1
|
Shuffrey LC, Rodriguez C, Rodriguez DJ, Mahallati H, Jayaswal M, Barbosa JR, Syme S, Gimenez LA, Pini N, Lucchini M, Fifer WP. Delayed maturation of P2 flash visual evoked potential (VEP) latency in newborns of gestational diabetic mothers. Early Hum Dev 2021; 163:105503. [PMID: 34741833 DOI: 10.1016/j.earlhumdev.2021.105503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 07/22/2021] [Accepted: 10/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND The prevalence of gestational diabetes mellitus (GDM) has rapidly increased, yet few prior studies have investigated parameters of early brain development in infants born to gestational diabetic mothers. The present study assessed visual evoked potentials (VEPs) in healthy infants born to gestational diabetic mothers and matched controls. METHODS After exclusions, in this prospective study we examined VEPs in 73 neonates between 37 weeks and 41 weeks gestation at birth (n = 37 infants of gestational diabetic mothers). Stroboscopic flashes were presented through closed eyelids during passive electroencephalography (EEG) recording to derive VEP waveforms during natural sleep. RESULTS There was a statistically significant moderate correlation between gestational age at birth and P2 latency of the flash VEP where P2 latency significantly decreased with increasing gestational age (Pearson's R(73) = -0.32, p < .01). There was also a significant moderate correlation between postnatal age (hours of life) and P2 latency of the flash VEP where P2 latency significantly decreased with increasing postnatal age (Pearson's R(73) = -0.23, p < .05). When controlling for gestational age at birth, postnatal age, and sex, there was a significant effect of group (GDM-exposed vs. control) on P2 latency of the flash VEP (p < .05). Infants of gestational diabetic mothers had a significantly longer P2 latency (M: 215.29 ± SD: 2.58 ms) than controls (M: 206.41 ± SD: 2.62 ms). CONCLUSION Our findings suggest P2 flash VEP latency is a potential measure of cortical maturation and marker of immature development in infants of gestational diabetic mothers.
Collapse
Affiliation(s)
- Lauren C Shuffrey
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America.
| | - Cynthia Rodriguez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Daianna J Rodriguez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Hana Mahallati
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Minna Jayaswal
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Jennifer R Barbosa
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Samantha Syme
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Lissete A Gimenez
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - Nicolò Pini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| | - Maristella Lucchini
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America
| | - William P Fifer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, United States of America; Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY 10032, United States of America; Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, United States of America
| |
Collapse
|
2
|
Daneshvarfard F, Maarefi N, Abrishami Moghaddam H, Wallois F. A survey on stimuli for visual cortical function assessment in infants. Brain Dev 2018; 40:2-15. [PMID: 28803681 DOI: 10.1016/j.braindev.2017.07.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Visual processing, as a significant and complex functionality of the human brain, changes during the life span with the most developmental changes in the infancy. Different types of visual stimuli are needed for evaluating different functionalities of the infants' visual system. Selecting appropriate visual stimuli is an important issue in evaluating visual cortical functions in infants. Properties of stimulation influence responses of visual system and must be adjusted according to the age and specific function which is going to be investigated. In this review, the most commonly used stimuli to elicit visual evoked potentials (VEPs) are evaluated and characteristics of VEPs extracted by these stimulations are studied. Furthermore, various studies investigating different functionalities such as selectivity for orientation and directional motion are presented. Valuable results regarding emerging and maturation times of different functions and normative data for clinical diagnosis are provided by these studies.
Collapse
Affiliation(s)
- Farveh Daneshvarfard
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran; Inserm UMR 1105, Faculté de Médecine, Université de Picardie Jules Verne, Amiens, France.
| | - Nasrin Maarefi
- Faculty of Computer Engineering, K.N. Toosi University of Technology, Tehran, Iran.
| | - Hamid Abrishami Moghaddam
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran; Inserm UMR 1105, Faculté de Médecine, Université de Picardie Jules Verne, Amiens, France.
| | - Fabrice Wallois
- Inserm UMR 1105, Faculté de Médecine, Université de Picardie Jules Verne, Amiens, France; Inserm UMR 1105, Centre Hospitalier Universitaire d'Amiens, Amiens, France.
| |
Collapse
|
3
|
Kaminska A, Delattre V, Laschet J, Dubois J, Labidurie M, Duval A, Manresa A, Magny JF, Hovhannisyan S, Mokhtari M, Ouss L, Boissel A, Hertz-Pannier L, Sintsov M, Minlebaev M, Khazipov R, Chiron C. Cortical Auditory-Evoked Responses in Preterm Neonates: Revisited by Spectral and Temporal Analyses. Cereb Cortex 2017; 28:3429-3444. [DOI: 10.1093/cercor/bhx206] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Indexed: 11/12/2022] Open
Affiliation(s)
- A Kaminska
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Department of Clinical Neurophysiology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - V Delattre
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - J Laschet
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - J Dubois
- INSERM U992, CEA/DRF/I2BM/Neurospin/UNICOG, Gif-sur-Yvette, France
- Paris Saclay University, Paris-Sud University, Gif-sur-Yvette, France
| | - M Labidurie
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| | - A Duval
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - A Manresa
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - J -F Magny
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - S Hovhannisyan
- Neonatal Intensive Care Unit, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - M Mokhtari
- Neonatal Intensive Care Unit, AP-HP, Bicetre Hospital, Kremlin-Bicetre, France
| | - L Ouss
- Department of Pediatric Neurology, AP-HP, Necker-Enfants Malades Hospital, Paris, France
| | - A Boissel
- Laboratory of Psychology and Neurosciences (LPN) (EA 47000), Rouen University, Rouen, France
| | - L Hertz-Pannier
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
- Neurospin, UNIACT, CEA, Gif sur Yvette, France
| | - M Sintsov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - M Minlebaev
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - R Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
- INSERM U901/ INMED, Aix-Marseille University, Marseille, France
| | - C Chiron
- INSERM U1129, Paris, France
- Paris Descartes University, Sorbonne Paris Cité, Paris, France
- CEA, 91191 Gif sur Yvette, France
| |
Collapse
|
5
|
Isler JR, Grieve PG, Czernochowski D, Stark RI, Friedman D. Cross-frequency phase coupling of brain rhythms during the orienting response. Brain Res 2008; 1232:163-72. [PMID: 18675795 DOI: 10.1016/j.brainres.2008.07.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/27/2008] [Accepted: 07/02/2008] [Indexed: 11/16/2022]
Abstract
A critical function of the brain's orienting response is to evaluate novel environmental events in order to prepare for potential behavioral action. Here, measures of synchronization (power, coherence) and nonlinear cross-frequency phase coupling (m:n phase locking measured with bicoherence and cross-bicoherence) were computed on 62-channel electroencephalographic (EEG) data during a paradigm in which unexpected, highly-deviant, novel sounds were randomly intermixed with frequent standard and infrequent target tones. Low frequency resolution analyses showed no significant changes in phase coupling for any stimulus type, though significant changes in power and synchrony did occur. High frequency resolution analyses, on the other hand, showed significant differences in phase coupling, but only for novel sounds compared to standard tones. Novel sounds elicited increased power and coherence in the delta band together with m:n phase locking (bicoherence) of delta:theta (1:3) and delta:alpha (1:4) rhythms in widespread fronto-central, right parietal, temporal, and occipital regions. Cross-bicoherence revealed that globally synchronized delta oscillations were phase coupled to theta oscillations in central regions and to alpha oscillations in right parietal and posterior regions. These results suggest that globally synchronized low frequency oscillations with phase coupling to more localized higher frequency oscillations provide a neural mechanism for the orienting response.
Collapse
Affiliation(s)
- Joseph R Isler
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, P&S 3-440, 630 W. 168th Street, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|