1
|
Steger C, Feldmann M, Borns J, Hagmann C, Latal B, Held U, Jakab A, O'Gorman Tuura R, Knirsch W. Neurometabolic changes in neonates with congenital heart defects and their relation to neurodevelopmental outcome. Pediatr Res 2022; 93:1642-1650. [PMID: 35995938 PMCID: PMC10172141 DOI: 10.1038/s41390-022-02253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Altered neurometabolite ratios in neonates undergoing cardiac surgery for congenital heart defects (CHD) may serve as a biomarker for altered brain development and neurodevelopment (ND). METHODS We analyzed single voxel 3T PRESS H1-MRS data, acquired unilaterally in the left basal ganglia and white matter of 88 CHD neonates before and/or after neonatal cardiac surgery and 30 healthy controls. Metabolite ratios to Creatine (Cr) included glutamate (Glu/Cr), myo-Inositol (mI/Cr), glutamate and glutamine (Glx/Cr), and lactate (Lac/Cr). In addition, the developmental marker N-acetylaspartate to choline (NAA/Cho) was evaluated. All children underwent ND outcome testing using the Bayley Scales of Infant and Toddler Development Third Edition (BSID-III) at 1 year of age. RESULTS White matter NAA/Cho ratios were lower in CHD neonates compared to healthy controls (group beta estimate: -0.26, std. error 0.07, 95% CI: -0.40 - 0.13, p value <0.001, FDR corrected p value = 0.010). We found no correlation between pre- or postoperative white matter NAA/Cho with ND outcome while controlling for socioeconomic status and CHD diagnosis. CONCLUSION Reduced white matter NAA/Cho in CHD neonates undergoing cardiac surgery may reflect a delay in brain maturation. Further long-term MRS studies are needed to improve our understanding of the clinical impact of altered metabolites on brain development and outcome. IMPACT NAA/Cho was reduced in the white matter, but not the gray matter of CHD neonates compared to healthy controls. No correlation to the 1-year neurodevelopmental outcome (Bayley-III) was found. While the rapid change of NAA/Cho with age might make it a sensitive marker for a delay in brain maturation, the relationship to neurodevelopmental outcome requires further investigation.
Collapse
Affiliation(s)
- Céline Steger
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland.,Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital, Zürich, Switzerland.,Children's Research Center, University Children's Hospital, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Maria Feldmann
- Children's Research Center, University Children's Hospital, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Julia Borns
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital, Zürich, Switzerland.,Children's Research Center, University Children's Hospital, Zürich, Switzerland.,Pediatric Cardiology, Inselspital Bern, Bern, Switzerland
| | - Cornelia Hagmann
- Children's Research Center, University Children's Hospital, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland.,Department of Neonatology and Pediatric Intensive Care, University Children's Hospital, Zurich, Switzerland
| | - Beatrice Latal
- Children's Research Center, University Children's Hospital, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland.,Child Development Center, University Children's Hospital, Zurich, Switzerland
| | - Ulrike Held
- University of Zurich, Zurich, Switzerland.,Department of Epidemiology, Biostatistics and Prevention Institute UZH, Zürich, Switzerland
| | - András Jakab
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman Tuura
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland.,Children's Research Center, University Children's Hospital, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich, Zürich, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Walter Knirsch
- Pediatric Cardiology, Pediatric Heart Center, Department of Surgery, University Children's Hospital, Zürich, Switzerland. .,Children's Research Center, University Children's Hospital, Zürich, Switzerland. .,University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Fernández de Gamarra-Oca L, Zubiaurre-Elorza L, Junqué C, Solana E, Soria-Pastor S, Vázquez É, Delgado I, Macaya A, Ojeda N, Poca MA. Reduced hippocampal subfield volumes and memory performance in preterm children with and without germinal matrix-intraventricular hemorrhage. Sci Rep 2021; 11:2420. [PMID: 33510243 PMCID: PMC7844245 DOI: 10.1038/s41598-021-81802-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
Preterm newborns with germinal matrix-intraventricular hemorrhage (GM-IVH) are at a higher risk of evidencing neurodevelopmental alterations. Present study aimed to explore the long-term effects that GM-IVH have on hippocampal subfields, and their correlates with memory. The sample consisted of 58 participants, including 36 preterm-born (16 with GM-IVH and 20 without neonatal brain injury), and 22 full-term children aged between 6 and 15 years old. All participants underwent a cognitive assessment and magnetic resonance imaging study. GM-IVH children evidenced lower scores in Full Intelligence Quotient and memory measures compared to their low-risk preterm and full-term peers. High-risk preterm children with GM-IVH evidenced significantly lower total hippocampal volumes bilaterally and hippocampal subfield volumes compared to both low-risk preterm and full-term groups. Finally, significant positive correlations between memory and hippocampal subfield volumes were only found in preterm participants together; memory and the right CA-field correlation remained significant after Bonferroni correction was applied (p = .002). In conclusion, memory alterations and both global and regional volumetric reductions in the hippocampus were found to be specifically related to a preterm sample with GM-IVH. Nevertheless, results also suggest that prematurity per se has a long-lasting impact on the association between the right CA-field volume and memory during childhood.
Collapse
Affiliation(s)
- Lexuri Fernández de Gamarra-Oca
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Leire Zubiaurre-Elorza
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain.
| | - Carme Junqué
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience, University of Barcelona, Barcelona, Catalonia, Spain
- Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), Hospital Clinic, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Elisabeth Solana
- Institute of Biomedical Research August Pi I Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
- Center of Neuroimmunology, Laboratory of Advanced Imaging in Neuroimmunological Diseases, Hospital Clinic, Barcelona, Catalonia, Spain
| | - Sara Soria-Pastor
- Department of Psychiatry, Consorci Sanitari del Maresme, Hospital of Mataró, Mataró, Catalonia, Spain
| | - Élida Vázquez
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Ignacio Delgado
- Department of Pediatric Radiology, Vall d'Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Pediàtrica, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Methods and Experimental Psychology, Faculty of Psychology and Education, University of Deusto, Bilbao, Basque Country, Spain
| | - Maria A Poca
- Department of Neurosurgery and Neurotraumatology and Neurosurgery Research Unit, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Altered brain metabolism contributes to executive function deficits in school-aged children born very preterm. Pediatr Res 2020; 88:739-748. [PMID: 32590836 PMCID: PMC7577839 DOI: 10.1038/s41390-020-1024-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Executive function deficits in children born very preterm (VPT) have been linked to anatomical abnormalities in white matter and subcortical brain structures. This study aimed to investigate how altered brain metabolism contributes to these deficits in VPT children at school-age. METHODS Fifty-four VPT participants aged 8-13 years and 62 term-born peers were assessed with an executive function test battery. Brain metabolites were obtained in the frontal white matter and the basal ganglia/thalami, using proton magnetic resonance spectroscopy (MRS). N-acetylaspartate (NAA)/creatine (Cr), choline (Cho)/Cr, glutamate + glutamine (Glx)/Cr, and myo-Inositol (mI)/Cr were compared between groups and associations with executive functions were explored using linear regression. RESULTS In the frontal white matter, VPT showed lower Glx/Cr (mean difference: -5.91%, 95% CI [-10.50, -1.32]), higher Cho/Cr (7.39%, 95%-CI [2.68, 12.10]), and higher mI/Cr (5.41%, 95%-CI [0.18, 10.64]) while there were no differences in the basal ganglia/thalami. Lower executive functions were associated with lower frontal Glx/Cr ratios in both groups (β = 0.16, p = 0.05) and higher mI/Cr ratios in the VPT group only (interaction: β = -0.17, p = 0.02). CONCLUSION Long-term brain metabolite alterations in the frontal white matter may be related to executive function deficits in VPT children at school-age. IMPACT Very preterm birth is associated with long-term brain metabolite alterations in the frontal white matter. Such alterations may contribute to deficits in executive function abilities. Injury processes in the brain can persist for years after the initial insult. Our findings provide new insights beyond structural and functional imaging, which help to elucidate the processes involved in abnormal brain development following preterm birth. Ultimately, this may lead to earlier identification of children at risk for developing deficits and more effective interventions.
Collapse
|
4
|
Rogers CE, Lean RE, Wheelock MD, Smyser CD. Aberrant structural and functional connectivity and neurodevelopmental impairment in preterm children. J Neurodev Disord 2018; 10:38. [PMID: 30541449 PMCID: PMC6291944 DOI: 10.1186/s11689-018-9253-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in antenatal and neonatal care, preterm birth remains a leading cause of neurological disabilities in children. Infants born prematurely, particularly those delivered at the earliest gestational ages, commonly demonstrate increased rates of impairment across multiple neurodevelopmental domains. Indeed, the current literature establishes that preterm birth is a leading risk factor for cerebral palsy, is associated with executive function deficits, increases risk for impaired receptive and expressive language skills, and is linked with higher rates of co-occurring attention deficit hyperactivity disorder, anxiety, and autism spectrum disorders. These same infants also demonstrate elevated rates of aberrant cerebral structural and functional connectivity, with persistent changes evident across advanced magnetic resonance imaging modalities as early as the neonatal period. Emerging findings from cross-sectional and longitudinal investigations increasingly suggest that aberrant connectivity within key functional networks and white matter tracts may underlie the neurodevelopmental impairments common in this population. Main body This review begins by highlighting the elevated rates of neurodevelopmental disorders across domains in this clinical population, describes the patterns of aberrant structural and functional connectivity common in prematurely-born infants and children, and then reviews the increasingly established body of literature delineating the relationship between these brain abnormalities and adverse neurodevelopmental outcomes. We also detail important, typically understudied, clinical, and social variables that may influence these relationships among preterm children, including heritability and psychosocial risks. Conclusion Future work in this domain should continue to leverage longitudinal evaluations of preterm infants which include both neuroimaging and detailed serial neurodevelopmental assessments to further characterize relationships between imaging measures and impairment, information necessary for advancing our understanding of modifiable risk factors underlying these disorders and best practices for improving neurodevelopmental trajectories in this high-risk clinical population.
Collapse
Affiliation(s)
- Cynthia E Rogers
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA.
| | - Rachel E Lean
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Muriah D Wheelock
- Departments of Psychiatry, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8504, St. Louis, MO, 63110, USA
| | - Christopher D Smyser
- Departments of Neurology, Pediatrics and Mallinckrodt Institute of Radiology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8111, St. Louis, MO, 63110, USA
| |
Collapse
|
5
|
Magnetic resonance spectroscopy in very preterm-born children at 4 years of age: developmental course from birth and outcomes. Neuroradiology 2018; 60:1063-1073. [DOI: 10.1007/s00234-018-2064-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 12/27/2022]
|
6
|
Gasparovic C, Caprihan A, Yeo RA, Phillips J, Lowe JR, Campbell R, Ohls RK. The long-term effect of erythropoiesis stimulating agents given to preterm infants: a proton magnetic resonance spectroscopy study on neurometabolites in early childhood. Pediatr Radiol 2018; 48:374-382. [PMID: 29335880 PMCID: PMC5823776 DOI: 10.1007/s00247-017-4052-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/17/2017] [Accepted: 12/05/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Erythropoiesis stimulating agents (ESAs) are neuroprotective in cell and animal models of preterm birth. Prematurity has been shown to alter neurometabolite levels in children in studies using proton magnetic resonance spectroscopy (1H-MRS). OBJECTIVE We hypothesized that ESA treatment in premature infants would tend to normalize neurometabolites by 4-6 years of age. MATERIALS AND METHODS Children in a longitudinal study of neurodevelopment underwent MRI and 1H-MRS at approximately 4 years and 6 years of age. Prematurely born children (500-1,250 g birth weight) received ESAs (erythropoietin or darbepoetin) or placebo during their neonatal hospitalization, and these groups were compared to healthy term controls. 1H-MRS spectra were obtained from the anterior cingulate (gray matter) and frontal lobe white matter, assessing combined N-acetylaspartate and N-acetylaspartylglutamate (tNAA), myo-inositol, choline compounds (Cho), combined creatine and phosphocreatine, and combined glutamate and glutamine. RESULTS No significant (P≤0.5) group differences were observed for any metabolite level. Significant age-related increases in white-matter tNAA and Cho were observed, as well as a trend for increased gray-matter tNAA. CONCLUSION Neither prematurity nor neonatal ESA treatment was associated with differences in brain metabolite levels in the children of this study at a significance level of 0.05. These findings suggest that earlier differences that might have existed had normalized by 4-6 years of age or were too small to be statistically significant in the current sample.
Collapse
Affiliation(s)
| | | | - Ronald A. Yeo
- Department of Psychology, University of New Mexico, Albuquerque, NM, USA
| | - John Phillips
- Mind Research Network, Albuquerque, NM,Department of Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Jean R. Lowe
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| | - Richard Campbell
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Robin K. Ohls
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
7
|
Simões RV, Muñoz-Moreno E, Cruz-Lemini M, Eixarch E, Bargalló N, Sanz-Cortés M, Gratacós E. Brain metabolite alterations in infants born preterm with intrauterine growth restriction: association with structural changes and neurodevelopmental outcome. Am J Obstet Gynecol 2017; 216:62.e1-62.e14. [PMID: 27667762 DOI: 10.1016/j.ajog.2016.09.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Intrauterine growth restriction and premature birth represent 2 independent problems that may occur simultaneously and contribute to impaired neurodevelopment. OBJECTIVE The objective of the study was to assess changes in the frontal lobe metabolic profiles of 1 year old intrauterine growth restriction infants born prematurely and adequate-for-gestational-age controls, both premature and term adequate for gestational age and their association with brain structural and biophysical parameters and neurodevelopmental outcome at 2 years. STUDY DESIGN A total of 26 prematurely born intrauterine growth restriction infants (birthweight <10th centile for gestational age), 22 prematurely born but adequate for gestational age controls, and 26 term adequate-for-gestational-age infants underwent brain magnetic resonance imaging and magnetic resonance spectroscopy at 1 year of age during natural sleep, on a 3 Tesla scanner. All brain T1-weighted and diffusion-weighted images were acquired along with short echo time single-voxel proton spectra from the frontal lobe. Magnetic resonance imaging/magnetic resonance spectroscopy data were processed to derive structural, biophysical, and metabolic information, respectively. Neurodevelopment was evaluated at 2 years of age using the Bayley Scales 3rd edition, assessing cognitive, language, motor, socioemotional, and adaptive behavior. RESULTS Prematurely born intrauterine growth restriction infants had slightly smaller brain volumes and increased frontal lobe white matter mean diffusivity compared with both prematurely born but adequate for gestational age and term adequate for gestational age controls. Frontal lobe N-acetylaspartate levels were significantly lower in prematurely born intrauterine growth restriction than in prematurely born but adequate for gestational age infants but increased in prematurely born but adequate for gestational age compared with term adequate-for-gestational-age infants. The prematurely born intrauterine growth restriction group also showed slightly lower choline compounds, borderline decrements of estimated glutathione levels, and increased myoinositol to choline ratios, compared with prematurely born but adequate for gestational age controls. These specific metabolite changes were locally correlated to lower gray matter content and increased mean diffusivity and reduced white matter fraction and fractional anisotropy. Prematurely born intrauterine growth restriction infants also showed a tendency for poorer neurodevelopmental outcome at 2 years, associated with lower levels of frontal lobe N-acetylaspartate at 1 year within the preterm subset. CONCLUSIONS Preterm intrauterine growth restriction infants showed altered brain metabolite profiles during a critical stage of brain maturation, which correlate with brain structural and biophysical parameters and neurodevelopmental outcome. Our results suggest altered neurodevelopmental trajectories in preterm intrauterine growth restriction and adequate-for-gestational-age infants, compared with term adequate-for-gestational-age infants, which require further characterization.
Collapse
|
8
|
Durlak W, Herman-Sucharska I, Urbanik A, Klimek M, Karcz P, Dutkowska G, Nitecka M, Kwinta P. Relationship between Proton Magnetic Resonance Spectroscopy of Frontoinsular Gray Matter and Neurodevelopmental Outcomes in Very Low Birth Weight Children at the Age of 4. PLoS One 2016; 11:e0156064. [PMID: 27223474 PMCID: PMC4880287 DOI: 10.1371/journal.pone.0156064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 12/03/2022] Open
Abstract
Very low birth weight is associated with long term neurodevelopmental complications. Macroscopic brain abnormalities in prematurity survivors have been investigated in several studies. However, there is limited data regarding local cerebral metabolic status and neurodevelopmental outcomes. The purpose of this study was to characterize the relationship between proton magnetic resonance spectra in basal ganglia, frontal white matter and frontoinsular gray matter, neurodevelopmental outcomes assessed with the Leiter scale and the Developmental Test of Visual Perception and selected socioeconomic variables in a cohort of very low birth weight children at the age of four. Children were divided in three groups based on the severity of neurodevelopmental impairment. There were no differences in spectroscopy in basal ganglia and frontal white matter between the groups. Lower concentrations of N-acetylaspartate (NAA), choline (Cho) and myoinositol (mI) were observed in the frontoinsular cortex of the left hemisphere in children with neurodevelopmental impairment compared to children with normal neurodevelopmental outcomes. Higher parental education, daycare attendance and breastfeeding after birth were associated with more favorable neurodevelopmental prognosis, whereas rural residence was more prevalent in children with moderate and severe impairment. Our study demonstrates the role of long term neurometabolic disruption in the left frontoinsular cortex and selected socioeconomic variables in determination of neurodevelopmental prognosis in prematurity survivors.
Collapse
Affiliation(s)
- Wojciech Durlak
- Department of Pediatrics, Jagiellonian University, Wielicka 265, 30-663 Cracow, Poland
| | - Izabela Herman-Sucharska
- Department of Electroradiology, Jagiellonian University, Michalowskiego 12, 31-126 Cracow, Poland
| | - Andrzej Urbanik
- Department of Radiology, Jagiellonian University, Kopernika 19, 31-501 Krakow, Poland
| | - Małgorzata Klimek
- Department of Pediatrics, Jagiellonian University, Wielicka 265, 30-663 Cracow, Poland
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University, Michalowskiego 12, 31-126 Cracow, Poland
| | - Grażyna Dutkowska
- Department of Applied Psychology and Human Development, Jagiellonian University, Wielicka 265, 30-663 Cracow, Poland
| | - Magdalena Nitecka
- Department of Applied Psychology and Human Development, Jagiellonian University, Wielicka 265, 30-663 Cracow, Poland
| | - Przemko Kwinta
- Department of Pediatrics, Jagiellonian University, Wielicka 265, 30-663 Cracow, Poland
| |
Collapse
|
9
|
Altered posterior cingulate brain metabolites and cognitive dysfunction in preterm adolescents. Pediatr Res 2016; 79:716-22. [PMID: 26821169 DOI: 10.1038/pr.2015.272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND Extremely preterm (EP, <28 wk gestation) individuals have increased the risk of cognitive deficits compared with controls. The posterior cingulate region has an important role in cognitive function, but how this is affected by preterm birth is unknown. We aimed to compare brain metabolite ratios of neurons and cell membranes between EP 18-y olds and controls, and explore the association between metabolite ratios and cognitive outcomes. METHOD A regional cohort of 150 EP and 134 controls were recruited for the study. Cerebral metabolites were measured using proton magnetic resonance spectroscopy (MRS) obtained from a left posterior cingulate voxel. Total N-acetylaspartate (tNAA, neuronal marker)/total creatine (tCr), and total choline (tCho, cell membrane marker)/tCr ratios were compared between groups using linear regression. Metabolite ratios were correlated with tests of general intelligence (IQ), memory, and attention using linear or logistic regression. RESULTS Compared with controls, EP had lower tNAA/tCr (mean difference (95% CI) of -2.27% (-4.09, -0.45)) and tCho/tCr (mean difference (95% CI) of -11.11% (-20.37, -1.85)), all P = 0.02. Higher tCho/tCr correlated with better IQ in the EP group only; whereas higher tNAA/tCr ratios correlated with better scores in working memory and attention in both groups. CONCLUSION EP birth is associated with long-term brain metabolite ratio alterations. This may underlie poorer cognitive performance in EP survivors.
Collapse
|
10
|
Guo T, Winterburn JL, Pipitone J, Duerden EG, Park MTM, Chau V, Poskitt KJ, Grunau RE, Synnes A, Miller SP, Mallar Chakravarty M. Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age. NEUROIMAGE-CLINICAL 2015; 9:176-93. [PMID: 26740912 PMCID: PMC4561668 DOI: 10.1016/j.nicl.2015.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 11/26/2022]
Abstract
Introduction The hippocampus, a medial temporal lobe structure central to learning and memory, is particularly vulnerable in preterm-born neonates. To date, segmentation of the hippocampus for preterm-born neonates has not yet been performed early-in-life (shortly after birth when clinically stable). The present study focuses on the development and validation of an automatic segmentation protocol that is based on the MAGeT-Brain (Multiple Automatically Generated Templates) algorithm to delineate the hippocampi of preterm neonates on their brain MRIs acquired at not only term-equivalent age but also early-in-life. Methods First, we present a three-step manual segmentation protocol to delineate the hippocampus for preterm neonates and apply this protocol on 22 early-in-life and 22 term images. These manual segmentations are considered the gold standard in assessing the automatic segmentations. MAGeT-Brain, automatic hippocampal segmentation pipeline, requires only a small number of input atlases and reduces the registration and resampling errors by employing an intermediate template library. We assess the segmentation accuracy of MAGeT-Brain in three validation studies, evaluate the hippocampal growth from early-in-life to term-equivalent age, and study the effect of preterm birth on the hippocampal volume. The first experiment thoroughly validates MAGeT-Brain segmentation in three sets of 10-fold Monte Carlo cross-validation (MCCV) analyses with 187 different groups of input atlases and templates. The second experiment segments the neonatal hippocampi on 168 early-in-life and 154 term images and evaluates the hippocampal growth rate of 125 infants from early-in-life to term-equivalent age. The third experiment analyzes the effect of gestational age (GA) at birth on the average hippocampal volume at early-in-life and term-equivalent age using linear regression. Results The final segmentations demonstrate that MAGeT-Brain consistently provides accurate segmentations in comparison to manually derived gold standards (mean Dice's Kappa > 0.79 and Euclidean distance <1.3 mm between centroids). Using this method, we demonstrate that the average volume of the hippocampus is significantly different (p < 0.0001) in early-in-life (621.8 mm3) and term-equivalent age (958.8 mm3). Using these differences, we generalize the hippocampal growth rate to 38.3 ± 11.7 mm3/week and 40.5 ± 12.9 mm3/week for the left and right hippocampi respectively. Not surprisingly, younger gestational age at birth is associated with smaller volumes of the hippocampi (p = 0.001). Conclusions MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth. We develop a MAGeT-Brain based automatic protocol to segment hippocampus in preterm neonates. MAGeT-Brain can accurately segment hippocampus in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images. Smaller hippocampal volumes are associated with earlier birth in preterm neonates.
Collapse
Affiliation(s)
- Ting Guo
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Julie L Winterburn
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Kimel Family Translational Imaging, Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Jon Pipitone
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Kimel Family Translational Imaging, Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Canada
| | - Emma G Duerden
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Min Tae M Park
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada; Cerebral Imaging Centre, Douglas Mental Health Research Institute, Verdun, QC, Canada
| | - Vann Chau
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - Kenneth J Poskitt
- Department of Pediatrics, University of British Columbia and Child and Family Research Institute, Vancouver, BC, Canada
| | - Ruth E Grunau
- Department of Pediatrics, University of British Columbia and Child and Family Research Institute, Vancouver, BC, Canada
| | - Anne Synnes
- Department of Pediatrics, University of British Columbia and Child and Family Research Institute, Vancouver, BC, Canada
| | - Steven P Miller
- Neurosciences and Mental Health, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Paediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, ON, Canada
| | - M Mallar Chakravarty
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada; Cerebral Imaging Centre, Douglas Mental Health Research Institute, Verdun, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
11
|
Kipp KH, Mecklinger A, Brunnemann N, Shamdeen MG, Meng-Hentschel J, Gortner L. Modifications of recognition memory processes in preterm children: an event-related potential study. Child Dev 2014; 86:379-93. [PMID: 25521668 DOI: 10.1111/cdev.12323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prematurity may cause hippocampal compromise. Therefore, hippocampus-dependent memory processes (recollection-based retrieval) may be more impaired than hippocampus-independent processes (familiarity-based retrieval). The memory of 18 children born preterm with reduced hippocampal volumes, without neonatal complications (weeks of gestation < 34, weight < 1,600 g), and 15 controls (8-10 years) was tested using an item recognition task. While groups were equal in memory performance, dissociation was found: The event-related potential (ERP) correlate of familiarity was intact in the preterm group, whereas the correlate of recollection was attenuated. A follow-up experiment ruled out that this was due to general cognitive deficits. Furthermore, gestational age correlated with the ERP index of recollection. Thus, recognition memory in preterm children may be characterized by a compensation of attenuated recollection by familiarity.
Collapse
|
12
|
Thompson DK, Omizzolo C, Adamson C, Lee KJ, Stargatt R, Egan GF, Doyle LW, Inder TE, Anderson PJ. Longitudinal growth and morphology of the hippocampus through childhood: Impact of prematurity and implications for memory and learning. Hum Brain Mapp 2014; 35:4129-39. [PMID: 24523026 PMCID: PMC5516043 DOI: 10.1002/hbm.22464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 12/06/2013] [Accepted: 01/07/2013] [Indexed: 11/08/2022] Open
Abstract
The effects of prematurity on hippocampal development through early childhood are largely unknown. The aims of this study were to (1) compare the shape of the very preterm (VPT) hippocampus to that of full-term (FT) children at 7 years of age, and determine if hippocampal shape is associated with memory and learning impairment in VPT children, (2) compare change in shape and volume of the hippocampi from term-equivalent to 7 years of age between VPT and FT children, and determine if development of the hippocampi over time predicts memory and learning impairment in VPT children. T1 and T2 magnetic resonance images were acquired at both term equivalent and 7 years of age in 125 VPT and 25 FT children. Hippocampi were manually segmented and shape was characterized by boundary point distribution models at both time-points. Memory and learning outcomes were measured at 7 years of age. The VPT group demonstrated less hippocampal infolding than the FT group at 7 years. Hippocampal growth between infancy and 7 years was less in the VPT compared with the FT group, but the change in shape was similar between groups. There was little evidence that the measures of hippocampal development were related to memory and learning impairments in the VPT group. This study suggests that the developmental trajectory of the human hippocampus is altered in VPT children, but this does not predict memory and learning impairment. Further research is required to elucidate the mechanisms for memory and learning difficulties in VPT children.
Collapse
Affiliation(s)
- Deanne K Thompson
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Omizzolo C, Thompson DK, Scratch SE, Stargatt R, Lee KJ, Cheong J, Roberts G, Doyle LW, Anderson PJ. Hippocampal volume and memory and learning outcomes at 7 years in children born very preterm. J Int Neuropsychol Soc 2013; 19:1065-75. [PMID: 23947431 PMCID: PMC3964592 DOI: 10.1017/s1355617713000891] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Using magnetic resonance imaging, this study compared hippocampal volume between 145 very preterm children and 34 children born full-term at 7 years of age. The relationship between hippocampal volume and memory and learning impairments at 7 years was also investigated. Manual hippocampal segmentation and subsequent three-dimensional volumetric analysis revealed reduced hippocampal volumes in very preterm children compared with term peers. However, this relationship did not remain after correcting for whole brain volume and neonatal brain abnormality. Contrary to expectations, hippocampal volume in the very preterm cohort was not related to memory and learning outcomes. Further research investigating the effects of very preterm birth on more extensive networks in the brain that support memory and learning in middle childhood is needed.
Collapse
Affiliation(s)
- Cristina Omizzolo
- 1 Victorian Infant Brain Studies, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Phillips JP, Ruhl D, Montague E, Gasparovic C, Caprihan A, Ohls RK, Schrader R, Lowe JR. Anterior cingulate and frontal lobe white matter spectroscopy in early childhood of former very LBW premature infants. Pediatr Res 2011; 69:224-9. [PMID: 21135758 PMCID: PMC3107034 DOI: 10.1203/pdr.0b013e3182091d52] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurometabolic sequelae of children born at very LBW (VLBW) are not well characterized in early childhood. Proton magnetic resonance spectroscopy (1H-MRS) and developmental assessments were acquired from children age 18-22 mo (16 VLBW/7 term) and 3-4 y (12 VLBW/8 term) from the anterior cingulate and left frontal periventricular white matter. Metabolites obtained included combined N-acetylaspartylglutamate and N-acetylaspartate (NAA), total choline-containing compounds (Cho), combined glutamate and glutamine (Glx), combined creatine and phosphocreatine (Cr), myoinositol (mI), and the following ratios: NAA/Cr, Cho/Cr, Glx/Cr, mI/Cr, and NAA/Cho. Significant differences were present only in white matter: at 18-22 mo, NAA was decreased in VLBW children (p < 0.04), and at 3-4 y, VLBW children showed lower Cr (p < 0.01), lower NAA/Cho (p < 0.005), higher Glx/Cr (p < 0.02), and higher Cho/Cr (p < 0.005). On developmental testing, VLBW children scored lower on language expression (p < 0.05) and on the A-not-B test of early executive function (p < 0.01) at 18-22 mo and had lower verbal intelligence quotient (IQ) (p < 0.005), performance IQ (p < 0.04), and several measures of early executive function including the bear-dragon test (p < 0.004), gift delay (p < 0.07), and summary categorization score (p < 0.03) at 3-4 y. VLBW children may have neurometabolic and developmental abnormalities that persist at least through early childhood.
Collapse
Affiliation(s)
- John P Phillips
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, New Mexico 87106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Coplan JD, Mathew SJ, Abdallah CG, Mao X, Kral JG, Smith ELP, Rosenblum LA, Perera TD, Dwork AJ, Hof PR, Gorman JM, Shungu DC. Early-life stress and neurometabolites of the hippocampus. Brain Res 2010; 1358:191-9. [PMID: 20713023 DOI: 10.1016/j.brainres.2010.08.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 08/04/2010] [Accepted: 08/08/2010] [Indexed: 12/29/2022]
Abstract
We tested the hypothesis that early life stress would persistently compromise neuronal viability of the hippocampus of the grown nonhuman primate. Neuronal viability was assessed through ascertainment of N-acetyl aspartate (NAA)-an amino acid considered reflective of neuronal density/functional integrity-using in vivo proton magnetic resonance spectroscopic imaging (MRSI). The subjects reported herein represent a re-analysis of a sample of nineteen adult male bonnet macaques that had been reared in infancy under induced stress by maternal variable foraging demand (VFD) (N=10) or control rearing conditions (N=9). The MRSI spectral readings were recorded using a GE 1.5 Tesla machine under anesthesia. Relative NAA values were derived using NAA as numerator and both choline (Cho) or creatine (Cr) as denominators. Left medial temporal lobe (MTL) NAA/Cho but not NAA/Cr was decreased in VFD subjects versus controls. An MTL NAA/Cho ratio deficit remained significant when controlling for multiple confounding variables. Regression analyses suggested that the NAA/Choline finding was due to independently low left NAA and high left choline. Right MTL showed no rearing effects for NAA, but right NAA was positively related to body mass, irrespective of denominator. The current data indicate that decreased left MTL NAA/Cho may reflect low neuronal viability of the hippocampus following early life stress in VFD-reared versus normally-reared subjects. Given the importance of the hippocampus in stress-mediated toxicity, validation of these data using absolute quantification is suggested and correlative neurohistological studies of hippocampus are warranted.
Collapse
Affiliation(s)
- Jeremy D Coplan
- SUNY Downstate Medical Center, Nonhuman Primate Facility, Department of Psychiatry, Brooklyn, NY 11203, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baron IS, Rey-Casserly C. Extremely Preterm Birth Outcome: A Review of Four Decades of Cognitive Research. Neuropsychol Rev 2010; 20:430-52. [DOI: 10.1007/s11065-010-9132-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 04/27/2010] [Indexed: 02/05/2023]
|