used in newborns long before our knowledge of the complex nature of HRF and PPHN, has continued to evolve. Over time has come the discovery that too much O2 can be toxic. Recommendations on the optimal inspired O2 levels to initiate resuscitation in term newborns have ranged from 100% (pre 1998) to the currently recommended use of room air (21%). Questions remain about the most effective levels, particularly in preterm and low birth weight newborns. Attaining the appropriate balance between hypoxemia and hyperoxemia, and targeting treatments to the pathophysiology of HRF in each individual newborn are critical factors in the development of improved therapies to optimize outcomes.
Collapse
Affiliation(s)
| | - O D Saugstad
- Department of Pediatric Research, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
38
|
Rawat M, Chandrasekharan PK, Swartz DD, Mathew B, Nair J, Gugino SF, Koenigsknecht C, Vali P, Lakshminrusimha S. Neonatal resuscitation adhering to oxygen saturation guidelines in asphyxiated lambs with meconium aspiration. Pediatr Res 2016; 79:583-8. [PMID: 26672734 PMCID: PMC4837048 DOI: 10.1038/pr.2015.259] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/21/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND The Neonatal Resuscitation Program (NRP) recommends upper and lower limits of preductal saturations (SpO2) extrapolated from studies in infants resuscitated in room air. These limits have not been validated in asphyxia and lung disease. METHODS Seven control term lambs delivered by cesarean section were ventilated with 21% O2. Thirty lambs with asphyxia with meconium aspiration were randomly assigned to resuscitation with 21% O2 (n = 6), 100% O2 (n = 6), or initiation with 21% O2 followed by variable FIO2 to maintain NRP target SpO2 ranges (n = 18). Hemodynamic and ventilation parameters were recorded for 15 min. RESULTS Control lambs maintained preductal SpO2 near the lower limit of NRP target range. Asphyxiated lambs had low SpO2 (38 ± 2%), low arterial pH (6.99 ± 0.01), and high PaCO2 (96 ± 7 mm Hg) at birth. Resuscitation with 21% O2 resulted in SpO2 values below the target range with low pulmonary blood flow (Qp) compared to variable FIO2 group. The increase in PaO2 and Qp with variable FIO2 resuscitation was similar to control lambs. CONCLUSION Maintaining SpO2 as recommended by NRP by actively adjusting inspired O2 leads to effective oxygenation and higher Qp in asphyxiated lambs with lung disease. Our findings support the current NRP SpO2 guidelines for O2 supplementation during resuscitation of an asphyxiated neonate.
Collapse
Affiliation(s)
- Munmun Rawat
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | | | - Daniel D. Swartz
- Department of Pediatrics, University at Buffalo, Buffalo, New York,Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | - Bobby Mathew
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Jayasree Nair
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Sylvia F. Gugino
- Department of Pediatrics, University at Buffalo, Buffalo, New York,Department of Physiology and Biophysics, University at Buffalo, Buffalo, New York
| | | | - Payam Vali
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | | |
Collapse
|
39
|
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a surprisingly common event in the neonatal intensive care unit, and affects both term and preterm infants. Recent studies have begun to elucidate the maternal, fetal and genetic risk factors that trigger PPHN. There have been numerous therapeutic advances over the last decade. It is now appreciated that oxygen supplementation, particularly for the goal of pulmonary vasodilation, needs to be approached as a therapy that has risks and benefits. Administration of surfactant or inhaled nitric oxide (iNO) therapy at a lower acuity of illness can decrease the risk of extracorporeal membrane oxygenation/death, progression of disease and duration of hospital stay. Milrinone may have specific benefits as an 'inodilator', as prolonged exposure to iNO plus oxygen may activate phosphodiesterase (PDE) 3A. Additionally, sildenafil and hydrocortisone may benefit infants exposed to hyperoxia and oxidative stress. Continued investigation is likely to reveal new therapies such as citrulline and cinaciguat that will enhance NO synthase and soluble guanylate cyclase function. Continued laboratory and clinical investigation will be needed to optimize treatment and improve outcomes.
Collapse
Affiliation(s)
- Robin H Steinhorn
- Children's National Health System, George Washington University, Washington, D.C., USA
| |
Collapse
|
40
|
Aversa S, Marseglia L, Manti S, D'Angelo G, Cuppari C, David A, Chirico G, Gitto E. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: an update. Paediatr Respir Rev 2016; 17:71-9. [PMID: 26572937 DOI: 10.1016/j.prrv.2015.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 10/22/2022]
Abstract
Reactive oxygen and nitrogen species are produced by several inflammatory and structural cells of the airways. The lungs of preterm newborns are susceptible to oxidative injury induced by both reactive oxygen and nitrogen species. Increased oxidative stress and imbalance in antioxidant enzymes may play a role in the pathogenesis of inflammatory pulmonary diseases. Preterm infants are frequently exposed to high oxygen concentrations, infections or inflammation; they have reduced antioxidant defense and high free iron levels which enhance toxic radical generation. Multiple ventilation strategies have been studied to reduce injury and improve outcomes in preterm infants. Using lung protective strategies, there is the need to reach a compromise between satisfaction of gas exchange and potential toxicities related to over-distension, derecruitment of lung units and high oxygen concentrations. In this review, the authors summarize scientific evidence concerning oxidative stress as it relates to resuscitation in the delivery room and to the strategies of ventilation.
Collapse
Affiliation(s)
- Salvatore Aversa
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy, PhD course in Intensive Care, University of Messina, Messina, Italy
| | - Lucia Marseglia
- Department of Pediatrics, University of Messina, Messina, Italy.
| | - Sara Manti
- Department of Pediatrics, University of Messina, Messina, Italy
| | | | | | - Antonio David
- Department of Neurosciences, Psychiatric and Anesthesiological Sciences, University of Messina, Messina, Italy
| | - Gaetano Chirico
- Neonatal Intensive Care Unit, Children Hospital, Spedali Civili of Brescia, Brescia, Italy
| | - Eloisa Gitto
- Department of Pediatrics, University of Messina, Messina, Italy
| |
Collapse
|
41
|
Jain A, McNamara PJ. Persistent pulmonary hypertension of the newborn: Advances in diagnosis and treatment. Semin Fetal Neonatal Med 2015; 20:262-71. [PMID: 25843770 DOI: 10.1016/j.siny.2015.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a frequent cause for admission to the neonatal intensive care unit and is associated with mortality and variable morbidities. It is primarily a state of oxygenation failure representing a failure of the normal postnatal decline in pulmonary vascular resistance that may be associated with right ventricular dysfunction. Enhanced knowledge of the pathophysiologic contributors to this syndrome helps clinicians understand its phenotypic expression and facilitates more focused intensive care decision-making. The approach to treatment should be based on alleviation of the elevation in pulmonary vascular resistance and should include optimization of lung recruitment and judicious use of pulmonary vasodilators. When response to inhaled nitric oxide is suboptimal, the physiologic contributors to impaired oxygenation need further investigation. Targeted neonatal echocardiography provides novel physiologic insights; in particular, it may help assess the adequacy of right ventricular performance, the relative contribution of the fetal shunts and the magnitude of the overall impairment to cardiac output. This information may facilitate therapeutic next steps and whether adjunctive vasodilators or drugs to augment ventricular function are preferable. This article provides a comprehensive overview of the pathological contributors to PPHN, the physiologic constituents of its phenotypic expression, standard approach to therapeutic intervention, and the role of bedside echocardiography in enhancing the decision-making process.
Collapse
Affiliation(s)
- Amish Jain
- Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Patrick J McNamara
- Division of Neonatology, Hospital for Sick Children, Toronto, Ontario, Canada; Departments of Pediatrics and Physiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
42
|
Sharma V, Berkelhamer S, Lakshminrusimha S. Persistent pulmonary hypertension of the newborn. Matern Health Neonatol Perinatol 2015; 1:14. [PMID: 27057331 PMCID: PMC4823682 DOI: 10.1186/s40748-015-0015-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/27/2015] [Indexed: 01/18/2023] Open
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is characterized by elevated pulmonary vascular resistance resulting in right-to-left shunting of blood and hypoxemia. PPHN is often secondary to parenchymal lung disease (such as meconium aspiration syndrome, pneumonia or respiratory distress syndrome) or lung hypoplasia (with congenital diaphragmatic hernia or oligohydramnios) but can also be idiopathic. The diagnosis of PPHN is based on clinical evidence of labile hypoxemia often associated with differential cyanosis. The diagnosis is confirmed by the echocardiographic demonstration of - (a) right-to-left or bidirectional shunt at the ductus or foramen ovale and/or, (b) flattening or leftward deviation of the interventricular septum and/or, (c) tricuspid regurgitation, and finally (d) absence of structural heart disease. Management strategies include optimal oxygenation, avoiding respiratory and metabolic acidosis, blood pressure stabilization, sedation and pulmonary vasodilator therapy. Failure of these measures would lead to consideration of extracorporeal membrane oxygenation (ECMO); however decreased need for this rescue therapy has been documented with advances in medical management. While trends also note improved survival, long-term neurodevelopmental disabilities such as deafness and learning disabilities remain a concern in many infants with severe PPHN. Funded by: 1R01HD072929-0 (SL).
Collapse
Affiliation(s)
- Vinay Sharma
- Department of Pediatrics (Neonatology), Hennepin County Medical Center, 701 Park Avenue, Shapiro Building, Minneapolis, MN 55415 USA
| | - Sara Berkelhamer
- Department of Pediatrics, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, New York 14222 USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, New York 14222 USA
| |
Collapse
|
43
|
Abstract
The management of pulmonary hypertension is multi-faceted, with therapies directed at supporting cardiovascular and pulmonary function, treating the underlying cause (if feasible), and preventing irreversible remodeling of the pulmonary vasculature. Recently, manipulation of signaling pathways and mediators contained within the pulmonary vascular endothelial cell has become a new target. This article will review the pathophysiology of pulmonary hypertension and the broad principles involved in its management, with specific emphasis on pharmacological therapies directed at the pulmonary vascular endothelium.
Collapse
Affiliation(s)
- Kartikey A Pandya
- Division of Pediatric General and Thoracic Surgery, The Montreal Children׳s Hospital, Room C811, 2300 Tupper St, Montreal, Quebec H3H 1P3, Canada
| | - Pramod S Puligandla
- Division of Pediatric General and Thoracic Surgery, The Montreal Children׳s Hospital, Room C811, 2300 Tupper St, Montreal, Quebec H3H 1P3, Canada; Division of Pediatric Critical Care Medicine, Montreal Children's Hospital, Room C811, 2300 Tupper St, Montreal, Quebec H3H 1P3, Canada.
| |
Collapse
|
44
|
Abstract
Birth asphyxia accounts for about 23% of the approximately 4 million neonatal deaths each year worldwide (Black et al., Lancet, 2010, 375(9730):1969-87). The majority of newborn infants require little assistance to undergo physiologic transition at birth and adapt to extrauterine life. Approximately 10% of infants require some assistance to establish regular respirations at birth. Less than 1% need extensive resuscitative measures such as chest compressions and approximately 0.06% require epinephrine (Wyllie et al. Resuscitation, 2010, 81 Suppl 1:e260–e287). Transition at birth is mediated by significant changes in circulatory and respiratory physiology. Ongoing research in the field of neonatal resuscitation has expanded our understanding of neonatal physiology enabling the implementation of improved recommendations and guidelines on how to best approach newborns in need for intervention at birth. Many of these recommendations are extrapolated from animal models and clinical trials in adults. There are many outstanding controversial issues in neonatal resuscitation that need to be addressed. This article provides a comprehensive and critical literature review on the most relevant and current research pertaining to evolving new strategies in neonatal resuscitation. The key elements to a successful neonatal resuscitation include ventilation of the lungs while minimizing injury, the judicious use of oxygen to improve pulmonary blood flow, circulatory support with chest compressions, and vasopressors and volume that would hasten return of spontaneous circulation. Several exciting new avenues in neonatal resuscitation such as delayed cord clamping, sustained inflation breaths, and alternate vasopressor agents are briefly discussed. Finally, efforts to improve resuscitative efforts in developing countries through education of basic steps of neonatal resuscitation are likely to decrease birth asphyxia and neonatal mortality.
Collapse
Affiliation(s)
- Payam Vali
- Department of Pediatrics (Neonatology), University at Buffalo, Buffalo, NY, USA ; Division of Neonatology, Department of Pediatrics, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, NY 14222, USA
| | - Bobby Mathew
- Department of Pediatrics (Neonatology), University at Buffalo, Buffalo, NY, USA ; Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, NY 14222, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics (Neonatology), University at Buffalo, Buffalo, NY, USA ; Division of Neonatology, Department of Pediatrics, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, NY 14222, USA
| |
Collapse
|
45
|
Rawat M, Chandrasekharan PK, Williams A, Gugino S, Koenigsknecht C, Swartz D, Ma CX, Mathew B, Nair J, Lakshminrusimha S. Oxygen saturation index and severity of hypoxic respiratory failure. Neonatology 2015; 107:161-6. [PMID: 25592054 PMCID: PMC4405613 DOI: 10.1159/000369774] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/10/2014] [Indexed: 11/19/2022]
Abstract
BACKGROUND The oxygenation index (OI = mean airway pressure, MAP × FiO2 × 100 : PaO2) is used to assess the severity of hypoxic respiratory failure (HRF) and persistent pulmonary hypertension of the newborn (PPHN). An indwelling arterial line or arterial punctures are necessary to obtain PaO2 for the calculation of OI. Oxygenation can be continuously and noninvasively assessed using pulse oximetry. The use of the oxygen saturation index (OSI = MAP × FiO2 × 100 : SpO2) can be an alternate method of assessing the severity of HRF. OBJECTIVE To evaluate the correlation between OSI and OI in the following: (1) neonates with HRF and (2) a lamb model of meconium aspiration syndrome. METHODS Human neonates: a retrospective chart review of 74 ventilated late preterm/term neonates with indwelling arterial access and SpO2 values in the first 24 h of life was conducted. OSI and OI were calculated and correlated. Lamb model: arterial blood gases were drawn and preductal SpO2 was documented in 40 term newborn lambs with asphyxia and meconium aspiration. OI and OSI were calculated and correlated with pulmonary vascular resistance (PVR). RESULTS Mean values of OSI and OI showed a correlation coefficient of 0.952 in neonates (mean value of 308 observations in 74 neonates) and 0.948 in lambs (mean value of 743 observations in 40 lambs). In lambs, with increasing PVR, there was a decrease in OI and OSI. CONCLUSION OSI correlates significantly with OI in infants with HRF. This noninvasive measure may be used to assess the severity of HRF and PPHN in neonates without arterial access.
Collapse
Affiliation(s)
- Munmun Rawat
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Praveen K Chandrasekharan
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Ashley Williams
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Sylvia Gugino
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Carmon Koenigsknecht
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Daniel Swartz
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Chang Xing Ma
- Department of Biostatistics, University at Buffalo, Buffalo, NY, United States
| | - Bobby Mathew
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Jayasree Nair
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| | - Satyan Lakshminrusimha
- Division of Neonatology, Department of Pediatrics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
46
|
Dani C, Poggi C. The role of genetic polymorphisms in antioxidant enzymes and potential antioxidant therapies in neonatal lung disease. Antioxid Redox Signal 2014; 21:1863-80. [PMID: 24382101 PMCID: PMC4203110 DOI: 10.1089/ars.2013.5811] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Oxidative stress is involved in the development of newborn lung diseases, such as bronchopulmonary dysplasia and persistent pulmonary hypertension of the newborn. The activity of antioxidant enzymes (AOEs), which is impaired as a result of prematurity and oxidative injury, may be further affected by specific genetic polymorphisms or an unfavorable combination of more of them. RECENT ADVANCES Genetic polymorphisms of superoxide dismutase and catalase were recently demonstrated to be protective or risk factors for the main complications of prematurity. A lot of research focused on the potential of different antioxidant strategies in the prevention and treatment of lung diseases of the newborn, providing promising results in experimental models. CRITICAL ISSUES The effect of different genetic polymorphisms on protein synthesis and activity has been poorly detailed in the newborn, hindering to derive conclusive results from the observed associations with adverse outcomes. Therapeutic strategies that aimed at enhancing the activity of AOEs were poorly studied in clinical settings and partially failed to produce clinical benefits. FUTURE DIRECTIONS The clarification of the effects of genetic polymorphisms on the proteomics of the newborn is mandatory, as well as the assessment of a larger number of polymorphisms with a possible correlation with adverse outcome. Moreover, antioxidant treatments should be carefully translated to clinical settings, after further details on optimal doses, administration techniques, and adverse effects are provided. Finally, the study of genetic polymorphisms could help select a specific high-risk population, who may particularly benefit from targeted antioxidant strategies.
Collapse
Affiliation(s)
- Carlo Dani
- Section of Neonatology, Department of Neurosciences, Psychology, Drug Research and Child Health, Careggi University Hospital , Florence, Italy
| | | |
Collapse
|
47
|
Wedgwood S, Steinhorn RH. Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 2014; 21:1926-42. [PMID: 24350610 PMCID: PMC4202910 DOI: 10.1089/ars.2013.5785] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
SIGNIFICANCE Abnormal lung development in the perinatal period can result in severe neonatal complications, including persistent pulmonary hypertension (PH) of the newborn and bronchopulmonary dysplasia. Reactive oxygen species (ROS) play a substantive role in the development of PH associated with these diseases. ROS impair the normal pulmonary artery (PA) relaxation in response to vasodilators, and ROS are also implicated in pulmonary arterial remodeling, both of which can increase the severity of PH. RECENT ADVANCES PA ROS levels are elevated when endogenous ROS-generating enzymes are activated and/or when endogenous ROS scavengers are inactivated. Animal models have provided valuable insights into ROS generators and scavengers that are dysregulated in different forms of neonatal PH, thus identifying potential therapeutic targets. CRITICAL ISSUES General antioxidant therapy has proved ineffective in reversing PH, suggesting that it is necessary to target specific signaling pathways for successful therapy. FUTURE DIRECTIONS Development of novel selective pharmacologic inhibitors along with nonantioxidant therapies may improve the treatment outcomes of patients with PH, while further investigation of the underlying mechanisms may enable earlier detection of the disease.
Collapse
Affiliation(s)
- Stephen Wedgwood
- Department of Pediatrics, University of California Davis Medical Center , Sacramento, California
| | | |
Collapse
|
48
|
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is a syndrome of failed circulatory adaptation at birth, seen in about 2/1000 live born infants. While it is mostly seen in term and near-term infants, it can be recognized in some premature infants with respiratory distress or bronchopulmonary dysplasia. Most commonly, PPHN is secondary to delayed or impaired relaxation of the pulmonary vasculature associated with diverse neonatal pulmonary pathologies, such as meconium aspiration syndrome, congenital diaphragmatic hernia, and respiratory distress syndrome. Gentle ventilation strategies, lung recruitment, inhaled nitric oxide, and surfactant therapy have improved outcome and reduced the need for extracorporeal membrane oxygenation (ECMO) in PPHN. Newer modalities of treatment discussed in this article include systemic and inhaled vasodilators like sildenafil, prostaglandin E1, prostacyclin, and endothelin antagonists. With prompt recognition/treatment and early referral to ECMO centers, the mortality rate for PPHN has significantly decreased. However, the risk of potential neurodevelopmental impairment warrants close follow-up after discharge for infants with PPHN.
Collapse
Affiliation(s)
- Jayasree Nair
- Center for Developmental Biology of the Lung, State University of New York, Buffalo, NY
| | - Satyan Lakshminrusimha
- Center for Developmental Biology of the Lung, State University of New York, Buffalo, NY; Division of Neonatology, Department of Pediatrics, Women and Children's Hospital of Buffalo, 219 Bryant St, Buffalo, NY 14222.
| |
Collapse
|
49
|
Antenatal betamethasone improves postnatal transition in late preterm lambs with persistent pulmonary hypertension of the newborn. Pediatr Res 2013; 73:621-9. [PMID: 23370411 PMCID: PMC3749924 DOI: 10.1038/pr.2013.20] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Persistent pulmonary hypertension of the newborn (PPHN) is associated with increased oxidative stress in pulmonary arteries (PAs). Betamethasone decreases the oxidative stress and improves antioxidant balance in PPHN. We investigated whether antenatal betamethasone improves pulmonary vasodilation and postnatal oxygenation in late preterm lambs with PPHN. METHODS PPHN was induced by constriction of fetal ductus arteriosus from 128 to 136 d gestation. Ewes were given two intramuscular doses of betamethasone or saline at 24 and 12 h before cesarean-section delivery at 136 d gestation, simulating late preterm birth. Newborn lambs were mechanically ventilated for 8 h with monitoring of blood gas and hemodynamic variables. Lungs were harvested postmortem to determine oxidative stress markers and in vitro responses of PAs. RESULTS Postnatal arterial partial pressure of oxygen and pH were higher and the oxygenation index and arterial partial pressure of carbon dioxide were lower in betamethasone-treated lambs. PA pressure was lower and systemic pressure higher in lambs treated with betamethasone. Betamethasone decreased the oxidative stress markers and increased endothelial nitric oxide synthase expression in ventilated PPHN lungs. CONCLUSION Antenatal betamethasone decreases oxidative stress and improves postnatal transition in late preterm lambs with PPHN. This study suggests a potential benefit for antenatal betamethasone in late preterm births.
Collapse
|
50
|
Abstract
As recently as the year 2000, 100% oxygen was recommended to begin resuscitation of depressed newborns in the delivery room. However, the most recent recommendations of the International Liaison Committee on Resuscitation counsel the prudent use of oxygen during resuscitation. In term and preterm infants, oxygen therapy should be guided by pulse oximetry that follows the interquartile range of preductal saturations of healthy term babies after vaginal birth at sea level. This article reviews the literature in this context, which supports the radical but judicious curtailment of the use of oxygen in resuscitation at birth.
Collapse
Affiliation(s)
- Jay P Goldsmith
- Department of Pediatrics, Tulane University, 1430 Tulane Avenue, SL37, New Orleans, LA 70112, USA.
| | | |
Collapse
|