1
|
Lopatin AV. Old World Fruit Bats (Pteropodidae, Chiroptera) from the Pleistocene of Vietnam. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2024; 517:96-105. [PMID: 38902557 DOI: 10.1134/s0012496624600143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Isolated teeth of a lesser short-nosed fruit bat Cynopterus brachyotis (Müller, 1838), a fulvous fruit bat Rousettus leschenaultii (Desmarest, 1820), and a dawn bat Eonycteris spelaea (Dobson, 1871) are described from the Middle Pleistocene Tham Hai cave locality in northern Vietnam (Lang Son Province). These are the first fossil findings of the Old World fruit bats in Vietnam. The Middle Pleistocene association of Pteropodidae from the Tham Hai locality may largely reflect the composition of species that roosted in local caves.
Collapse
Affiliation(s)
- A V Lopatin
- Borissiak Paleontological Institute, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
2
|
Mitchell DR, Sherratt E, Weisbecker V. Facing the facts: adaptive trade-offs along body size ranges determine mammalian craniofacial scaling. Biol Rev Camb Philos Soc 2024; 99:496-524. [PMID: 38029779 DOI: 10.1111/brv.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
The mammalian cranium (skull without lower jaw) is representative of mammalian diversity and is thus of particular interest to mammalian biologists across disciplines. One widely retrieved pattern accompanying mammalian cranial diversification is referred to as 'craniofacial evolutionary allometry' (CREA). This posits that adults of larger species, in a group of closely related mammals, tend to have relatively longer faces and smaller braincases. However, no process has been officially suggested to explain this pattern, there are many apparent exceptions, and its predictions potentially conflict with well-established biomechanical principles. Understanding the mechanisms behind CREA and causes for deviations from the pattern therefore has tremendous potential to explain allometry and diversification of the mammalian cranium. Here, we propose an amended framework to characterise the CREA pattern more clearly, in that 'longer faces' can arise through several kinds of evolutionary change, including elongation of the rostrum, retraction of the jaw muscles, or a more narrow or shallow skull, which all result in a generalised gracilisation of the facial skeleton with increased size. We define a standardised workflow to test for the presence of the pattern, using allometric shape predictions derived from geometric morphometrics analysis, and apply this to 22 mammalian families including marsupials, rabbits, rodents, bats, carnivores, antelopes, and whales. Our results show that increasing facial gracility with size is common, but not necessarily as ubiquitous as previously suggested. To address the mechanistic basis for this variation, we then review cranial adaptations for harder biting. These dictate that a more gracile cranium in larger species must represent a structural sacrifice in the ability to produce or withstand harder bites, relative to size. This leads us to propose that facial gracilisation in larger species is often a product of bite force allometry and phylogenetic niche conservatism, where more closely related species tend to exhibit more similar feeding ecology and biting behaviours and, therefore, absolute (size-independent) bite force requirements. Since larger species can produce the same absolute bite forces as smaller species with less effort, we propose that relaxed bite force demands can permit facial gracility in response to bone optimisation and alternative selection pressures. Thus, mammalian facial scaling represents an adaptive by-product of the shifting importance of selective pressures occurring with increased size. A reverse pattern of facial 'shortening' can accordingly also be found, and is retrieved in several cases here, where larger species incorporate novel feeding behaviours involving greater bite forces. We discuss multiple exceptions to a bite force-mediated influence on facial proportions across mammals which lead us to argue that ecomorphological specialisation of the cranium is likely to be the primary driver of facial scaling patterns, with some developmental constraints as possible secondary factors. A potential for larger species to have a wider range of cranial functions when less constrained by bite force demands might also explain why selection for larger sizes seems to be prevalent in some mammalian clades. The interplay between adaptation and constraint across size ranges thus presents an interesting consideration for a mechanistically grounded investigation of mammalian cranial allometry.
Collapse
Affiliation(s)
- D Rex Mitchell
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| | - Emma Sherratt
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- South Australian Museum, Adelaide, South Australia, 5000, Australia
| | - Vera Weisbecker
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia, 5001, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
3
|
Vanderduys EP, Caley P, McKeown A, Martin JM, Pavey C, Westcott D. Population trends in the vulnerable Grey-headed flying-fox, Pteropus poliocephalus; results from a long-term, range-wide study. PLoS One 2024; 19:e0298530. [PMID: 38512935 PMCID: PMC10956843 DOI: 10.1371/journal.pone.0298530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/25/2024] [Indexed: 03/23/2024] Open
Abstract
Monitoring is necessary for the management of any threatened species if its predicament and status are to improve. Monitoring establishes baseline data for tracking trends in distribution and abundance and is a key tool for informing threatened species management. Across much of the Old World, bats in the genus Pteropus (Pteropodidae, Chiroptera) face significant threats from habitat loss, conflict with humans, and hunting. Despite conflict with humans and their threatened status, few Pteropus are being monitored. Often, this is because of difficulties associated with their high mobility, large and easily disturbed aggregations, and their use of unknown or remote habitat. Here we describe 10 years of results from the National Flying-fox Monitoring Program (NFFMP) for the grey-headed flying-fox, (Pteropus poliocephalus) in Australia. Range-wide quarterly surveys were conducted over a three-day period since November 2012 using standardized methods appropriate to conditions encountered at each roost. For our analysis of the population and its trend, we used a state-space model to account for the ecology of the grey-headed flying-fox and the errors associated with the surveying process. Despite the general perception that the species is in decline, our raw data and the modelled population trend suggest the grey-headed flying-fox population has remained stable during the NFFMP period, with the range also stable. These results indicate that the species' extreme mobility and broad diet bestow it with a high level of resilience to various disturbance events. Long-term, range-wide studies such as this one, are crucial for understanding relatively long-lived and highly nomadic species such as the grey-headed flying-fox. The outcomes of this study highlight the need for such systematic population monitoring of all threatened Pteropus species.
Collapse
Affiliation(s)
- Eric Peter Vanderduys
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - Peter Caley
- Data61, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Adam McKeown
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Adelaide, South Australia, Australia
| | - John M. Martin
- Wildlife Services, Ecosure, Brisbane, Queensland, Australia
| | - Chris Pavey
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, Queensland, Australia
| | - David Westcott
- Environment, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Atherton, Queensland, Australia
| |
Collapse
|
4
|
Maugoust J, Orliac MJ. Anatomical correlates and nomenclature of the chiropteran endocranial cast. Anat Rec (Hoboken) 2023; 306:2791-2829. [PMID: 37018745 DOI: 10.1002/ar.25206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Bats form a diverse group of mammals that are highly specialized in active flight and ultrasound echolocation. These specializations rely on adaptations that reflect on their morphoanatomy and have been tentatively linked to brain morphology and volumetry. Despite their small size and fragility, bat crania and natural braincase casts ("endocasts") have been preserved in the fossil record, which allows for investigating brain evolution and inferring paleobiology. Advances in imaging techniques have allowed virtual extraction of internal structures, assuming that the shape of the endocast reflects soft organ morphology. However, there is no direct correspondence between the endocast and internal structures because meninges and vascular tissues mark the inner braincase together with the brain they surround, resulting in a mosaic morphology of the endocast. The hypothesis suggesting that the endocast reflects the brain in terms of both external shape and volume has drastic implications when addressing brain evolution, but it has been rarely discussed. To date, only a single study addressed the correspondence between the brain and braincase in bats. Taking advantage of the advent of imaging techniques, we reviewed the anatomical, neuroanatomical, and angiological literature and compare this knowledge available on bat's braincase anatomy with anatomical observations using a sample of endocranial casts representing most modern bat families. Such comparison allows to propose a Chiroptera-scale nomenclature for future descriptions and comparisons among bat endocasts. Describing the imprints of the tissues surrounding the brain also allows to address to what extent brain features can be blurred or hidden (e.g., hypophysis, epiphysis, colliculi, flocculus). Furthermore, this approach encourages further study to formally test the proposed hypotheses.
Collapse
Affiliation(s)
- Jacob Maugoust
- Institut des Sciences de l'Evolution de Montpellier, département CHANGE, équipe Paléontologie, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| | - Maeva Judith Orliac
- Institut des Sciences de l'Evolution de Montpellier, département CHANGE, équipe Paléontologie, UMR 5554 Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, Montpellier Cedex 5, 34095, France
| |
Collapse
|
5
|
Weber N, Nagy M, Markotter W, Schaer J, Puechmaille SJ, Sutton J, Dávalos LM, Dusabe MC, Ejotre I, Fenton MB, Knörnschild M, López-Baucells A, Medellin RA, Metz M, Mubareka S, Nsengimana O, O'Mara MT, Racey PA, Tuttle M, Twizeyimana I, Vicente-Santos A, Tschapka M, Voigt CC, Wikelski M, Dechmann DK, Reeder DM. Robust evidence for bats as reservoir hosts is lacking in most African virus studies: a review and call to optimize sampling and conserve bats. Biol Lett 2023; 19:20230358. [PMID: 37964576 PMCID: PMC10646460 DOI: 10.1098/rsbl.2023.0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.
Collapse
Affiliation(s)
- Natalie Weber
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
| | - Martina Nagy
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Wanda Markotter
- Centre for Viral Zoonoses, Department of Medical Virology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Juliane Schaer
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Sébastien J. Puechmaille
- ISEM, University of Montpellier, Montpellier, France
- Institut Universitaire de France, Paris, France
- Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | | | - Liliana M. Dávalos
- Department of Ecology and Evolution and Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, USA
| | | | - Imran Ejotre
- Institute of Biology, Humboldt University, Berlin, Germany
- Muni University, Arua, Uganda
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mirjam Knörnschild
- Museum für Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
- Evolutionary Ethology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Rodrigo A. Medellin
- Institute of Ecology, National Autonomous University of Mexico, Mexico City, Mexico
| | | | - Samira Mubareka
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - M. Teague O'Mara
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Bat Conservation International Austin, TX, USA
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USA
| | - Paul A. Racey
- Centre for Ecology and Conservation, University of Exeter, Exeter, UK
| | - Merlin Tuttle
- Merlin Tuttle's Bat Conservation, Austin, TX USA
- Department of Integrative Biology, University of Texas, Austin, USA
| | | | - Amanda Vicente-Santos
- Graduate Program in Population Biology, Ecology and Emory University, Atlanta, GA, USA
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Marco Tschapka
- University of Ulm, Institute of Evolutionary Ecology and Conservation Genomics, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | | | - Martin Wikelski
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dina K.N. Dechmann
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
6
|
Evolution of CCR5 and CCR2 Genes in Bats Showed Multiple Independent Gene Conversion Events. Viruses 2022; 14:v14020169. [PMID: 35215768 PMCID: PMC8877049 DOI: 10.3390/v14020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
Chemokine receptors are an important determinant for the infectiousness of different pathogens, which are able to target the host cells by binding to the extracellular domains of these proteins. This is the mechanism of infection of HIV-1, among other concerning human diseases. Over the past years, it has been shown that two chemokine receptors, CCR2 and CCR5, have been shaped by events of gene conversion in different mammalian lineages, which has been linked to a possible selective advantage against pathogens. Here, by taking advantage of available bat genomes, we present the first insight of CCR2 and CCR5 evolution within the Chiroptera order. In total, four independent events of recombination between CCR2 and CCR5 were detected: two in a single species, Miniopterus natalensis; one in two species from the Rhinolophoidea superfamily; and one in four species from the Pteropodidae family. The regions affected by the gene conversions were generally extensive and always encompassed extracellular domains. Overall, we demonstrate that CCR2 and CCR5 have been subject to extensive gene conversion in multiple species of bats. Considering that bats are known to be large reservoirs of virus in nature, these results might indicate that chimeric CCR2-CCR5 genes might grant some bat species a selective advantage against viruses that rely in the extracellular portions of either CCR2 or CCR5 as gateways into the cell.
Collapse
|
7
|
OUP accepted manuscript. J Mammal 2022. [DOI: 10.1093/jmammal/gyac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Nesi N, Tsagkogeorga G, Tsang SM, Nicolas V, Lalis A, Scanlon AT, Riesle-Sbarbaro SA, Wiantoro S, Hitch AT, Juste J, Pinzari CA, Bonaccorso FJ, Todd CM, Lim BK, Simmons NB, McGowen MR, Rossiter SJ. Interrogating Phylogenetic Discordance Resolves Deep Splits in the Rapid Radiation of Old World Fruit Bats (Chiroptera: Pteropodidae). Syst Biol 2021; 70:1077-1089. [PMID: 33693838 PMCID: PMC8513763 DOI: 10.1093/sysbio/syab013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/27/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
The family Pteropodidae (Old World fruit bats) comprises $>$200 species distributed across the Old World tropics and subtropics. Most pteropodids feed on fruit, suggesting an early origin of frugivory, although several lineages have shifted to nectar-based diets. Pteropodids are of exceptional conservation concern with $>$50% of species considered threatened, yet the systematics of this group has long been debated, with uncertainty surrounding early splits attributed to an ancient rapid diversification. Resolving the relationships among the main pteropodid lineages is essential if we are to fully understand their evolutionary distinctiveness, and the extent to which these bats have transitioned to nectar-feeding. Here we generated orthologous sequences for $>$1400 nuclear protein-coding genes (2.8 million base pairs) across 114 species from 43 genera of Old World fruit bats (57% and 96% of extant species- and genus-level diversity, respectively), and combined phylogenomic inference with filtering by information content to resolve systematic relationships among the major lineages. Concatenation and coalescent-based methods recovered three distinct backbone topologies that were not able to be reconciled by filtering via phylogenetic information content. Concordance analysis and gene genealogy interrogation show that one topology is consistently the best supported, and that observed phylogenetic conflicts arise from both gene tree error and deep incomplete lineage sorting. In addition to resolving long-standing inconsistencies in the reported relationships among major lineages, we show that Old World fruit bats have likely undergone at least seven independent dietary transitions from frugivory to nectarivory. Finally, we use this phylogeny to identify and describe one new genus. [Chiroptera; coalescence; concordance; incomplete lineage sorting; nectar feeder; species tree; target enrichment.].
Collapse
Affiliation(s)
- Nicolas Nesi
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Georgia Tsagkogeorga
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Susan M Tsang
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
- Zoology Section, National Museum of Natural History, Manila, Philippines
| | - Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Aude Lalis
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Annette T Scanlon
- School of Natural and Built Environments, University of South Australia, Mawson Lakes, SA, Australia
| | - Silke A Riesle-Sbarbaro
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Institute of Zoology, Zoological Society of London, London, UK
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Berlin, Germany
| | - Sigit Wiantoro
- Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences, Cibinong, Indonesia
| | - Alan T Hitch
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, CA, USA
| | - Javier Juste
- Estación Biológica de Doñana (CSIC), Avda. Américo Vespucio, Sevilla, Spain
| | | | | | - Christopher M Todd
- The Hawkesbury institute for the Environment, Western Sydney University, Australia
| | - Burton K Lim
- Royal Ontario Museum, Toronto, ON M5S 2C6, Canada
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, USA
| | - Michael R McGowen
- Department of Vertebrate Zoology, Smithsonian National Museum of Natural History, Washington, DC, USA
| | - Stephen J Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
9
|
Loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats. Proc Natl Acad Sci U S A 2021; 118:2021516118. [PMID: 33479172 PMCID: PMC7848599 DOI: 10.1073/pnas.2021516118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The sense of taste provides key information on diet, but evolution of taste receptor genes in vertebrates is sometimes unable to predict their feeding ecology. Here we use behavioral experiments and functional assays to demonstrate the loss of sweet taste despite the conservation of sweet receptor genes in insectivorous bats. Although sweet taste receptor genes were highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed dramatic divergence in two bat species with distinct diets: the insectivorous bat showed no preference for natural sugars, whereas the frugivorous bat showed strong preferences for sucrose and fructose. Our cell-based assays from multiple representative bat species across the phylogeny further supported the behavioral preference tests. The evolution of taste perception is usually associated with the ecology and dietary changes of organisms. However, the association between feeding ecology and taste receptor evolution is unclear in some lineages of vertebrate animals. One example is the sweet taste receptor gene Tas1r2. Previous analysis of partial sequences has revealed that Tas1r2 has undergone equally strong purifying selection between insectivorous and frugivorous bats. To test whether the sweet taste function is also important in bats with contrasting diets, we examined the complete coding sequences of both sweet taste receptor genes (Tas1r2 and Tas1r3) in 34 representative bat species. Although these two genes are highly conserved between frugivorous and insectivorous bats at the sequence level, our behavioral experiments revealed that an insectivorous bat (Myotis ricketti) showed no preference for natural sugars, whereas the frugivorous species (Rousettus leschenaultii) showed strong preferences for sucrose and fructose. Furthermore, while both sweet taste receptor genes are expressed in the taste tissue of insectivorous and frugivorous bats, our cell-based assays revealed striking functional divergence: the sweet taste receptors of frugivorous bats are able to respond to natural sugars whereas those of insectivorous bats are not, which is consistent with the behavioral preference tests, suggesting that functional evolution of sweet taste receptors is closely related to diet. This comprehensive study suggests that using sequence conservation alone could be misleading in inferring protein and physiological function and highlights the power of combining behavioral experiments, expression analysis, and functional assays in molecular evolutionary studies.
Collapse
|
10
|
ACE2 receptor usage reveals variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species. Nat Ecol Evol 2021; 5:600-608. [PMID: 33649547 DOI: 10.1038/s41559-021-01407-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
Bats are the suggested natural hosts for severe acute respiratory syndrome coronavirus (SARS-CoV) and the causal agent of the coronavirus disease 2019 (COVID-19) pandemic, SARS-CoV-2. The interaction of viral spike proteins with their host receptor angiotensin-converting enzyme 2 (ACE2) is a critical determinant of potential hosts and cross-species transmission. Here we use virus-host receptor binding and infection assays to examine 46 ACE2 orthologues from phylogenetically diverse bat species, including those in close and distant contact with humans. We found that 24, 21 and 16 of them failed to support infection by SARS-CoV, SARS-CoV-2 or both viruses, respectively. Furthermore, we confirmed that infection assays in human cells were consistent with those in two bat cell lines. Additionally, we used genetic and functional analyses to identify critical residues in bat ACE2 receptors associated with viral entry restrictions. Our results suggest that many bat species may not be the potential hosts of one or both viruses and that no correlation was identified between proximity to humans and probability of being natural hosts of SARS-CoV or SARS-CoV-2. This study demonstrates dramatic variation in susceptibility to SARS-CoV and SARS-CoV-2 infection among bat species and adds knowledge towards a better understanding of coronavirus-bat interaction.
Collapse
|
11
|
Almeida FC, Amador LI, Giannini NP. Explosive radiation at the origin of Old World fruit bats (Chiroptera, Pteropodidae). ORG DIVERS EVOL 2021. [DOI: 10.1007/s13127-021-00480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
McKee CD, Islam A, Luby SP, Salje H, Hudson PJ, Plowright RK, Gurley ES. The Ecology of Nipah Virus in Bangladesh: A Nexus of Land-Use Change and Opportunistic Feeding Behavior in Bats. Viruses 2021; 13:169. [PMID: 33498685 PMCID: PMC7910977 DOI: 10.3390/v13020169] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Nipah virus is a bat-borne paramyxovirus that produces yearly outbreaks of fatal encephalitis in Bangladesh. Understanding the ecological conditions that lead to spillover from bats to humans can assist in designing effective interventions. To investigate the current and historical processes that drive Nipah spillover in Bangladesh, we analyzed the relationship among spillover events and climatic conditions, the spatial distribution and size of Pteropus medius roosts, and patterns of land-use change in Bangladesh over the last 300 years. We found that 53% of annual variation in winter spillovers is explained by winter temperature, which may affect bat behavior, physiology, and human risk behaviors. We infer from changes in forest cover that a progressive shift in bat roosting behavior occurred over hundreds of years, producing the current system where a majority of P. medius populations are small (median of 150 bats), occupy roost sites for 10 years or more, live in areas of high human population density, and opportunistically feed on cultivated food resources-conditions that promote viral spillover. Without interventions, continuing anthropogenic pressure on bat populations similar to what has occurred in Bangladesh could result in more regular spillovers of other bat viruses, including Hendra and Ebola viruses.
Collapse
Affiliation(s)
- Clifton D. McKee
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ausraful Islam
- Infectious Diseases Division, icddr,b, Dhaka 1212, Bangladesh;
| | - Stephen P. Luby
- Infectious Diseases and Geographic Medicine Division, Stanford University, Stanford, CA 94305, USA;
| | - Henrik Salje
- Department of Genetics, Cambridge University, Cambridge CB2 3EJ, UK;
| | - Peter J. Hudson
- Center for Infectious Disease Dynamics, Pennsylvania State University, State College, PA 16801, USA;
| | - Raina K. Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA;
| | - Emily S. Gurley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| |
Collapse
|