• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4693410)   Today's Articles (4859)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Liu S, Li S. Multi-model D-vine copula regression model with vine copula-based dependence description. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.107788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
2
Schweidtmann AM, Esche E, Fischer A, Kloft M, Repke J, Sager S, Mitsos A. Machine Learning in Chemical Engineering: A Perspective. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
3
Kim C, Shah M, Sahlodin AM. Design of multi-loop control systems for distillation columns: review of past and recent mathematical tools. CHEMICAL PRODUCT AND PROCESS MODELING 2021. [DOI: 10.1515/cppm-2020-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
4
de Souza AMF, Soares FM, de Castro MAG, Nagem NF, Bitencourt AHDJ, Affonso CDM, de Oliveira RCL. Soft Sensors in the Primary Aluminum Production Process Based on Neural Networks Using Clustering Methods. SENSORS (BASEL, SWITZERLAND) 2019;19:E5255. [PMID: 31795370 PMCID: PMC6929109 DOI: 10.3390/s19235255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/16/2019] [Accepted: 10/22/2019] [Indexed: 11/17/2022]
5
Shokry A, Vicente P, Escudero G, Pérez-Moya M, Graells M, Espuña A. Data-driven soft-sensors for online monitoring of batch processes with different initial conditions. Comput Chem Eng 2018. [DOI: 10.1016/j.compchemeng.2018.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
6
Taqvi SA, Tufa LD, Zabiri H, Maulud AS, Uddin F. Multiple Fault Diagnosis in Distillation Column Using Multikernel Support Vector Machine. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03360] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
7
Bidar B, Khalilipour MM, Shahraki F, Sadeghi J. A data-driven soft-sensor for monitoring ASTM-D86 of CDU side products using local instrumental variable (LIV) technique. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
8
Sun SB, He YY, Zhou SD, Yue ZJ. A Data-Driven Response Virtual Sensor Technique with Partial Vibration Measurements Using Convolutional Neural Network. SENSORS 2017;17:s17122888. [PMID: 29231868 PMCID: PMC5750548 DOI: 10.3390/s17122888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/04/2017] [Accepted: 12/08/2017] [Indexed: 11/16/2022]
9
Mehta S, Ramani H, Yelgatte NN, Rahman I. Recursive Orthogonal Least Square Based Soft Sensor for Batch Distillation. CHEMICAL PRODUCT AND PROCESS MODELING 2016. [DOI: 10.1515/cppm-2015-0071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
10
Jin H, Chen X, Wang L, Yang K, Wu L. Adaptive Soft Sensor Development Based on Online Ensemble Gaussian Process Regression for Nonlinear Time-Varying Batch Processes. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01495] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
11
Multi-model adaptive soft sensor modeling method using local learning and online support vector regression for nonlinear time-variant batch processes. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2015.03.038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
12
Yu J. Multiway Gaussian Mixture Model Based Adaptive Kernel Partial Least Squares Regression Method for Soft Sensor Estimation and Reliable Quality Prediction of Nonlinear Multiphase Batch Processes. Ind Eng Chem Res 2012. [DOI: 10.1021/ie3020186] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Ge Z, Song Z, Gao F. Statistical Prediction of Product Quality in Batch Processes with Limited Batch-Cycle Data. Ind Eng Chem Res 2012. [DOI: 10.1021/ie202554r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Liu Y, Gao Z, Li P, Wang H. Just-in-Time Kernel Learning with Adaptive Parameter Selection for Soft Sensor Modeling of Batch Processes. Ind Eng Chem Res 2012. [DOI: 10.1021/ie201650u] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
15
Xu W, Zhang L, Gu X. Soft sensor for ammonia concentration at the ammonia converter outlet based on an improved particle swarm optimization and BP neural network. Chem Eng Res Des 2011. [DOI: 10.1016/j.cherd.2010.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
16
Ko YD, Shang H. A neural network-based soft sensor for particle size distribution using image analysis. POWDER TECHNOL 2011. [DOI: 10.1016/j.powtec.2011.06.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
17
Ge Z, Song Z. Semisupervised Bayesian method for soft sensor modeling with unlabeled data samples. AIChE J 2010. [DOI: 10.1002/aic.12422] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
18
Ge Z, Song Z. Nonlinear Soft Sensor Development Based on Relevance Vector Machine. Ind Eng Chem Res 2010. [DOI: 10.1021/ie101146d] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
19
Liu Y, Hu N, Wang H, Li P. Soft Chemical Analyzer Development Using Adaptive Least-Squares Support Vector Regression with Selective Pruning and Variable Moving Window Size. Ind Eng Chem Res 2009. [DOI: 10.1021/ie8012709] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA