1
|
Shi X, Chen Y, Shi M, Gao F, Huang L, Wang W, Wei D, Shi C, Yu Y, Xia X, Song N, Chen X, Distler JHW, Lu C, Chen J, Wang J. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases. Lipids Health Dis 2024; 23:98. [PMID: 38570797 PMCID: PMC10988923 DOI: 10.1186/s12944-024-02062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a severe pulmonary disease with limited available therapeutic choices. Recent evidence increasingly points to abnormal lipid metabolism as a critical factor in PF pathogenesis. Our latest research identifies the dysregulation of low-density lipoprotein (LDL) is a new risk factor for PF, contributing to alveolar epithelial and endothelial cell damage, and fibroblast activation. In this study, we first integrative summarize the published literature about lipid metabolite changes found in PF, including phospholipids, glycolipids, steroids, fatty acids, triglycerides, and lipoproteins. We then reanalyze two single-cell RNA-sequencing (scRNA-seq) datasets of PF, and the corresponding lipid metabolomic genes responsible for these lipids' biosynthesis, catabolism, transport, and modification processes are uncovered. Intriguingly, we found that macrophage is the most active cell type in lipid metabolism, with almost all lipid metabolic genes being altered in macrophages of PF. In type 2 alveolar epithelial cells, lipid metabolic differentially expressed genes (DEGs) are primarily associated with the cytidine diphosphate diacylglycerol pathway, cholesterol metabolism, and triglyceride synthesis. Endothelial cells are partly responsible for sphingomyelin, phosphatidylcholine, and phosphatidylethanolamines reprogramming as their metabolic genes are dysregulated in PF. Fibroblasts may contribute to abnormal cholesterol, phosphatidylcholine, and phosphatidylethanolamine metabolism in PF. Therefore, the reprogrammed lipid profiles in PF may be attributed to the aberrant expression of lipid metabolic genes in different cell types. Taken together, these insights underscore the potential of targeting lipid metabolism in developing innovative therapeutic strategies, potentially leading to extended overall survival in individuals affected by PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yahui Chen
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Mengkun Shi
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Fei Gao
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lihao Huang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism & Integrative Biology, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Wei Wang
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Dong Wei
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Chenyi Shi
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuexin Yu
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Xueyi Xia
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan University, Fudan Zhangjiang Institute, Shanghai, People's Republic of China
| | - Xiaofeng Chen
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen, Nuremberg, Germany
| | - Chenqi Lu
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.
| | - Jingyu Chen
- Wuxi Lung Transplant Center, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi, China.
- Center for Lung Transplantation, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital, and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
- Human Phenome Institute, and Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Beijing, China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Matz J, Farra YM, Cotto HM, Bellini C, Oakes JM. Respiratory mechanics following chronic cigarette smoke exposure in the Apoe[Formula: see text] mouse model. Biomech Model Mechanobiol 2023; 22:233-252. [PMID: 36335185 DOI: 10.1007/s10237-022-01644-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
Even though cigarette smoking (CS) has been on the decline over the past 50 years, it is still the leading cause of preventable premature death in the United States. Preclinical models have investigated the cardiopulmonary effects of CS exposure (CSE), but the structure-function relationship in the respiratory system has not yet been fully explored. To evaluate these relationships, we exposed female apolipoprotein E-deficient (Apoe[Formula: see text]) mice to mainstream CS ([Formula: see text]) for 5 days/week over 24 weeks with room air as a control (AE, [Formula: see text]). To contextualize the impact of CSE, we also assessed the natural aging effects over 24 weeks of air exposure (baseline, [Formula: see text]). Functional assessments were performed on a small animal mechanical ventilator (flexiVent, SCIREQ), where pressure-volume curves and impedance data at four levels of positive end-expiratory pressure ([Formula: see text]) and with increasing doses of methacholine were collected. Constant phase model parameters ([Formula: see text]: Newtonian resistance, H: coefficient of tissue elastance, and G: coefficient of tissue resistance) were calculated from the impedance data. Perfusion fixed-left lung tissue was utilized for quantification of parenchyma airspace size and tissue thickness, airway wall thickness, and measurements of elastin, cytoplasm + nucleus, fibrin, and collagen content for the parenchyma and airways. Aging caused the lung to become more compliant, with an upward-leftward shift of the pressure-volume curve and a reduction in all constant phase model parameters. This was supported by larger parenchyma airspace sizes, with a reduction in cell cytoplasm + nucleus area. Airway walls became thinner, even though low-density collagen content increased. In contrast, CSE caused a downward-rightward shift of the pressure-volume curve along with an increase in H, G, and hysteresivity ([Formula: see text]). Organ stiffening was accompanied by enhanced airway hyper-responsiveness following methacholine challenge. Structurally, parenchyma airspaces enlarged, as indicated by an increase in equivalent airspace diameter ([Formula: see text]), and the septum thickened with significant deposition of low-density collagen along with an influx of cells. Airway walls thickened due to deposition of both high and low-density collagen, infiltration of cells, and epithelial cell elongation. In all, our data suggest that CSE in female Apoe[Formula: see text] mice reduces respiratory functionality and causes morphological alterations in both central and peripheral airways that results in lung stiffening, compared to AE controls.
Collapse
Affiliation(s)
- Jacqueline Matz
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Yasmeen M Farra
- Department of Bioengineering, Northeastern University, Boston, USA
| | | | - Chiara Bellini
- Department of Bioengineering, Northeastern University, Boston, USA
| | - Jessica M Oakes
- Department of Bioengineering, Northeastern University, Boston, USA.
| |
Collapse
|
3
|
Shi X, Chen Y, Liu Q, Mei X, Liu J, Tang Y, Luo R, Sun D, Ma Y, Wu W, Tu W, Zhao Y, Xu W, Ke Y, Jiang S, Huang Y, Zhang R, Wang L, Chen Y, Xia J, Pu W, Zhu H, Zuo X, Li Y, Xu J, Gao F, Wei D, Chen J, Yin W, Wang Q, Dai H, Yang L, Guo G, Cui J, Song N, Zou H, Zhao S, Distler JH, Jin L, Wang J. LDLR dysfunction induces LDL accumulation and promotes pulmonary fibrosis. Clin Transl Med 2022; 12:e711. [PMID: 35083881 PMCID: PMC8792399 DOI: 10.1002/ctm2.711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Treatments for pulmonary fibrosis (PF) are ineffective because its molecular pathogenesis and therapeutic targets are unclear. Here, we show that the expression of low-density lipoprotein receptor (LDLR) was significantly decreased in alveolar type II (ATII) and fibroblast cells, whereas it was increased in endothelial cells from systemic sclerosis-related PF (SSc-PF) patients and idiopathic PF (IPF) patients compared with healthy controls. However, the plasma levels of low-density lipoprotein (LDL) increased in SSc-PF and IPF patients. The disrupted LDL-LDLR metabolism was also observed in four mouse PF models. Upon bleomycin (BLM) treatment, Ldlr-deficient (Ldlr-/-) mice exhibited remarkably higher LDL levels, abundant apoptosis, increased fibroblast-like endothelial and ATII cells and significantly earlier and more severe fibrotic response compared to wild-type mice. In vitro experiments revealed that apoptosis and TGF-β1 production were induced by LDL, while fibroblast-like cell accumulation and ET-1 expression were induced by LDLR knockdown. Treatment of fibroblasts with LDL or culture medium derived from LDL-pretreated endothelial or epithelial cells led to obvious fibrotic responses in vitro. Similar results were observed after LDLR knockdown operation. These results suggest that disturbed LDL-LDLR metabolism contributes in various ways to the malfunction of endothelial and epithelial cells, and fibroblasts during pulmonary fibrogenesis. In addition, pharmacological restoration of LDLR levels by using a combination of atorvastatin and alirocumab inhibited BLM-induced LDL elevation, apoptosis, fibroblast-like cell accumulation and mitigated PF in mice. Therefore, LDL-LDLR may serve as an important mediator in PF, and LDLR enhancing strategies may have beneficial effects on PF.
Collapse
Affiliation(s)
- Xiangguang Shi
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Yahui Chen
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Xueqian Mei
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Jing Liu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
| | - Yulong Tang
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Ruoyu Luo
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Dayan Sun
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yanyun Ma
- MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Wenzhen Tu
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yinhuan Zhao
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Weihong Xu
- The Clinical Laboratory of Tongren HosipitalShanghai Jiaotong UniversityShanghaiP. R. China
| | - Yuehai Ke
- Department of Pathology and PathophysiologyZhejiang University School of MedicineHangzhouZhejiang ProvinceP. R. China
| | - Shuai Jiang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Yan Huang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Rui Zhang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Institute for Six‐sector EconomyFudan UniversityShanghaiP. R. China
| | - Lei Wang
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Yuanyuan Chen
- Division of RheumatologyShanghai TCM‐Integrated HospitalShanghaiP. R. China
| | - Jingjing Xia
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Weilin Pu
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
| | - Honglin Zhu
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Yisha Li
- Department of Rheumatology, Xiangya HospitalCentral South UniversityChangshaHunan ProvinceP. R. China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
| | - Fei Gao
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Dong Wei
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Jingyu Chen
- Wuxi Lung Transplant CenterWuxi People's Hospital affiliated to Nanjing Medical UniversityWuxiP. R. China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory HealthThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Qingwen Wang
- Rheumatology and Immunology DepartmentPeking University Shenzhen HospitalShenzhenP. R. China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
| | - Libing Yang
- Department of Pulmonary and Critical Care Medicine, China‐Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases, Institute of Respiratory MedicineChinese Academy of Medical ScienceBeijingP. R. China
- School of MedicineTsinghua UniversityBeijingP. R. China
| | - Gang Guo
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Jimin Cui
- Department of Rheumatology and ImmunologyYiling Hospital Affiliated to Hebei Medical UniversityShijiazhuangHebei ProvinceP. R. China
| | - Nana Song
- Department of Nephrology, Zhongshan Hospital, Fudan UniversityFudan Zhangjiang InstituteShanghaiP. R. China
| | - Hejian Zou
- Division of RheumatologyHuashan hospital, Fudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
| | - Shimin Zhao
- Institute of Metabolism and Integrative BiologyFudan UniversityShanghaiP. R. China
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 and Institute for Clinical ImmunologyUniversity of ErlangenNurembergGermany
| | - Li Jin
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| | - Jiucun Wang
- Department of Dermatology, Huashan Hospital and State Key Laboratory of Genetic Engineering, School of Life SciencesFudan UniversityShanghaiP. R. China
- Human Phenome Institute and Collaborative Innovation Center for Genetics and DevelopmentFudan UniversityShanghaiP. R. China
- Institute of Rheumatology, Immunology and AllergyFudan UniversityShanghaiP. R. China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058)Chinese Academy of Medical SciencesShanghaiP. R. China
| |
Collapse
|
4
|
Gordon EM, Yao X, Xu H, Karkowsky W, Kaler M, Kalchiem-Dekel O, Barochia AV, Gao M, Keeran KJ, Jeffries KR, Levine SJ. Apolipoprotein E is a concentration-dependent pulmonary danger signal that activates the NLRP3 inflammasome and IL-1β secretion by bronchoalveolar fluid macrophages from asthmatic subjects. J Allergy Clin Immunol 2019; 144:426-441.e3. [PMID: 30872118 DOI: 10.1016/j.jaci.2019.02.027] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/15/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND House dust mite (HDM)-challenged Apoe-/- mice display enhanced airway hyperreactivity and mucous cell metaplasia. OBJECTIVE We sought to characterize the pathways that induce apolipoprotein E (APOE) expression by bronchoalveolar lavage fluid (BALF) macrophages from asthmatic subjects and identify how APOE regulates IL-1β secretion. METHODS Macrophages were isolated from asthmatic BALF and derived from THP-1 cells and human monocytes. RESULTS HDM-derived cysteine and serine proteases induced APOE secretion from BALF macrophages through protease-activated receptor 2. APOE at concentrations of less than 2.5 nmol/L, which are similar to levels found in epithelial lining fluid from healthy adults, did not induce IL-1β release from BALF macrophages. In contrast, APOE at concentrations of 25 nmol/L or greater induced nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein (NLRP) 3 and pro-IL-1β expression by BALF macrophages, as well as the caspase-1-mediated generation of mature IL-1β secreted from cells. HDM acted synergistically with APOE to both prime and activate the NLRP3 inflammasome. In a murine model of neutrophilic airway inflammation induced by HDM and polyinosinic-polycytidylic acid, APOE reached a concentration of 32 nmol/L in epithelial lining fluid, with associated increases in BALF IL-1β levels. APOE-dependent NLRP3 inflammasome activation in macrophages was primarily mediated through a potassium efflux-dependent mechanism. CONCLUSION APOE can function as an endogenous, concentration-dependent pulmonary danger signal that primes and activates the NLPR3 inflammasome in BALF macrophages from asthmatic subjects to secrete IL-1β. This might represent a mechanism through which APOE amplifies pulmonary inflammatory responses when concentrations in the lung are increased to greater than normal levels, which can occur during viral exacerbations of HDM-induced asthma characterized by neutrophilic airway inflammation.
Collapse
Affiliation(s)
- Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Haitao Xu
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - William Karkowsky
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Maryann Kaler
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Or Kalchiem-Dekel
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Meixia Gao
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Karen J Keeran
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Kenneth R Jeffries
- Animal Surgery and Resources Core Facility, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
5
|
Kulminski AM, Barochia AV, Loika Y, Raghavachari N, Arbeev KG, Wojczynski MK, Thyagarajan B, Vardarajan BN, Christensen K, Yashin AI, Levine SJ. The APOE ε4 allele is associated with a reduction in FEV1/FVC in women: A cross-sectional analysis of the Long Life Family Study. PLoS One 2018; 13:e0206873. [PMID: 30412599 PMCID: PMC6226172 DOI: 10.1371/journal.pone.0206873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Murine studies have shown that apolipoprotein E modulates pulmonary function during development, aging, and allergen-induced airway disease. It is not known whether the polymorphic human APOE gene influences pulmonary function. OBJECTIVES We assessed whether an association exists between the polymorphic human APOE ε2, ε3, and ε4 alleles and pulmonary function among participants in the Long Life Family Study. METHODS Data from 4,468 Caucasian subjects who had genotyping performed for the APOE ε2, ε3, and ε4 alleles were analyzed, with and without stratification by sex. Statistical models were fitted considering the effects of the ε2 allele, defined as ε2/2 or ε2/3 genotypes, and the ε4 allele, defined as ε3/4 or ε4/4 genotypes, which were compared to the ε3/3 genotype. RESULTS The mean FEV1/FVC ratio (the forced expiratory volume in one second divided by the forced vital capacity) was lower among women with the ε4 allele as compared to women with the ε3/3 genotype or the ε2 allele. Carriage of the APOE ε4 allele was associated with FEV1/FVC, which implied lower values. Further analysis showed that the association primarily reflected women without lung disease who were older than 70 years. The association was not mediated by lipid levels, smoking status, body mass index, or cardiovascular disease. CONCLUSIONS This study for the first time identifies that the APOE gene is associated with modified lung physiology in women. This suggests that a link may exist between the APOE ε4 allele, female sex, and a reduction in the FEV1/FVC ratio in older individuals.
Collapse
Affiliation(s)
- Alexander M. Kulminski
- Biodemography of Aging Research Unit, Social Sciences Research Institute, Duke University, Durham, NC, United States of America
| | - Amisha V. Barochia
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America
| | - Yury Loika
- Biodemography of Aging Research Unit, Social Sciences Research Institute, Duke University, Durham, NC, United States of America
| | - Nalini Raghavachari
- National Institute on Aging, Gateway Building, Suite, Bethesda, MD, United States of America
| | - Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Sciences Research Institute, Duke University, Durham, NC, United States of America
| | - Mary K. Wojczynski
- Division of Statistical Genomics, Department of Genetics, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, United States of America
| | - Badri N. Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, United States of America
| | - Kaare Christensen
- The Danish Aging Research Center, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics and Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Sciences Research Institute, Duke University, Durham, NC, United States of America
| | - Stewart J. Levine
- Laboratory of Asthma and Lung Inflammation, Pulmonary Branch, National Heart, Lung, and Blood Institute, Bethesda, MD, United States of America
| |
Collapse
|
6
|
Yao X, Gordon EM, Figueroa DM, Barochia AV, Levine SJ. Emerging Roles of Apolipoprotein E and Apolipoprotein A-I in the Pathogenesis and Treatment of Lung Disease. Am J Respir Cell Mol Biol 2017; 55:159-69. [PMID: 27073971 DOI: 10.1165/rcmb.2016-0060tr] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Emerging roles are being recognized increasingly for apolipoproteins in the pathogenesis and treatment of lung diseases on the basis of their ability to suppress inflammation, oxidative stress, and tissue remodeling, and to promote adaptive immunity and host defense. Apolipoproteins, such as apolipoprotein E (apoE) and apolipoprotein A-I (apoA-I), are important components of lipoprotein particles that facilitate the transport of cholesterol, triglycerides, and phospholipids between plasma and cells. ApoE-containing lipoprotein particles are internalized into cells by low-density lipoprotein receptors (LDLRs), whereas apoA-I can interact with the ATP-binding cassette subfamily A member 1 (ABCA1) transporter to efflux cholesterol and phospholipids out of cells. ApoE and apoA-I also mediate receptor-independent effects, such as binding to and neutralizing LPS. Both apoE and apoA-I are expressed by lung cells, which allows apoE/LDLR- and apoA-I/ABCA1-dependent pathways to modulate normal lung health and the pathogenesis of respiratory diseases, including asthma, acute lung injury, cancer, emphysema, pulmonary fibrosis, and pulmonary hypertension. Data from human studies and research using experimental murine model systems have shown that both apoE and apoA-I pathways play primarily protective roles in lung biology and respiratory disease. Furthermore, apolipoprotein mimetic peptides, corresponding to the LDLR-binding domain of apoE or the class A amphipathic α-helical structure of apoA-I, have antiinflammatory and antioxidant effects that attenuate the severity of lung disease in murine models. Thus, the development of inhaled apolipoprotein mimetic peptides as a novel treatment paradigm could represent a significant advance for patients with respiratory disease who do not respond to current therapies.
Collapse
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth M Gordon
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Debbie M Figueroa
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Amisha V Barochia
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation, Cardiovascular and Pulmonary Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
7
|
Obeidat M, Fishbane N, Nie Y, Chen V, Hollander Z, Tebbutt SJ, Bossé Y, Ng RT, Miller BE, McManus B, Rennard S, Paré PD, Sin DD. The Effect of Statins on Blood Gene Expression in COPD. PLoS One 2015; 10:e0140022. [PMID: 26462087 PMCID: PMC4604084 DOI: 10.1371/journal.pone.0140022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/19/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND COPD is currently the fourth leading cause of death worldwide. Statins are lipid lowering agents with documented cardiovascular benefits. Observational studies have shown that statins may have a beneficial role in COPD. The impact of statins on blood gene expression from COPD patients is largely unknown. OBJECTIVE Identify blood gene signature associated with statin use in COPD patients, and the pathways underpinning this signature that could explain any potential benefits in COPD. METHODS Whole blood gene expression was measured on 168 statin users and 451 non-users from the ECLIPSE study using the Affymetrix Human Gene 1.1 ST microarray chips. Factor Analysis for Robust Microarray Summarization (FARMS) was used to process the expression data. Differential gene expression analysis was undertaken using the Linear Models for Microarray data (Limma) package adjusting for propensity score and surrogate variables. Similarity of the expression signal with published gene expression profiles was performed in ProfileChaser. RESULTS 25 genes were differentially expressed between statin users and non-users at an FDR of 10%, including LDLR, CXCR2, SC4MOL, FAM108A1, IFI35, FRYL, ABCG1, MYLIP, and DHCR24. The 25 genes were significantly enriched in cholesterol homeostasis and metabolism pathways. The resulting gene signature showed correlation with Huntington's disease, Parkinson's disease and acute myeloid leukemia gene signatures. CONCLUSION The blood gene signature of statins' use in COPD patients was enriched in cholesterol homeostasis pathways. Further studies are needed to delineate the role of these pathways in lung biology.
Collapse
Affiliation(s)
- Ma’en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Nick Fishbane
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Yunlong Nie
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Virginia Chen
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Zsuzsanna Hollander
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Scott J. Tebbutt
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Raymond T. Ng
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Bruce E. Miller
- Respiratory Therapy Area Unit, GlaxoSmithKline R&D, King of Prussia, Pennsylvania, United States of America
| | - Bruce McManus
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, Canada
| | - Stephen Rennard
- Division of Pulmonary and Critical Care Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Peter D. Paré
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Barochia AV, Kaler M, Cuento RA, Gordon EM, Weir NA, Sampson M, Fontana JR, MacDonald S, Moss J, Manganiello V, Remaley AT, Levine SJ. Serum apolipoprotein A-I and large high-density lipoprotein particles are positively correlated with FEV1 in atopic asthma. Am J Respir Crit Care Med 2015; 191:990-1000. [PMID: 25692941 DOI: 10.1164/rccm.201411-1990oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Although lipids, apolipoproteins, and lipoprotein particles are important modulators of inflammation, varying relationships exist between these parameters and asthma. OBJECTIVES To determine whether serum lipids and apolipoproteins correlate with the severity of airflow obstruction in subjects with atopy and asthma. METHODS Serum samples were obtained from 154 atopic and nonatopic subjects without asthma, and 159 subjects with atopy and asthma. Serum lipid and lipoprotein levels were quantified using standard diagnostic assays and nuclear magnetic resonance (NMR) spectroscopy. Airflow obstruction was assessed by FEV1% predicted. MEASUREMENTS AND MAIN RESULTS Serum lipid levels correlated with FEV1 only in the subjects with atopy and asthma. Serum levels of high-density lipoprotein (HDL) cholesterol and apolipoprotein A-I (apoA-I) were positively correlated with FEV1 in subjects with atopy and asthma, whereas a negative correlation existed between FEV1 and serum levels of triglycerides, low-density lipoprotein (LDL) cholesterol, apolipoprotein B (apoB), and the apoB/apoA-I ratio. NMR spectroscopy identified a positive correlation between FEV1 and HDLNMR particle size, as well as the concentrations of large HDLNMR particles and total IDLNMR (intermediate-density lipoprotein) particles in subjects with atopy and asthma. In contrast, LDLNMR particle size and concentrations of LDLNMR and VLDLNMR (very-low-density lipoprotein) particles were negatively correlated with FEV1 in subjects with atopy and asthma. CONCLUSIONS In subjects with atopy and asthma, serum levels of apoA-I and large HDLNMR particles are positively correlated with FEV1, whereas serum triglycerides, LDL cholesterol, and apoB are associated with more severe airflow obstruction. These results may facilitate future studies to assess whether apoA-I and large HDLNMR particles can reduce airflow obstruction and disease severity in asthma.
Collapse
|