1
|
Gaston-Breton R, Maïza Letrou A, Hamoudi R, Stonestreet BS, Mabondzo A. Brain organoids for hypoxic-ischemic studies: from bench to bedside. Cell Mol Life Sci 2023; 80:318. [PMID: 37804439 PMCID: PMC10560197 DOI: 10.1007/s00018-023-04951-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Our current knowledge regarding the development of the human brain mostly derives from experimental studies on non-human primates, sheep, and rodents. However, these studies may not completely simulate all the features of human brain development as a result of species differences and variations in pre- and postnatal brain maturation. Therefore, it is important to supplement the in vivo animal models to increase the possibility that preclinical studies have appropriate relevance for potential future human trials. Three-dimensional brain organoid culture technology could complement in vivo animal studies to enhance the translatability of the preclinical animal studies and the understanding of brain-related disorders. In this review, we focus on the development of a model of hypoxic-ischemic (HI) brain injury using human brain organoids to complement the translation from animal experiments to human pathophysiology. We also discuss how the development of these tools provides potential opportunities to study fundamental aspects of the pathophysiology of HI-related brain injury including differences in the responses between males and females.
Collapse
Affiliation(s)
- Romane Gaston-Breton
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Auriane Maïza Letrou
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France
| | - Rifat Hamoudi
- Research Institute for Medical and Health Sciences, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P. O. 27272, Sharjah, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, UK
- ASPIRE Precision Medicine Research Institute Abu Dhabi, University of Sharjah, Sharjah, United Arab Emirates
| | - Barbara S Stonestreet
- Departments of Molecular Biology, Cell Biology and Biochemistry and Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Aloïse Mabondzo
- Université Paris Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (DMTS), Laboratoire d'Etude de l'Unité Neurovasculaire & Innovation Thérapeutique, 91191, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
2
|
Alvarez FJ, Alvarez AA, Rodríguez JJ, Lafuente H, Canduela MJ, Hind W, Blanco-Bruned JL, Alonso-Alconada D, Hilario E. Effects of Cannabidiol, Hypothermia, and Their Combination in Newborn Rats with Hypoxic-Ischemic Encephalopathy. eNeuro 2023; 10:ENEURO.0417-22.2023. [PMID: 37072177 PMCID: PMC10166126 DOI: 10.1523/eneuro.0417-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/20/2023] Open
Abstract
Therapeutic hypothermia is well established as a standard treatment for infants with hypoxic-ischemic (HI) encephalopathy but it is only partially effective. The potential for combination treatments to augment hypothermic neuroprotection has major relevance. Our aim was to assess the effects of treating newborn rats following HI injury with cannabidiol (CBD) at 0.1 or 1 mg/kg, i.p., in normothermic (37.5°C) and hypothermic (32.0°C) conditions, from 7 d of age (neonatal phase) to 37 d of age (juvenile phase). Placebo or CBD was administered at 0.5, 24, and 48 h after HI injury. Two sensorimotor (rotarod and cylinder rearing) and two cognitive (novel object recognition and T-maze) tests were conducted 30 d after HI. The extent of brain damage was determined by magnetic resonance imaging, histologic evaluation, magnetic resonance spectroscopy, amplitude-integrated electroencephalography, and Western blotting. At 37 d, the HI insult produced impairments in all neurobehavioral scores (cognitive and sensorimotor tests), brain activity (electroencephalography), neuropathological score (temporoparietal cortexes and CA1 layer of hippocampus), lesion volume, magnetic resonance biomarkers of brain injury (metabolic dysfunction, excitotoxicity, neural damage, and mitochondrial impairment), oxidative stress, and inflammation (TNFα). We observed that CBD or hypothermia (to a lesser extent than CBD) alone improved cognitive and motor functions, as well as brain activity. When used together, CBD and hypothermia ameliorated brain excitotoxicity, oxidative stress, and inflammation, reduced brain infarct volume, lessened the extent of histologic damage, and demonstrated additivity in some parameters. Thus, coadministration of CBD and hypothermia could complement each other in their specific mechanisms to provide neuroprotection.
Collapse
Affiliation(s)
| | - Antonia A Alvarez
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| | - José J Rodríguez
- Functional Neuroanatomy Group, Biocruces Health Research Institute, 48903 Barakaldo, Spain
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Department of Neurosciences, Medical Faculty, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Hector Lafuente
- Biodonostia Health Research Institute, 20014 Donostia, Spain
| | - M Josune Canduela
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - William Hind
- Jazz Pharmaceuticals, Cambridge CB24 9BZ, United Kingdom
| | - José L Blanco-Bruned
- Department of Pediatric Surgery, Cruces University Hospital, OSI-Ezkerraldea Enkarterri Cruces, 48903 Barakaldo, Spain
| | | | - Enrique Hilario
- Department of Cell Biology, University of the Basque Country, 48940 Leioa, Spain
| |
Collapse
|
3
|
Seitz M, Köster C, Dzietko M, Sabir H, Serdar M, Felderhoff-Müser U, Bendix I, Herz J. Hypothermia modulates myeloid cell polarization in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2021; 18:266. [PMID: 34772426 PMCID: PMC8590301 DOI: 10.1186/s12974-021-02314-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/01/2021] [Indexed: 01/10/2023] Open
Abstract
Background Neonatal encephalopathy due to hypoxia–ischemia (HI) is a leading cause of death and disability in term newborns. Therapeutic hypothermia (HT) is the only recommended therapy. However, 30% still suffer from neurological deficits. Inflammation is a major hallmark of HI pathophysiology with myeloid cells being key players, participating either in progression or in resolution of injury-induced inflammation. In the present study, we investigated the impact of HT on the temporal and spatial dynamics of microglia/macrophage polarization after neonatal HI in newborn mice. Methods Nine-day-old C57BL/6 mice were exposed to HI through occlusion of the right common carotid artery followed by 1 h hypoxia. Immediately after HI, animals were cooled for 4 h or kept at physiological body core temperature. Analyses were performed at 1, 3 and 7 days post HI. Brain injury, neuronal cell loss, apoptosis and microglia activation were assessed by immunohistochemistry. A broad set of typical genes associated with classical (M1) and alternative (M2) myeloid cell activation was analyzed by real time PCR in ex vivo isolated CD11b+ microglia/macrophages. Purity and composition of isolated cells was determined by flow cytometry. Results Immediate HT significantly reduced HI-induced brain injury and neuronal loss 7 days post HI, whereas only mild non-significant protection from HI-induced apoptosis and neuronal loss were observed 1 and 3 days after HI. Microglia activation, i.e., Iba-1 immunoreactivity peaked 3 days after HI and was not modulated by HT. However, ex vivo isolated CD11b+ cells revealed a strong upregulation of the majority of M1 but also M2 marker genes at day 1, which was significantly reduced by HT and rapidly declined at day 3. HI induced a significant increase in the frequency of peripheral macrophages in sorted CD11b+ cells at day 1, which deteriorated until day 7 and was significantly decreased by HT. Conclusion Our data demonstrate that HT-induced neuroprotection is preceded by acute suppression of HI-induced upregulation of inflammatory genes in myeloid cells and decreased infiltration of peripheral macrophages, both representing potential important effector mechanisms of HT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02314-9.
Collapse
Affiliation(s)
- Marina Seitz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Christian Köster
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mark Dzietko
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital, University of Bonn, Bonn, Germany.,German Centre for Neurodegenerative Diseases, Bonn, Germany
| | - Meray Serdar
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Müser
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ivo Bendix
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| | - Josephine Herz
- Department of Pediatrics I, Neonatology & Experimental Perinatal Neurosciences, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Center for Translational Neuro-and Behavioral Sciences (C-TNBS), University Hospital Essen, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
4
|
Variability and sex-dependence of hypothermic neuroprotection in a rat model of neonatal hypoxic-ischaemic brain injury: a single laboratory meta-analysis. Sci Rep 2020; 10:10833. [PMID: 32616806 PMCID: PMC7331720 DOI: 10.1038/s41598-020-67532-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/03/2020] [Indexed: 01/19/2023] Open
Abstract
Therapeutic hypothermia (HT) is standard care for term infants with hypoxic–ischaemic (HI) encephalopathy. However, the efficacy of HT in preclinical models, such as the Vannucci model of unilateral HI in the newborn rat, is often greater than that reported from clinical trials. Here, we report a meta-analysis of data from every experiment in a single laboratory, including pilot data, examining the effect of HT in the Vannucci model.
Across 21 experiments using 106 litters, median (95% CI) hemispheric area loss was 50.1% (46.0–51.9%; n = 305) in the normothermia group, and 41.3% (35.1–44.9%; n = 317) in the HT group, with a bimodal injury distribution. Median neuroprotection by HT was 17.6% (6.8–28.3%), including in severe injury, but was highly-variable across experiments. Neuroprotection was significant in females (p < 0.001), with a non-significant benefit in males (p = 0.07). Animals representing the median injury in each group within each litter (n = 277, 44.5%) were also analysed using formal neuropathology, which showed neuroprotection by HT throughout the brain, particularly in females. Our results suggest an inherent variability and sex-dependence of the neuroprotective response to HT, with the majority of studies in the Vannucci model vastly underpowered to detect true treatment effects due to the distribution of injury.
Collapse
|
5
|
Halis H, Bitiktaş S, Baştuğ O, Tan B, Kavraal Ş, Güneş T, Süer C. Differential Effects of Pentoxifylline on Learning and Memory Impairment Induced by Hypoxic-ischemic Brain Injury in Rats. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:388-399. [PMID: 31352705 PMCID: PMC6705102 DOI: 10.9758/cpn.2019.17.3.388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 01/10/2023]
Abstract
Objective Hypoxic-ischemic (HI) brain injury in the human perinatal period often leads to significant long-term neurobehavioral dysfunction in the cognitive and sensory-motor domains. Using a neonatal HI injury model (unilateral carotid ligation followed by hypoxia) in postnatal day seven rats, the present study investigated the long-term effects of HI and potential behavioral protective effect of pentoxifylline. Methods Seven-day-old rats underwent right carotid ligation, followed by hypoxia (FiO2 = 0.08). Rats received pentoxifylline immediately after and again 2 hours after hypoxia (two doses, 60‒100 mg/kg/dose), or serum physiologic. Another set of seven-day-old rats was included to sham group exposed to surgical stress but not ligated. These rats were tested for spatial learning and memory on the simple place task in the Morris water maze from postnatal days 77 to 85. Results HI rats displayed significant tissue loss in the right hippocampus, as well as severe spatial memory deficits. Low-dose treatment with pentoxifylline resulted in significant protection against both HI-induced hippocampus tissue losses and spatial memory impairments. Beneficial effects are, however, negated if pentoxifylline is administered at high dose. Conclusion These findings indicate that unilateral HI brain injury in a neonatal rodent model is associated with cognitive deficits, and that low dose pentoxifylline treatment is protective against spatial memory impairment.
Collapse
Affiliation(s)
- Hülya Halis
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Soner Bitiktaş
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Burak Tan
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Şehrazat Kavraal
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Tamer Güneş
- Division of Neonatology, Department of Pediatrics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cem Süer
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
6
|
Ahn SY, Chang YS, Sung DK, Sung SI, Park WS. Hypothermia broadens the therapeutic time window of mesenchymal stem cell transplantation for severe neonatal hypoxic ischemic encephalopathy. Sci Rep 2018; 8:7665. [PMID: 29769612 PMCID: PMC5955959 DOI: 10.1038/s41598-018-25902-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Recently, we have demonstrated that concurrent hypothermia and mesenchymal stem cells (MSCs) transplantation synergistically improved severe neonatal hypoxic ischemic encephalopathy (HIE). The current study was designed to determine whether hypothermia could extend the therapeutic time window of MSC transplantation for severe neonatal HIE. To induce HIE, newborn rat pups were exposed to 8% oxygen for 2 h following unilateral carotid artery ligation on postnatal day (P) 7. After approving severe HIE involving >50% of the ipsilateral hemisphere volume, hypothermia (32 °C) for 2 days was started. MSCs were transplanted 2 days after HIE modeling. Follow-up brain MRI, sensorimotor function tests, assessment of inflammatory cytokines in the cerebrospinal fluid (CSF), and histological evaluation of peri-infarction area were performed. HIE induced progressively increasing brain infarction area over time, increased cell death, reactive gliosis and brain inflammation, and impaired sensorimotor function. All these damages observed in severe HIE showed better, robust improvement with a combination treatment of hypothermia and delayed MSC transplantation than with either stand-alone therapy. Hypothermia itself did not significantly reduce brain injury, but broadened the therapeutic time window of MSC transplantation for severe newborn HIE.
Collapse
Affiliation(s)
- So Yoon Ahn
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Yun Sil Chang
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Dong Kyung Sung
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Se In Sung
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Won Soon Park
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea. .,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea. .,Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea.
| |
Collapse
|
7
|
Potter M, Rosenkrantz T, Fitch RH. Behavioral and neuroanatomical outcomes in a rat model of preterm hypoxic-ischemic brain Injury: Effects of caffeine and hypothermia. Int J Dev Neurosci 2018; 70:46-55. [PMID: 29476789 DOI: 10.1016/j.ijdevneu.2018.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/10/2023] Open
Abstract
The current study investigated behavioral and post mortem neuroanatomical outcomes in Wistar rats with a neonatal hypoxic-ischemic (HI) brain injury induced on postnatal day 6 (P6; Rice-Vannucci HI method; Rice et al., 1981). This preparation models brain injury seen in premature infants (gestational age (GA) 32-35 weeks) based on shared neurodevelopmental markers at time of insult, coupled with similar neuropathologic sequelae (Rice et al., 1981; Workman et al., 2013). Clinically, HI insult during this window is associated with poor outcomes that include attention deficit hyperactivity disorder (ADHD), motor coordination deficits, spatial memory deficits, and language/learning disabilities. To assess therapies that might offer translational potential for improved outcomes, we used a P6 HI rat model to measure the behavioral and neuroanatomical effects of two prospective preterm neuroprotective treatments - hypothermia and caffeine. Hypothermia (aka "cooling") is an approved and moderately efficacious intervention therapy for fullterm infants with perinatal hypoxic-ischemic (HI) injury, but is not currently approved for preterm use. Caffeine is a respiratory stimulant used during removal of infants from ventilation but has shown surprising long-term benefits, leading to consideration as a therapy for HI of prematurity. Current findings support caffeine as a preterm neuroprotectant; treatment significantly improved some behavioral outcomes in a P6 HI rat model and partially rescued neuropathology. Hypothermia treatment (involving core temperature reduction by 4 °C for 5 h), conversely, was found to be largely ineffective and even deleterious for some measures in both HI and sham rats. These results have important implications for therapeutic intervention in at-risk preterm populations, and promote caution in the application of hypothermia protocols to at-risk premature infants without further research.
Collapse
Affiliation(s)
- Molly Potter
- University of Connecticut Health Center, School of Medicine, Farmington, CT, United States
| | - Ted Rosenkrantz
- University of Connecticut Health Center, Dept. of Pediatrics/Neonatology, Farmington, CT, United States
| | - R Holly Fitch
- University of Connecticut, Dept. of Psychological Sciences/Behavioral Neuroscience, Storrs, CT, United States.
| |
Collapse
|
8
|
Lee BS, Jung E, Lee Y, Chung SH. Hypothermia decreased the expression of heat shock proteins in neonatal rat model of hypoxic ischemic encephalopathy. Cell Stress Chaperones 2017; 22:409-415. [PMID: 28285429 PMCID: PMC5425372 DOI: 10.1007/s12192-017-0782-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/26/2017] [Accepted: 02/23/2017] [Indexed: 12/16/2022] Open
Abstract
Hypothermia (HT) is a well-established neuroprotective strategy against neonatal hypoxic ischemic encephalopathy (HIE). The overexpression of heat shock proteins (HSP) has been shown to provide neuroprotection in animal models of stroke. We aimed to investigate the effect of HT on HSP70 and HSP27 expression in a neonatal rat model of HIE. Seven-day-old rat pups were exposed to hypoxia for 90 min to establish the Rice-Vannucci model and were assigned to the following four groups: hypoxic injury (HI)-normothermia (NT, 36 °C), HI-HT (30 °C), sham-NT, and sham-HT. After temperature intervention for 24 h, the mRNA and protein expression of HSP70 and HSP27 were measured. The association between HSP expression and brain injury severity was also evaluated. The brain infarct size was significantly smaller in the HI-HT group than in the HI-NT group. The mRNA and protein expression of both HSPs were significantly greater in the two HI groups, compared to those in the two sham groups. Moreover, among the rat pups subjected to HI, HT significantly reduced the mRNA and protein expression of both HSPs. The mRNA expression level of the HSPs was proportional to the brain injury severity. Post-ischemic HT, i.e., a cold shock attenuated the expression of HSP70 and HSP27 in a neonatal rat model of HIE. Our study suggests that neither HSP70 nor HSP27 expression is involved in the neuroprotective mechanism through which prolonged HT protects against neonatal HIE.
Collapse
Affiliation(s)
- Byong Sop Lee
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, South Korea.
| | - Euiseok Jung
- Department of Pediatrics, Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic-Ro 43-Gil, Songpa-Gu, Seoul, 138-736, South Korea
| | - Yeonjoo Lee
- Medical School, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Hoon Chung
- Department of Pediatrics, Kyung Hee University School of Medicine, Seoul, South Korea
| |
Collapse
|
9
|
Gopalakrishanan S, Babu MR, Thangarajan R, Punja D, Jaganath VD, Kanth AB, Rao M, Rai KS. Impact of Seasonal Variant Temperatures and Laboratory Room Ambient Temperature on Mortality of Rats with Ischemic Brain Injury. J Clin Diagn Res 2016; 10:CF01-5. [PMID: 27190796 DOI: 10.7860/jcdr/2016/17372.7597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/29/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION A popular rat model for hypoperfusion ischemic brain injury is bilateral common carotid artery occlusion (BCCAO). BCCAO surgery when performed in varying geographical locations and during different seasons of the year is reported to have variable mortality rates. Studies have also documented the diminishing influence of Ketamine-Xylazine (KT-XY) on thermoregulatory functions in rodents. AIM To explore the impact of seasonal variant temperatures and laboratory room ambient temperatures on mortality of rats following BCCAO surgery. MATERIALS AND METHODS The study has two parts: 1 The first part is an analysis of a three year retrospective data to explore the association between the geographical season (hot summer and cold winter) induced laboratory room ambient temperature variations and the mortality rate in KT-XY anaesthetized BCCAO rats. 2. The second part investigated the effect of conditioned laboratory room ambient temperature (CAT) (23-25(0)C) in KT-XY anaesthetized BCCAO group of rats. Rats were divided into 4 groups(n =8/group) as-Normal control, BCCAO and Sham BCCAO where they were all exposed to unconditioned ambient temperature (UCAT) during their surgery and postoperative care. And finally fourth group rats exposed to CAT during the BCCAO surgery and postoperative care. RESULTS Pearson's chi-square test indicates a significantly high association (p<0.006) between post-BCCAO mortality and hot season of the year. CAT during the hot season reduced the mortality rate (24% less) in post- BCCAO rats compared to the rats of UCAT. CONCLUSION Despite seasonal variations in temperature, conditioning the laboratory room ambient temperatures to 23-25(0)C, induces hypothermia in KT-XY anaesthetized ischemic brain injured rodents and improves their survival rate.
Collapse
Affiliation(s)
- Sivakumar Gopalakrishanan
- Senior Grade Lecturer, Department of Physiology, Kasturba Medical College, Manipal University , India
| | - Mg Ramesh Babu
- Senior Grade Lecturer, Department of Physiology, Melaka Manipal Medical College, Manipal University , India
| | - Rajesh Thangarajan
- Lecturer, Department of Anatomy, Melaka Manipal Medical College, Manipal University , India
| | - Dhiren Punja
- Associate Professor, Department of Physiology, Kasturba Medical College, Manipal University , India
| | | | - Akriti B Kanth
- Student, Department of Biotechnology, School of Life Sciences, Manipal University , Manipal, India
| | - Mohandas Rao
- Professor, Department of Anatomy, Melaka Manipal Medical College, Manipal University , India
| | - Kiranmai S Rai
- Professor, Department of Physiology, Melaka Manipal Medical College, Manipal University , India
| |
Collapse
|
10
|
Dietz RM, Deng G, Orfila JE, Hui X, Traystman RJ, Herson PS. Therapeutic hypothermia protects against ischemia-induced impairment of synaptic plasticity following juvenile cardiac arrest in sex-dependent manner. Neuroscience 2016; 325:132-41. [PMID: 27033251 DOI: 10.1016/j.neuroscience.2016.03.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 10/22/2022]
Abstract
Pediatric cardiac arrest (CA) often leads to poor neurologic outcomes, including deficits in learning and memory. The only approved treatment for CA is therapeutic hypothermia, although its utility in the pediatric population remains unclear. This study analyzed the effect of mild therapeutic hypothermia after CA in juvenile mice on hippocampal neuronal injury and the cellular model of learning and memory, termed long-term potentiation (LTP). Juvenile mice were subjected to cardiac arrest and cardiopulmonary resuscitation (CA/CPR) followed by normothermia (37°C) and hypothermia (30°C, 32°C). Histological injury of hippocampal CA1 neurons was performed 3days after resuscitation using hematoxylin and eosin (H&E) staining. Field excitatory post-synaptic potentials (fEPSPs) were recorded from acute hippocampal slices 7days after CA/CPR to determine LTP. Synaptic function was impaired 7days after CA/CPR. Mice exposed to hypothermia showed equivalent neuroprotection, but exhibited sexually dimorphic protection against ischemia-induced impairment of LTP. Hypothermia (32°C) protects synaptic plasticity more effectively in females, with males requiring a deeper level of hypothermia (30°C) for equivalent protection. In conclusion, male and female juvenile mice exhibit equivalent neuronal injury following CA/CPR and hypothermia protects both males and females. We made the surprising finding that juvenile mice have a sexually dimorphic response to mild therapeutic hypothermia protection of synaptic function, where males may need a deeper level of hypothermia for equivalent synaptic protection.
Collapse
Affiliation(s)
- R M Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - G Deng
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - J E Orfila
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - X Hui
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - R J Traystman
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - P S Herson
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, USA; Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; Neuronal Injury Program, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
11
|
Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats. Brain Sci 2015; 5:220-40. [PMID: 26010486 PMCID: PMC4493466 DOI: 10.3390/brainsci5020220] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen.
Collapse
|
12
|
Park WS, Sung SI, Ahn SY, Yoo HS, Sung DK, Im GH, Choi SJ, Chang YS. Hypothermia augments neuroprotective activity of mesenchymal stem cells for neonatal hypoxic-ischemic encephalopathy. PLoS One 2015; 10:e0120893. [PMID: 25816095 PMCID: PMC4376738 DOI: 10.1371/journal.pone.0120893] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/27/2015] [Indexed: 01/21/2023] Open
Abstract
Though hypothermia is the only clinically available treatment for neonatal hypoxic-ischemic encephalopathy (HIE), it is not completely effective in severe cases. We hypothesized that combined treatment with hypothermia and transplantation of human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) would synergistically attenuate severe HIE compared to stand-alone therapy. To induce hypoxia-ischemia (HI), male Sprague-Dawley rats were subjected to 8% oxygen for 120 min after unilateral carotid artery ligation on postnatal day (P) 7. After confirmation of severe HIE involving >50% of the ipsilateral hemisphere volume as determined by diffusion-weighted brain magnetic resonance imaging (MRI) within 2 h after HI, intraventricular MSC transplantation (1 × 105 cells) and/or hypothermia with target temperature at 32°C for 24 h were administered 6 h after induction of HI. Follow-up brain MRI at P12 and P42, sensorimotor function tests at P40–42, evaluation of cytokines in the cerebrospinal fluid (CSF) at P42, and histologic analysis of peri-infarct tissues at P42 were performed. Severe HI resulted in progressively increased brain infarction over time as assessed by serial MRI, increased number of cells positive for terminal deoxynucleotidyl transferase nick-end labeling, microgliosis and astrocytosis, increased CSF cytokine levels, and impaired function in behavioral tests such as rotarod and cylinder tests. All of the abnormalities observed in severe HIE showed greater improvement after combined treatment with hypothermia and MSC transplantation than with either therapy alone. Overall, these findings suggest that combined treatment with hypothermia and human UCB-derived MSC transplantation might be a novel therapeutic modality to improve the prognosis of severe HIE, an intractable disease that currently has no effective treatment.
Collapse
Affiliation(s)
- Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Soo Yoo
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Dong Kyung Sung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Geun Ho Im
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul, Korea
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
13
|
Yuan X, Ghosh N, McFadden B, Tone B, Bellinger DL, Obenaus A, Ashwal S. Hypothermia modulates cytokine responses after neonatal rat hypoxic-ischemic injury and reduces brain damage. ASN Neuro 2014; 6:6/6/1759091414558418. [PMID: 25424430 PMCID: PMC4357606 DOI: 10.1177/1759091414558418] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While hypothermia (HT) is the standard-of-care for neonates with hypoxic ischemic injury (HII), the mechanisms underlying its neuroprotective effect are poorly understood. We examined ischemic core/penumbra and cytokine/chemokine evolution in a 10-day-old rat pup model of HII. Pups were treated for 24 hr after HII with HT (32℃; n = 18) or normothermia (NT, 35℃; n = 15). Outcomes included magnetic resonance imaging (MRI), neurobehavioral testing, and brain cytokine/chemokine profiling (0, 24, 48, and 72 hr post-HII). Lesion volumes (24 hr) were reduced in HT pups (total 74%, p < .05; penumbra 68%, p < .05; core 85%, p = .19). Lesion volumes rebounded at 72 hr (48 hr post-HT) with no significant differences between NT and HT pups. HT reduced interleukin-1β (IL-1β) at all time points (p < .05); monocyte chemoattractant protein-1 (MCP-1) trended toward being decreased in HT pups (p = .09). The stem cell signaling molecule, stromal cell-derived factor-1 (SDF-1) was not altered by HT. Our data demonstrate that HT reduces total and penumbral lesion volumes (at 24 and 48 hr), potentially by decreasing IL-1β without affecting SDF-1. Disassociation between the increasing trend in HII volumes from 48 to 72 hr post-HII when IL-1β levels remained low suggests that after rewarming, mechanisms unrelated to IL-1β expression are likely to contribute to this delayed increase in injury. Additional studies should be considered to determine what these mechanisms might be and also to explore whether extending the duration or degree of HT might ameliorate this delayed increase in injury.
Collapse
Affiliation(s)
- Xiangpeng Yuan
- Department of Pediatrics, Loma Linda University, CA, USA
| | - Nirmalya Ghosh
- Department of Pediatrics, Loma Linda University, CA, USA
| | - Brian McFadden
- Department of Pediatrics, Loma Linda University, CA, USA Department of Biological Sciences, California State University, Fullerton, CA, USA
| | - Beatriz Tone
- Department of Pediatrics, Loma Linda University, CA, USA
| | - Denise L Bellinger
- Department of Pathology and Human Anatomy, Loma Linda University, CA, USA
| | - Andre Obenaus
- Department of Pediatrics, Loma Linda University, CA, USA Cell, Molecular, and Developmental Biology Graduate Program, Neuroscience Graduate Program, University of California, Riverside, CA, USA
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University, CA, USA
| |
Collapse
|
14
|
Kida H, Nomura S, Shinoyama M, Ideguchi M, Owada Y, Suzuki M. The effect of hypothermia therapy on cortical laminar disruption following ischemic injury in neonatal mice. PLoS One 2013; 8:e68877. [PMID: 23894362 PMCID: PMC3720877 DOI: 10.1371/journal.pone.0068877] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 06/02/2013] [Indexed: 11/19/2022] Open
Abstract
Hypothermia has been proposed as a treatment for reducing neuronal damage in the brain induced by hypoxic ischemia. In the developing brain, hypoxic ischemia-induced injury may give rise to cerebral palsy (CP). However, it is unknown whether hypothermia might affect the development of CP. The purpose of this study was to investigate whether hypothermia would have a protective effect on the brains of immature, 3-day old (P3) mice after a challenge of cerebral ischemia. Cerebral ischemia was induced in P3 mice with a right common carotid artery ligation followed by hypoxia (6% O2, 37°C) for 30 min. Immediately after hypoxic ischemia, mice were exposed to hypothermia (32°C) or normothermia (37°C) for 24 h. At 4 weeks of age, mouse motor development was tested in a behavioral test. Mice were sacrificed at P4, P7, and 5 weeks to examine brain morphology. The laminar structure of the cortex was examined with immunohistochemistry (Cux1/Ctip2); the number of neurons was counted; and the expression of myelin basic protein (MBP) was determined. The hypothermia treatment was associated with improved neurological outcomes in the behavioral test. In the normothermia group, histological analyses indicated reduced numbers of neurons, reduced cortical laminar thickness in the deep, ischemic cortical layers, and significant reduction in MBP expression in the ischemic cortex compared to the contralateral cortex. In the hypothermia group, no reductions were noted in deep cortical layer thickness and in MBP expression in the ischemic cortex compared to the contralateral cortex. At 24 h after the hypothermia treatment prevented the neuronal cell death that had predominantly occurred in the ischemic cortical deep layers with normothermia treatment. Our findings may provide a preclinical basis for testing hypothermal therapies in patients with CP induced by hypoxic ischemia in the preterm period.
Collapse
Affiliation(s)
- Hiroyuki Kida
- Department of Systems Neuroscience, Graduate School of Medicine Yamaguchi University, Ube, Japan.
| | | | | | | | | | | |
Collapse
|
15
|
Effects of combination therapy using hypothermia and erythropoietin in a rat model of neonatal hypoxia-ischemia. Pediatr Res 2013; 73:12-7. [PMID: 23085817 PMCID: PMC3540182 DOI: 10.1038/pr.2012.138] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hypoxic-ischemic (HI) injury to the developing brain remains a major cause of morbidity. Hypothermia is effective but does not provide complete neuroprotection, prompting a search for adjunctive therapies. Erythropoietin (Epo) has been shown to be beneficial in several models of neonatal HI. This study examines combination hypothermia and treatment with erythropoietin in neonatal rat HI. METHODS Rats at postnatal day 7 were subjected to HI (Vannucci model) and randomized into four groups: no treatment, hypothermia alone, Epo alone, or hypothermia and Epo. Epo (1,000 U/kg) was administered in three doses: immediately following HI, and 24 h and 1 wk later. Hypothermia consisted of whole-body cooling for 8 h. At 2 and 6 wk following HI, sensorimotor function was assessed via cylinder-rearing test and brain damage by injury scoring. Sham-treated animals not subjected to HI were also studied. RESULTS Differences between experimental groups, except for Epo treatment on histopathological outcome in males, were not statistically significant, and combined therapy had no adverse effects. CONCLUSION No significant benefit was observed from treatment with either hypothermia or combination therapy. Future studies may require older animals, a wider range of functional assays, and postinsult assessment of injury severity to identify only moderately damaged animals for targeted therapy.
Collapse
|
16
|
Pazos MR, Cinquina V, Gómez A, Layunta R, Santos M, Fernández-Ruiz J, Martínez-Orgado J. Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function. Neuropharmacology 2012; 63:776-83. [PMID: 22659086 DOI: 10.1016/j.neuropharm.2012.05.034] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/19/2012] [Accepted: 05/24/2012] [Indexed: 11/16/2022]
Abstract
Cannabidiol (CBD) demonstrated short-term neuroprotective effects in the immature brain following hypoxia-ischemia (HI). We examined whether CBD neuroprotection is sustained over a prolonged period. Newborn Wistar rats underwent HI injury (10% oxygen for 120 min after left carotid artery electrocoagulation) and then received vehicle (HV, n = 22) or 1 mg/kg CBD (HC, n = 23). Sham animals were similarly treated (SV, n = 16 and SC, n = 16). The extent of brain damage was determined by magnetic resonance imaging, histological evaluation (neuropathological score, 0-5), magnetic resonance spectroscopy and Western blotting. Several neurobehavioral tests (RotaRod, cylinder rear test[CRT],and novel object recognition[NOR]) were carried out 30 days after HI (P37). CBD modulated brain excitotoxicity, oxidative stress and inflammation seven days after HI. We observed that HI led to long-lasting functional impairment, as observed in all neurobehavioral tests at P37, whereas the results of HC animals were similar to those of sham animals (all p < 0.05 vs. HV). CBD reduced brain infarct volume by 17% (p < 0.05) and lessened the extent of histological damage. No differences were observed between the SV and SC groups in any of the experiments. In conclusion, CBD administration after HI injury to newborn rats led to long-lasting neuroprotection, with the overall effect of promoting greater functional rather than histological recovery. These effects of CBD were not associated with any side effects. These results emphasize the interest in CBD as a neuroprotective agent for neonatal HI.
Collapse
Affiliation(s)
- M R Pazos
- Experimental Unit, Foundation for Biomedical Research, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Current world literature. Curr Opin Pediatr 2011; 23:356-63. [PMID: 21566469 DOI: 10.1097/mop.0b013e3283481706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|