1
|
Zhang Y, Xiong Y, Wu X, Huang M, Li Z, Zhao T, Peng P. Injectable Hydrogel With Glycyrrhizic Acid and Asiaticoside-Loaded Liposomes for Wound Healing. J Cosmet Dermatol 2024; 23:3927-3935. [PMID: 39359135 PMCID: PMC11626327 DOI: 10.1111/jocd.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/04/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND Open skin wounds increase the risk of infections and can compromise health. Therefore, applying medications to promote healing at the injury site is crucial. In practice, direct drug delivery is often difficult to maintain for a long time due to rapid absorption or wiping off, which reduces the efficiency of wound healing. Consequently, the development of bioactive materials with both antibacterial and wound-healing properties is highly desirable. METHODS This study synthesized liposomes loaded with glycyrrhizic acid (GA) and asiaticoside (AS) by film dispersion-ultrasonication method, which were then incorporated into a GelMA solution and cross-linked by ultraviolet light to form a bioactive composite hydrogel for wound dressings. RESULTS This hydrogel is conducive to the transport of nutrients and gas exchange. Compared with GelMA hydrogel (swelling rate 69.8% ± 5.7%), the swelling rate of GelMA/Lip@GA@AS is lower, at 52.1% ± 1.0%. GelMA/Lip@GA@AS also has better compression and rheological properties, and the in vitro biodegradability is not significantly different from that of the collagenase-treated group. In addition, the hydrogel polymer has a stable drug release rate, good biocompatibility, and an angiogenic promoting effect. In vitro experiments prove that, at concentrations of 0.5, 1, 2, and 3 mg/mL, GelMA/Lip@GA@AS can inhibit the growth of Staphylococcus aureus. CONCLUSION We synthesized GelMA/Lip@GA@AS hydrogel and found it possesses advantageous mechanical properties, rheology, and biodegradability. Experimental results in vitro showed that the bioactive hydrogel could efficiently release drugs, exhibit biocompatibility, and enhance angiogenesis and antimicrobial effects. These results suggest the promising application of GelMA/Lip@GA@AS hydrogel in wound-dressing materials.
Collapse
Affiliation(s)
- Yunqi Zhang
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Yu Xiong
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Xiaochun Wu
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Maofang Huang
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Zhengjie Li
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Tie Zhao
- Department of PharmacyGuangzhou Dermatology HospitalGuangzhouChina
| | - Peng Peng
- Orthopedics DepartmentGuangdong Provincial Second Hospital of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Engineering Technology Research Institute of Traditional Chinese MedicineGuangzhouChina
- Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese MedicineGuangzhouChina
| |
Collapse
|
2
|
Jeong Y, Han X, Vyas K, Irudayaraj J. Microbial β-Glucuronidase Hydrogel Beads Activate Chemotherapeutic Prodrug. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28093-28103. [PMID: 38775441 PMCID: PMC11164065 DOI: 10.1021/acsami.4c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Bacteria-assisted chemotherapeutics have been highlighted as an alternative or supplementary approach to treating cancer. However, dynamic cancer-microbe studies at the in vitro level have remained a challenge to show the impact and effectiveness of microbial therapeutics due to the lack of relevant coculture models. Here, we demonstrate a hydrogel-based compartmentalized system for prodrug activation of a natural ingredient of licorice root, glycyrrhizin, by microbial β-glucuronidase (GUS). Hydrogel containment with Lactococcus lactis provides a favorable niche to encode GUS enzymes with excellent permeability and can serve as an independent ecosystem in the transformation of pro-apoptotic materials. Based on the confinement system of GUS expressing microbes, we quantitatively evaluated chemotherapeutic effects enhanced by microbial GUS enzyme in two dynamic coculture models in vitro (i.e., 2D monolayered cancer cells and 3D tumor spheroids). Our findings support the processes of prodrug conversion mediated by bacterial GUS enzyme which can enhance the therapeutic efficacy of a chemotherapy drug under dynamic coculture conditions. We expect our in vitro coculture platforms can be used for the evaluation of pharmacological properties and biological activity of xenobiotics as well as the potential impact of microbes on cancer therapeutics.
Collapse
Affiliation(s)
- Yoon Jeong
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
| | - Khushali Vyas
- School
of Molecular and Cellular Biology, University
of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, Urbana, Illinois 60801, United States
- Cancer
Center at Illinois, Carle-Illinois College
of Medicine, University of Illinois at Urbana−Champaign, Urbana, Illinois 60801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 60801, United States
- Carl
R. Woese Institute for Genomic Biology, Beckman Institute, Holonyak Micro and Nanotechnology Laboratory, Urbana, Illinois 60801, United States
| |
Collapse
|
3
|
Mohapatra S, Kumar PA, Aggarwal A, Iqubal A, Mirza MA, Iqbal Z. Phytotherapeutic approach for conquering menopausal syndrome and osteoporosis. Phytother Res 2024; 38:2728-2763. [PMID: 38522005 DOI: 10.1002/ptr.8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 03/25/2024]
Abstract
Women face a significant change in their reproductive health as menopause sets in. It is marred with numerous physiological changes that negatively impact their quality of life. This universal, transition phase is associated with menopausal and postmenopausal syndrome, which may spread over 2-10 years. This creates a depletion of female hormones causing physical, mental, sexual and social problems and may, later on, manifest as postmenopausal osteoporosis leading to weak bones, causing fractures and ultimately morbidity and mortality. Menopausal hormone therapy generally encompasses the correction of hormone balance through various pharmacological agents, but the associated side effects often lead to cessation of therapy with poor clinical outcomes. However, it has been noticed that phytotherapeutics is trusted by women for the amelioration of symptoms related to menopause and for improving bone health. This could primarily be due to their reduced side effects and lesser costs. This review attempts to bring forth the suitability of phytotherapeutics/herbals for the management of menopausal, postmenopausal syndrome, and menopausal osteoporosis through several published research. It tries to enlist the available botanicals with their key constituents and mechanism of action for mitigating symptoms associated with menopause as well as osteoporosis. It also includes a list of a few herbal commercial products available for these complications. The article also intends to collate the findings of various clinical trials and patents available in this field and provide a window for newer research avenues in this highly important yet ignored health segment.
Collapse
Affiliation(s)
- Sradhanjali Mohapatra
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - P Ayash Kumar
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Akshay Aggarwal
- Sun Pharmaceutical Industries Limited, R&D Centre, Gurugram, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohd Aamir Mirza
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Zeenat Iqbal
- Nanotechnology Lab, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Li Y, Zhao M, Lin Y, Jiang X, Jin L, Ye P, Lu Y, Pei R, Jiang L. Licochalcone A induces mitochondria-dependent apoptosis and interacts with venetoclax in acute myeloid leukemia. Eur J Pharmacol 2024; 968:176418. [PMID: 38350590 DOI: 10.1016/j.ejphar.2024.176418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
The management of patients with acute myeloid leukemia (AML) remains a challenge because of the complexity and heterogeneity of this malignancy. Despite the recent approval of several novel targeted drugs, resistance seems inevitable, and clinical outcomes are still suboptimal. Increasing evidence supports the use of natural plants as an important source of anti-leukemic therapeutics. Licochalcone A (LCA) is an active flavonoid isolated from the roots of licorice, Glycyrrhiza uralensis Fisch., possessing extensive anti-tumor activities. However, its effects on AML and the underlying mechanisms remain unknown. Here, we showed that LCA decreased the viability of established human AML cell lines in a dose- and time-dependent manner. LCA significantly induced mitochondrial apoptotic cell death, accompanied by the downregulation of MCL-1, upregulation of BIM, truncation of BID, and cleavage of PARP. A prominent decline in the phosphorylation of multiple critical molecules, including AKT, glycogen synthase kinase-3β (GSK3β), ERK, and P38 was observed upon LCA treatment, indicating PI3K and MAPK signals were suppressed. Both transcription and translation of c-Myc were also inhibited by LCA. In addition, LCA enhanced the cytotoxicity of the BCL-2 inhibitor venetoclax. Furthermore, the anti-survival and pro-apoptotic effects were confirmed in primary blasts from 10 patients with de novo AML. Thus, our results expand the applications of LCA, which can be regarded as a valuable agent in treating AML.
Collapse
Affiliation(s)
- Youhong Li
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Mengting Zhao
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Ye Lin
- Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China
| | - Xia Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Lili Jin
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Peipei Ye
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Ying Lu
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China
| | - Renzhi Pei
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Institute of Hematology, Ningbo University, Ningbo, China.
| | - Lei Jiang
- Department of Hematology, The Affiliated People's Hospital of Ningbo University, Ningbo, China; Department of Pathology and Pathogenic Biology, and Zhejiang Key Laboratory of Pathophysiology, School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
5
|
Sohel M, Zahra Shova FT, shuvo S, Mahjabin T, Mojnu Mia M, Halder D, Islam H, Roman Mogal M, Biswas P, Saha HR, Sarkar BC, Mamun AA. Unveiling the potential anti-cancer activity of calycosin against multivarious cancers with molecular insights: A promising frontier in cancer research. Cancer Med 2024; 13:e6924. [PMID: 38230908 PMCID: PMC10905684 DOI: 10.1002/cam4.6924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Calycosin may be a potential candidate regarding chemotherapeutic agent, because already some studies against multivarious cancer have been made with this natural compound. AIM This review elucidated a brief overview of previous studies on calycosin potential effects on various cancers and its potential mechanism of action. METHODOLOGY Data retrieved by systematic searches of Google Scholar, PubMed, Science Direct, Web of Science, and Scopus by using keywords including calycosin, cancer types, anti-cancer mechanism, synergistic, and pharmacokinetic and commonly used tools are BioRender, ChemDraw Professional 16.0, and ADMETlab 2.0. RESULTS Based on our review, calycosin is available in nature and effective against around 15 different types of cancer. Generally, the anti-cancer mechanism of this compound is mediated through a variety of processes, including regulation of apoptotic pathways, cell cycle, angiogenesis and metastasis, oncogenes, enzymatic pathways, and signal transduction process. These study conducted in various study models, including in silico, in vitro, preclinical and clinical models. The molecular framework behind the anti-cancer effect is targeting some oncogenic and therapeutic proteins and multiple signaling cascades. Therapies based on nano-formulated calycosin may make excellent nanocarriers for the delivery of this compound to targeted tissue as well as particular organ. This natural compound becomes very effective when combined with other natural compounds and some standard drugs. Moreover, proper use of this compound can reverse resistance to existing anti-cancer drugs through a variety of strategies. Calycosin showed better pharmacokinetic properties with less toxicity in human bodies. CONCLUSION Calycosin exhibits excellent potential as a therapeutic drug against several cancer types and should be consumed until standard chemotherapeutics are available in pharma markets.
Collapse
Affiliation(s)
- Md Sohel
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Fatema Tuj Zahra Shova
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Shahporan shuvo
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Taiyara Mahjabin
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md. Mojnu Mia
- Biotechnology and Genetic EngineeringMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Dibyendu Halder
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Hafizul Islam
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Md Roman Mogal
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| | - Partha Biswas
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and TechnologyJashore University of Science and Technology (JUST)JashoreBangladesh
| | - Hasi Rani Saha
- Biochemistry and Molecular BiologyPrimeasia UniversityDhakaBangladesh
| | | | - Abdullah Al Mamun
- Biochemistry and Molecular BiologyMawlana Bhashani Science and Technology UniversityTangailBangladesh
| |
Collapse
|
6
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Chimedtseren I, Niimi T, Inoue M, Furukawa H, Imura H, Minami K, Garidkhuu A, Gantugs AE, Natsume N. Prevention of cleft lip and/or palate in A/J mice by licorice solution. Congenit Anom (Kyoto) 2023; 63:141-146. [PMID: 37269175 DOI: 10.1111/cga.12527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 04/03/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
Cleft lip and/or palate anomalies (CL ± P) are the most frequent birth defects affecting the orofacial region in humans. Although their etiology remains unclear, the involvement of environmental and genetic risk factors is known. This observational study aimed to investigate how the use of crude drugs with estrogen activity influenced an animal model's ability to prevent CL ± P. A/J mice were randomly divided into six experimental groups. Five of these groups consumed a drink containing crude drug licorice root extract, with the following weights attributed to each group: 3 g in group I, 6 g in group II, 7.5 g in group III, 9 g in group IV, and 12 g in group V, whereas a control group consumed tap water. The effect of licorice extract was examined for fetal mortality and fetal orofacial cleft development compared to the control group. The rates for fetal mortality were 11.28%, 7.41%, 9.18%, 4.94%, and 7.90% in groups I, II, III, IV, and V, respectively, compared to 13.51% in the control group. There were no significant differences in the mean weight of alive fetuses in all five groups compared to the control group (0.63 ± 0.12). Group IV showed the lowest orafacial cleft occurrence of 3.20% (8 fetuses) with statistical significance (p = 0.0048) out of 268 live fetuses, whereas the control group had the occurrence of 8.75% (42 fetuses) among 480 live fetuses. Our study showed that the dried licorice root extract may reduce orofacial birth defects in experimental animal studies.
Collapse
Affiliation(s)
- Ichinnorov Chimedtseren
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
| | - Teruyuki Niimi
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
- Cleft Lip and Palate Center, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Division of Speech, Hearing, and Language, Aichi Gakuin University Dental Hospital, Nagoya, Japan
| | - Makoto Inoue
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, Nagoya, Japan
| | - Hiroo Furukawa
- Cleft Lip and Palate Center, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Division of Speech, Hearing, and Language, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Department of Health Science, Faculty of Psychological and Physical Science, Aichi Gakuin University, Nagoya, Aichi, Japan
| | - Hideto Imura
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
- Cleft Lip and Palate Center, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Division of Speech, Hearing, and Language, Aichi Gakuin University Dental Hospital, Nagoya, Japan
| | - Katsuhiro Minami
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
- Cleft Lip and Palate Center, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Division of Speech, Hearing, and Language, Aichi Gakuin University Dental Hospital, Nagoya, Japan
| | - Ariuntuul Garidkhuu
- Department of Public Health, School of Medicine, International University of Health and Welfare, Narita city, Chiba Prefecture, Japan
- School of Dentistry, Mongolian National University of Medical Sciences, Ulaanbaatar, Sukhbaatar duureg, Mongolia
| | - Anar-Erdene Gantugs
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
| | - Nagato Natsume
- Division of Research and Treatment for Oral and Maxillofacial Congenital Anomalies, Aichi Gakuin University, School of Dentistry, Nagoya, Japan
- Cleft Lip and Palate Center, Aichi Gakuin University Dental Hospital, Nagoya, Japan
- Division of Speech, Hearing, and Language, Aichi Gakuin University Dental Hospital, Nagoya, Japan
| |
Collapse
|
8
|
Zhang Y, Sheng Z, Xiao J, Li Y, Huang J, Jia J, Zeng X, Li L. Advances in the roles of glycyrrhizic acid in cancer therapy. Front Pharmacol 2023; 14:1265172. [PMID: 37649893 PMCID: PMC10463042 DOI: 10.3389/fphar.2023.1265172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
Since the first 70 years of reporting cancer chemotherapy, malignant tumors have been the second most common cause of death in children and adults. Currently, the commonly used anti-cancer methods include surgery, chemotherapy, radiotherapy, and immunotherapy. Although these treatment methods could alleviate cancer, they lead to different forms of side effects and have no particularly significant effect on prolonging the patients' life span. Glycyrrhizic acid (GL), a native Chinese herbal extract, has a wide range of pharmacological effects, such as anti-cancer, anti-inflammatory, antioxidant, and immune regulation. In this review, the anti-cancer effects and mechanisms of GL are summarized in various cancers. The inhibition of GL on chemotherapy-induced side effects, including hepatotoxicity, nephrotoxicity, genotoxicity, neurotoxicity and pulmonary toxicity, is highlighted. Therefore, GL may be a promising and ideal drug for cancer therapy.
Collapse
Affiliation(s)
- Yuqian Zhang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Zixuan Sheng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jing Xiao
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Yang Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jie Huang
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
| | - Jinjing Jia
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| | - Xiansi Zeng
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Biochemistry and Molecular Biology, Jiaxing University Medical College, Jiaxing, China
| | - Li Li
- Research Center of Neuroscience, Jiaxing University Medical College, Jiaxing, China
- Department of Physiology, Jiaxing University Medical College, Jiaxing, China
| |
Collapse
|
9
|
Zong L, Wang Y, Song S, Zhang H, Mu S, Liu W, Feng Y, Wang S, Tu Z, Yuan Q, Li L, Pu X. Formulation and Evaluation on Synergetic Anti-Hepatoma Effect of a Chemically Stable and Release-Controlled Nanoself-Assembly with Natural Monomers. Int J Nanomedicine 2023; 18:3407-3428. [PMID: 37377983 PMCID: PMC10292624 DOI: 10.2147/ijn.s408416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Hepatoma is the leading cause of death among liver diseases worldwide. Modern pharmacological studies suggest that some natural monomeric compounds have a significant effect on inhibiting tumor growth. However, poor stability and solubility, and side effects are the main factors limiting the clinical application of natural monomeric compounds. Methods In this paper, drug-co-loaded nanoself-assemblies were selected as a delivery system to improve the chemical stability and solubility of Tanshinone II A and Glycyrrhetinic acid, and to produce a synergetic anti-hepatoma effect. Results The study suggested that the drug co-loaded nanoself-assemblies showed high drug loading capacity, good physical and chemical stability, and controlled release. In vitro cell experiments verified that the drug-co-loaded nanoself-assemblies could increase the cellular uptake and cell inhibitory activity. In vivo studies verified that the drug co-loaded nanoself-assemblies could prolong the MRT0-∞, increase accumulation in tumor and liver tissues, and show strong synergistic anti-tumor effect and good bio-safety in H22 tumor-bearing mice. Conclusion This work indicates that natural monomeric compounds co-loaded nanoself-assemblies would be a potential strategy for the treatment of hepatoma.
Collapse
Affiliation(s)
- Lanlan Zong
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yanling Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shiyu Song
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Huiqi Zhang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shengcai Mu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Wenshang Liu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yu Feng
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shumin Wang
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Ziwei Tu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Qi Yuan
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Luhui Li
- Medical school, Henan Technical Institute, Kaifeng, Henan, 475004, People’s Republic of China
| | - Xiaohui Pu
- School of Pharmacy and Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
10
|
He L, Kang Q, Zhang Y, Chen M, Wang Z, Wu Y, Gao H, Zhong Z, Tan W. Glycyrrhizae Radix et Rhizoma: The popular occurrence of herbal medicine applied in classical prescriptions. Phytother Res 2023. [PMID: 37196671 DOI: 10.1002/ptr.7869] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 04/14/2023] [Accepted: 04/25/2023] [Indexed: 05/19/2023]
Abstract
Glycyrrhizae Radix et Rhizoma is a well-known herbal medicine with a wide range of pharmacological functions that has been used throughout Chinese history. This review presents a comprehensive introduction to this herb and its classical prescriptions. The article discusses the resources and distribution of species, methods of authentication and determination chemical composition, quality control of the original plants and herbal medicines, dosages use, common classical prescriptions, indications, and relevant mechanisms of the active content. Pharmacokinetic parameters, toxicity tests, clinical trials, and patent applications are discussed. The review will provide a good starting point for the research and development of classical prescriptions to develop herbal medicines for clinical use.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zefei Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yonghui Wu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Hetong Gao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
11
|
Al-Hmadi HB, Majdoub S, Chaabane-Banaoues R, Nardoni S, El Mokni R, Dhaouadi H, Piras A, Babba H, Porcedda S, Hammami S. Chemical composition, antifungal and antibiofilm activities of essential oils from Glycyrrhiza foetida (Desf.) growing in Tunisia. Biomed Chromatogr 2023; 37:e5596. [PMID: 36740815 DOI: 10.1002/bmc.5596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
This study was designated to investigate the chemical composition, the antifungal activity and antibiofilm properties of Glycyrrhiza foetida (Desf.) growing in Tunisia and recognized for its pharmacological and therapeutic effects. The chemical analysis of essential oil samples prepared via hydrodistillation of the aerial parts was performed by gas chromatography-mass spectrometry (GC-MS). Moreover, the antifungal activity of G. foetida essential oil was developed against three dermatophyte strains, two molds and Candida spp. yeasts using the broth microdilution assay. According to the percentages, the main constituents are δ-cadinene (13.9%), (E)-caryophyllene (13.2%) and γ-cadinene (8.3%). The efficiency of the essential oil in inhibiting Candida albicans biofilms formation was also evaluated in terms of inhibitory percentages. The results showed that C. albicans and Microsporum canis were the most sensitive to G. foetida essential oil with a complete inhibition at 0.4 and 0.2 mg ml-1 , respectively. Candida albicans biofilm development was reduced by 80% by the volatile oil at a concentration of 0.8 mg ml-1 . The essential oil of G. foetida has a promising role in the control of fungal agents with medical interest and in inhibition of Candida biofilm development.
Collapse
Affiliation(s)
- Hekmat B Al-Hmadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia.,Department of Chemistry, College of Medicine, AL-Muthanna University, Samawah, Iraq
| | - Siwar Majdoub
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Raja Chaabane-Banaoues
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Simona Nardoni
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Ridha El Mokni
- Laboratory of Botany, Cryptogamy and Plant Biology, Department of Pharmaceutical Sciences "A", Faculty of Pharmacy of Monastir BP 207, Avenue Avicenna, University of Monastir, Monastir, Tunisia
| | - Hatem Dhaouadi
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| | - Alessandra Piras
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Hamouda Babba
- LP3M: Laboratory of Medical and Molecular Parasitology-Mycology, B Clinical Biology Department Faculty of Pharmacy, 1 Avicenne Street, University of Monastir, Monastir, Tunisia
| | - Silvia Porcedda
- Department of Chemical and Geological Science, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Italy
| | - Saoussen Hammami
- Research Unit LR21ES04, Environmental and Clean Processes Chemistry Faculty of Sciences of Monastir, Monastir University, Monastir, Tunisia
| |
Collapse
|
12
|
Tuli HS, Garg VK, Mehta JK, Kaur G, Mohapatra RK, Dhama K, Sak K, Kumar A, Varol M, Aggarwal D, Anand U, Kaur J, Gillan R, Sethi G, Bishayee A. Licorice ( Glycyrrhiza glabra L.)-Derived Phytochemicals Target Multiple Signaling Pathways to Confer Oncopreventive and Oncotherapeutic Effects. Onco Targets Ther 2022; 15:1419-1448. [PMID: 36474507 PMCID: PMC9719702 DOI: 10.2147/ott.s366630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/18/2022] [Indexed: 09/10/2023] Open
Abstract
Cancer is a highly lethal disease, and its incidence has rapidly increased worldwide over the past few decades. Although chemotherapeutics and surgery are widely used in clinical settings, they are often insufficient to provide the cure for cancer patients. Hence, more effective treatment options are highly needed. Although licorice has been used as a medicinal herb since ancient times, the knowledge about molecular mechanisms behind its diverse bioactivities is still rather new. In this review article, different anticancer properties (antiproliferative, antiangiogenic, antimetastatic, antioxidant, and anti-inflammatory effects) of various bioactive constituents of licorice (Glycyrrhiza glabra L.) are thoroughly described. Multiple licorice constituents have been shown to bind to and inhibit the activities of various cellular targets, including B-cell lymphoma 2, cyclin-dependent kinase 2, phosphatidylinositol 3-kinase, c-Jun N-terminal kinases, mammalian target of rapamycin, nuclear factor-κB, signal transducer and activator of transcription 3, vascular endothelial growth factor, and matrix metalloproteinase-3, resulting in reduced carcinogenesis in several in vitro and in vivo models with no evident toxicity. Emerging evidence is bringing forth licorice as an anticancer agent as well as bottlenecks in its potential clinical application. It is expected that overcoming toxicity-related obstacles by using novel nanotechnological methods might importantly facilitate the use of anticancer properties of licorice-derived phytochemicals in the future. Therefore, anticancer studies with licorice components must be continued. Overall, licorice could be a natural alternative to the present medication for eradicating new emergent illnesses while having just minor side effects.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Vivek Kumar Garg
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, Punjab, India
| | - Jinit K Mehta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Shri Vile Parle Kelavani Mandal, Narsee Monjee Institute of Management Studies, Mumbai, Maharashtra, India
| | - Ranjan K Mohapatra
- Department of Chemistry, Government College of Engineering, Keonjhar, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, Indian Council of Agricultural Research-Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | | | - Ajay Kumar
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla, Turkey
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana-Ambala, Haryana, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Jagjit Kaur
- Centre of Excellence in Nanoscale Biophotonics, Graduate School of Biomedical Engineering, Faculty of Engineering, The University of New South Wales, Sydney, Australia
| | - Ross Gillan
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
13
|
Zhou H, Dai C, Cui X, Zhang T, Che Y, Duan K, Yi L, Nguyen AD, Li N, De Souza C, Wan X, Wu Y, Li K, Liu Y, Wu Y. Immunomodulatory and antioxidant effects of Glycyrrhiza uralensis polysaccharide in Lohmann Brown chickens. Front Vet Sci 2022; 9:959449. [PMID: 36090181 PMCID: PMC9458957 DOI: 10.3389/fvets.2022.959449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Glycyrrhiza polysaccharide extract 1 (GPS-1) is a bioactive component isolated from Glycyrrhiza uralensis, also known as Chinese licorice. It appears to be pharmacologically active as an antibacterial, antiviral, and anti-tumor agent. GPS-1 has also been shown to buffer liver health and regulate the immune system. Moreover, GPS-1 is low cost and easy to extract. More study was needed to elucidate the biochemical pathways underlying the immunomodulatory and antioxidant benefits observed in Glycyrrhiza polysaccharide extract 1 (GPS-1). in vitro experiments on chicken lymphocytes and dendritic cells (DCs) show that GPS-1 significantly promotes the proliferation of immune cells and is linked to lymphocytes' secretion of IL-12, IFN-γ, and TNF-α by. DC secretion of NO, IL-2, IL-1β, IFN-γ, TNF-α, and IL-12p70 was also increased significantly. Additionally, GPS-1 also displayed a significant antioxidant effect in vitro, able to scavenge DPPH, hydrogen peroxide, ABTS, and other free radicals like superoxide anions. Separately, GPS-1 was tested in vivo in combination with the Newcastle disease virus (NDV) - attenuated vaccine. 120 Lohmann Brown chickens were vaccinated, while another 30 became the unvaccinated blank control (BC) group. For three consecutive days 1 mL of GPS-1 was administered at doses of 19.53 μg/mL, 9.77 μg/mL, or 4.88 μg/mL to the ND-vaccinated birds, except for the vaccine control (VC), where n = 30 per group. In vivo results show that GPS-1 combined with Newcastle disease (ND) vaccine had the best efficacy at significantly increasing chickens' body weight and ND serum antibody titer, enhancing their secretion of IL-2 and IFN- γ, and promoting the development of immune organs. The results also indicate that GPS-1 was able increase the proliferation of in vitro immune cells and elevate their cytokine secretion, which enhances the body's immune response. GPS-1 also clearly has the potential to be used as an immune adjuvant alongside ND vaccination.
Collapse
Affiliation(s)
- Hui Zhou
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xuejie Cui
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
| | - Yanyun Che
- Engineering Laboratory for National Healthcare Theories and Products of Yunnan Province, College of Pharmaceutical Science, Yunnan University of Chinese Medicine, Kunming, China
| | - Kun Duan
- China Tobacco Henan Industrial Co., Ltd, Zhengzhou, China
| | - Lei Yi
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Department of Animal Science, Huaihua Polytechnic College, Huaihua, China
| | - Audrey D. Nguyen
- Department of Biochemistry and Molecular Medicine, Davis Medical Center, University of California, Sacramento, Sacramento, CA, United States
| | - Nannan Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | | | - Xin Wan
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kun Li
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yuhong Liu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yi Wu
- College of Veterinary Medicine, Institute of Traditional Chinese Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
14
|
Spectrum-effect relationship between HPLC fingerprint and antioxidant of "San-Bai Decoction" extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123380. [PMID: 35908440 DOI: 10.1016/j.jchromb.2022.123380] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022]
Abstract
"San-Bai Decoction" (SBD) has been a traditional Chinese medicine compound preparation for replenishing Qi and promoting blood circulation, whitening skin, and removing blemishes since ancient times. However, its chemical composition and antioxidant activity are not clear thus far, which limits the in-depth study on its pharmacodynamic material basis and efficacy. The objective of this study was to establish the fingerprint profile of SBD, assess its antioxidant activity by measuring 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability, and find the spectrum-effect relationship of SBD by Grey Relation Analysis (GRA) and Partial Least Squares Regression (PLS). In this study, the fingerprint of SBD was established by high performance liquid chromatography (HPLC), and 20 common peaks were found, among which 6 peaks were designated. The similarities between the fingerprints of 12 batches of SBD and the reference fingerprint (R) were all greater than 0.900. Meanwhile, the antioxidant activities of all batches were concentration-dependent in their linear regression equation. The result of GRA showed that the correlation order of 20 common peaks for DPPH radical scavenging was X13 > X7 > X3 > X6 > X10 > X11 > X4 > X12 > X2 > X18 > X9 > X5 > X19 > X1 > X20 > X16 > X17 > X15 > X8 > X14. At the same time, PLS study demonstrated that the contribution of six identified characteristic peaks to DPPH radical scavenging ability was X1 = X7 > X6 > X19 > X20 > X16. In this study, the spectrum-effect relationship of SBD between its HPLC fingerprint and the antioxidant activity can be used to screen the pharmacodynamic substance basis of its antioxidant action and lay the foundation for establishing quality standards and product development.
Collapse
|
15
|
Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153999. [PMID: 35220130 DOI: 10.1016/j.phymed.2022.153999] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.
Collapse
Affiliation(s)
- Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Gamaa St., Giza 12211, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
16
|
Jain R, Hussein MA, Pierce S, Martens C, Shahagadkar P, Munirathinam G. Oncopreventive and oncotherapeutic potential of licorice triterpenoid compound glycyrrhizin and its derivatives: Molecular insights. Pharmacol Res 2022; 178:106138. [PMID: 35192957 PMCID: PMC8857760 DOI: 10.1016/j.phrs.2022.106138] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a well-known natural herb used to treat different ailments since ancient times. Glycyrrhizin (GL), which is the primary triterpenoid compound of licorice extract, has been known to have broad-spectrum pharmacological effects. GL is cleaved into glucuronide and the aglycone, glycyrrhetinic acid (GA), which exists in two stereoisomeric forms: 18α- and 18β-GA. It is well documented that GL and GA have great potential as anti-inflammatory, anticancer, antiviral, anti-diabetic, antioxidant, and hepatoprotective agents. Studies undertaken during the coronavirus disease 2019 pandemic suggest that GL is effective at inhibiting the viral replication of severe acute respiratory syndrome coronavirus 2. The anticancer effects of GL and GA involve modulating various signaling pathways, such as the phosphatase and tensin homolog/phosphatidylinositol 3-kinase/protein kinase B pathway, the mitogen-activated protein kinase, and the mammalian target of rapamycin/signal transducer and activator of transcription 3, which are mainly involved in regulating cancer cell death, oxidative stress, and inflammation. The potential of GL and GA in preventing cancer development and suppressing the growth and invasion of different cancer types has been reviewed in this paper. This review also provides molecular insights on the mechanism of action for the oncopreventive and oncotherapeutic effects of GL and its derivative, GA, which could help develop more specific forms of these agents for clinical use.
Collapse
|
17
|
Wahab S, Annadurai S, Abullais SS, Das G, Ahmad W, Ahmad MF, Kandasamy G, Vasudevan R, Ali MS, Amir M. Glycyrrhiza glabra (Licorice): A Comprehensive Review on Its Phytochemistry, Biological Activities, Clinical Evidence and Toxicology. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122751. [PMID: 34961221 PMCID: PMC8703329 DOI: 10.3390/plants10122751] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 05/03/2023]
Abstract
There are more than 30 species of Glycyrrhiza genus extensively spread worldwide. It was the most prescribed herb in Ancient Egyptian, Roman, Greek, East China, and the West from the Former Han era. There are various beneficial effects of licorice root extracts, such as treating throat infections, tuberculosis, respiratory, liver diseases, antibacterial, anti-inflammatory, and immunodeficiency. On the other hand, traditional medicines are getting the attraction to treat many diseases. Therefore, it is vital to screen the medicinal plants to find the potential of new compounds to treat chronic diseases such as respiratory, cardiovascular, anticancer, hepatoprotective, etc. This work comprehensively reviews ethnopharmacological uses, phytochemistry, biological activities, clinical evidence, and the toxicology of licorice, which will serve as a resource for future clinical and fundamental studies. An attempt has been made to establish the pharmacological effect of licorice in different diseases. In addition, the focus of this review article is on the molecular mechanism of licorice extracts and their four flavonoids (isoliquiritigenin, liquiritigenin, lichalocone, and glabridin) pharmacologic activities. Licorice could be a natural alternative for current therapy to exterminate new emerging disorders with mild side effects. This review will provide systematic insights into this ancient drug for further development and clinical use.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
- Correspondence:
| | - Sivakumar Annadurai
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia;
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia;
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|
18
|
Immunological Separation of Bioactive Natural Compounds from Crude Drug Extract and Its Application for Cell-Based Studies. Antibodies (Basel) 2021; 10:antib10040048. [PMID: 34940000 PMCID: PMC8698370 DOI: 10.3390/antib10040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/30/2021] [Indexed: 01/31/2023] Open
Abstract
In this study, we present a review on a useful approach, namely, immunoaffinity column coupled with monoclonal antibodies (MAbs), to separate natural compounds and its application for cell-based studies. The immunoaffinity column aids in separating the specific target compound from the crude extract. The column capacity was stable even after more than 10 purification cycles of use under the same conditions. After applying the crude extract to the column, the column was washed with washing buffer and eluted with elution buffer. The elution fraction contained the target compound bound to MAb, whereas the washing fraction was the crude extract, which contained all compounds except a group of target compounds; therefore, the washing fraction was referred to as a knockout (KO) crude extract. Cell-based studies using the KO extract revealed the actual effects of the natural compounds in the crude extract. One-step separation of natural compounds using the immunoaffinity column coupled with MAbs may help in determining the potential functions of natural compounds in crude extracts.
Collapse
|
19
|
Aldhahrani A, Soliman MM, Althobaiti F, Alkhedaide A, Nassan MA, Mohamed WA, Youssef GBA, Said AM. The modulatory impacts of Glycyrrhiza glabra extract against methotrexate-induced testicular dysfunction and oxidative stress. Toxicol Res (Camb) 2021; 10:677-686. [PMID: 34484660 DOI: 10.1093/toxres/tfab049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022] Open
Abstract
Glycyrrhiza glabra root (licorice) is a widely used herb for its beneficial effects on health. This study explored the protective effects of licorice extract against oxidative stress and testicular dysfunction caused by methotrexate (MTX). Mice were allocated into (i) negative control group that received saline; (ii) licorice extract group, orally administered with 200 mg/kg body weight (bw) licorice extract for 12 days; (iii) positive MTX-intoxicated group, injected with a single intraperitoneal dose of MTX (20 mg/kg bw) on day 7; and (iv) a protective group that received licorice extract for 12 days and then MTX on day 7 as in groups 2 and 3. Total proteins, albumin, globulins, malondialdehyde, glutathione peroxidase, reduced glutathione, IL-1, and IL-6 were measured in blood and testis samples collected from all groups. Testicular oxidative stress, serum reproductive hormones, and spermogram were examined. The expression of steroidogenesis-associated genes (translocator protein; and P450scc) was examined by quantitative real-time PCR. Bcl-2-associated X protein and cyclogenase-2 genes were examined by immunohistochemical analysis. The bioactive contents of licorice extract were confirmed by gas chromatography-mass spectrometry analysis. Pretreatment with licorice extract ameliorated the toxic effects of MTX on total proteins, albumin, and globulins and oxidative stress biomarkers and reversed the effect of MTX on examined serum and tissue antioxidants. Besides, MTX down-regulated mRNA expression of translocator protein and P450scc genes. Licorice extract averted the decrease in serum testosterone and the increase in IL-1β and IL-6 levels induced by MTX. Moreover, MTX increased sperm abnormalities and percentage of dead sperms and reduced sperm motility. These changes were absent in the licorice preadministered group. Licorice prevented the increase in immunoreactivity of testis for Bcl-2-associated X protein and cyclogenase-2 that were overexpressed in MTX-injected mice. Licorice extracts positively regulated the expression of steroidogenesis genes suppressed by MTX, increased antioxidant enzymes (glutathione peroxidase, reduced glutathione, and catalase) and reduced biomarker of oxidative stress (testicular malondialdehyde) and inflammatory cytokines (IL-1 and -6). Moreover, reduction in testicular tissue immunoreactivity to Bcl-2-associated X protein and cyclogenase-2. In conclusion, licorice extract mitigated the toxic effects of MTX-induced testicular dysfunction at biochemical, molecular, and cellular levels.
Collapse
Affiliation(s)
- Adil Aldhahrani
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Fayez Althobaiti
- Biotechnology Department, College of Science, Taif University, Taif, 21995, Saudi Arabia
| | - Adel Alkhedaide
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, 21995, Saudi Arabia
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Wafaa Abdou Mohamed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Gehan B A Youssef
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Alshaimaa Mohammed Said
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| |
Collapse
|
20
|
Rehman MU, Farooq A, Ali R, Bashir S, Bashir N, Majeed S, Taifa S, Ahmad SB, Arafah A, Sameer AS, Khan R, Qamar W, Rasool S, Ahmad A. Preclinical Evidence for the Pharmacological Actions of Glycyrrhizic Acid: A Comprehensive Review. Curr Drug Metab 2021; 21:436-465. [PMID: 32562521 DOI: 10.2174/1389200221666200620204914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 02/06/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023]
Abstract
Glycyrrhiza glabra L. (Family: Fabaceae) is one of the important traditional medicinal plant used extensively in folk medicine. It is known for its ethnopharmacological value in curing a wide variety of ailments. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity due to which it is mostly used in traditional herbal medicine for the treatment and management of chronic diseases. The present review is focused extensively on the pharmacology, pharmacokinetics, toxicology, and potential effects of Glycyrrhizic Acid (GA). A thorough literature survey was conducted to identify various studies that reported on the GA on PubMed, Science Direct and Google Scholar.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adil Farooq
- RAKCOPS, RAK Medical and Health Sciences University, Ras AL Khaimah, United Arab Emirates
| | - Rayeesa Ali
- Division of Veterinary Pathology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sana Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Nazirah Bashir
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Samia Majeed
- Division of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Syed Taifa
- Division of Animal Nutrition, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Shuhama, JandK, India
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Aga Syed Sameer
- Department of Basic Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Centre (KAIMRC), Jeddah, Saudi Arabia
| | - Rehan Khan
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| | - Wajhul Qamar
- Department of Pharmacology and Toxicology and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saiema Rasool
- Forest Biotech Lab, Department of Forest Mana pgement, Faculty of Forestry, University Putra Malaysia, Serdang, Selangor, Malaysia
| | - Anas Ahmad
- Department of Nano-therapeutics, Institute of Nanoscience and Technology (DST-INST), Mohali, Punjab, India
| |
Collapse
|
21
|
Tang S, Cai S, Ji S, Yan X, Zhang W, Qiao X, Zhang H, Ye M, Yu S. Isoangustone A induces autophagic cell death in colorectal cancer cells by activating AMPK signaling. Fitoterapia 2021; 152:104935. [PMID: 34004245 DOI: 10.1016/j.fitote.2021.104935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022]
Abstract
Phytochemicals, especially flavonoids, have been widely investigated for their diversified pharmacological activities including anticancer activities. Previously we identified isoangustone A from licorice-derived compounds as a potent inducer of cell death. In the present study, the exact mechanism by which isoangustone A induced cell death was further investigated, with autophagy as an indispensible part of this process. Isoangustone A treatment activated autophagic signaling and induced a complete autophagic flux in colorectal cancer cells. Knockdown of ATG5 or pre-treatment with autophagy inhibitors significantly reversed isoangustone A-induced apoptotic signaling and loss of cell viability, suggesting autophagy plays an important role in isoangustone A-induced cell death. Isoangustone A inhibited Akt/mTOR signaling, and overexpressing of a constitutively activated Akt mildly suppressed isoangustone A-induced cell death. More importantly, isoangustone A inhibited cellular ATP level and activated AMPK, and pre-treatment with AMPK inhibitor or overexpression of dominant negative AMPKα2 significantly reversed isoangustone A-induced autophagy and cell death. Further study shows isoangustone A dose-dependently inhibited mitochondrial respiration, which could be responsible for isoangustone A-induced activation of AMPK. Finally, isoangustone A at a dosage of 10 mg/kg potently activated AMPK and autophagic signaling in and inhibited the growth of SW480 human colorectal xenograft in vivo. Taken together, induction of autophagy through activation of AMPK is an important mechanism by which isoangustone A inhibits tumor growth, and isoangustone A deserves further investigation as a promising anti-cancer agent.
Collapse
Affiliation(s)
- Shunan Tang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Sina Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Shuai Ji
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xiaojin Yan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Weijia Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China
| | - Hongquan Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Anatomy, Histology and Embryology, Peking University School of Basic Medicinal Sciences, PR China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Natural Medicines, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing 100191, PR China.
| |
Collapse
|
22
|
Chen C, Shao R, Li B, Zhai Y, Wang T, Li X, Miao L, Huang J, Liu R, Liu E, Zhu Y, Gao X, Zhang H, Wang Y. Neoisoliquiritin exerts tumor suppressive effects on prostate cancer by repressing androgen receptor activity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153514. [PMID: 33676083 DOI: 10.1016/j.phymed.2021.153514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Prostate cancer (PCa) is a major cause of morbidity and mortality in men in both developed and developing countries. Androgens and the androgen receptor (AR) play predominant roles in the progression of PCa. Neoisoliquiritin (NEO) belongs to the class of licorice (Glycyrrhiza) flavonoids, which have a variety of biological activities including anti-depressant, anti-tumor-promoting, and anti-inflammation properties. Licorice root has cancer chemopreventive effects and has been given to PCa patients as an ingredient of PC-SPES, a commercially available combination of eight herbs. Therefore, we determined if NEO can suppress the proliferation of PCa cells. PURPOSE We investigated whether and how NEO exerts its anti-neoplastic activity against PCa. METHODS The Cell Counting Kit 8 and flow cytometry were used to evaluate the effects of NEO on the proliferation and cell cycle progression of AR-dependent (LNCaP) and AR-independent (PC3) PCa cells. RNA sequencing was employed to examine the genome-wide changes in responsiveness to NEO in LNCaP cells. Quantitative PCR, Western blotting, docking, chromatin immunoprecipitation, and dual-luciferase reporter assays were conducted to determine the mechanism of action of NEO and its potential cross-talk with AR. A LNCaP xenograft nude mouse model was used to determine the inhibitory effects of NEO on AR-dependent PCa tumors in vivo. RESULTS NEO inhibited LNCaP cell proliferation in vitro by inducing G0/G1 phase cell cycle arrest. Conversely, NEO treatment had no effect on PC3 cells. Transcriptomic analysis indicated that AR signaling might be the key target of NEO in preventing PCa. NEO regulated AR-mediated cell growth suppression and AR-sensitized cell cycle arrest in LNCaP cells. NEO also blocked several key steps in the AR signaling pathway, including proposed targeting to the ligand binding pocket of AR by computer modeling, modulating AR-androgen response element DNA-binding activity, inhibiting the expression and transcriptional activity of AR, and suppressing downstream AR signaling. CONCLUSIONS NEO negatively regulates AR expression and activity, thus supporting the tumor suppressive role for NEO in AR-dependent PCa.
Collapse
Affiliation(s)
- Changbao Chen
- Department of Spinal Surgery, Tianjin Hospital, 406 Jiefang South Road, Tianjin, 300211, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Bin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yu Zhai
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Taiyi Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Xin Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Lin Miao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Juyang Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Erwei Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Yan Zhu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Research and Development Center of Tianjin University of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology & Medicine, 300457, Tianjin, China
| | - Xiumei Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Yu Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
23
|
Alper P, Salomatina OV, Salakhutdinov NF, Ulukaya E, Ari F. Soloxolone methyl, as a 18βH-glycyrrhetinic acid derivate, may result in endoplasmic reticulum stress to induce apoptosis in breast cancer cells. Bioorg Med Chem 2020; 30:115963. [PMID: 33383441 DOI: 10.1016/j.bmc.2020.115963] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022]
Abstract
Being one of the leading causes of cancer death among women, various chemotherapeutic agents isolated from natural compounds are used in breast cancer treatment and consequently studies to develop new drugs still continue. There are several studies on 18βH-glycyrrhetinic acid, a secondary metabolite which is found in Glycyrrhiza glabra (liquorice roots), as a potential anticancer agent. In this study, the cytotoxic and apoptotic effects of Soloxolone methyl compound, a semisynthetic derivative of 18βH-glycyrrhetinic acid were investigated on breast cancer cells (MCF-7, MDA-MBA-231). Soloxolone methyl is found to be cytotoxic on both MCF-7 and MDA-MBA-231 breast cancer cells by inducing apoptosis. Especially in MDA-MB-231 cells apoptosis is detected to be triggered by ER stress. The antigrowth effects of Soloxolone methyl were determined using MTT and ATP assays. To identify the mode of cell death (apoptosis/necrosis), fluorescent staining (Hoechst 33342 and Propidium iodide) and caspase-cleaved cytokeratin 18 (M30-antigen) analyses were used. In addition, apoptosis was investigated on gene and protein levels by PCR and Western Blotting. Soloxolone methyl decreased cell viability on cells in a dose and time-dependent manner and induced apoptosis markers. An increase on apoptotic proteins related to endoplasmic reticulum stress (IRE1-α, Bip, CHOP) was also determined in MDA-MB-231 cells. Moreover, an increase of apoptotic gene expressions was determined in both cells treated with Soloxolone methyl. Advance analyses should be performed to elucidate the potential of Soloxolone methyl as an anticancer agent in breast cancer treatment.
Collapse
Affiliation(s)
- Pinar Alper
- Bursa Uludag University, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey; Istanbul University, Aziz Sancar Experimental Medicine Research Institute, Molecular Medicine, 34093 Istanbul, Turkey
| | - Oksana V Salomatina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Ave., 9, 630090 Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrent'ev Ave., 9, 630090 Novosibirsk, Russia
| | - Engin Ulukaya
- Istinye University, Faculty of Medicine, Department of Medical Biochemistry, 34010 Istanbul, Turkey.
| | - Ferda Ari
- Bursa Uludag University, Faculty of Science and Arts, Department of Biology, 16059 Bursa, Turkey.
| |
Collapse
|
24
|
Aquila G, Re Cecconi AD, Brault JJ, Corli O, Piccirillo R. Nutraceuticals and Exercise against Muscle Wasting during Cancer Cachexia. Cells 2020; 9:E2536. [PMID: 33255345 PMCID: PMC7760926 DOI: 10.3390/cells9122536] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Cancer cachexia (CC) is a debilitating multifactorial syndrome, involving progressive deterioration and functional impairment of skeletal muscles. It affects about 80% of patients with advanced cancer and causes premature death. No causal therapy is available against CC. In the last few decades, our understanding of the mechanisms contributing to muscle wasting during cancer has markedly increased. Both inflammation and oxidative stress (OS) alter anabolic and catabolic signaling pathways mostly culminating with muscle depletion. Several preclinical studies have emphasized the beneficial roles of several classes of nutraceuticals and modes of physical exercise, but their efficacy in CC patients remains scant. The route of nutraceutical administration is critical to increase its bioavailability and achieve the desired anti-cachexia effects. Accumulating evidence suggests that a single therapy may not be enough, and a bimodal intervention (nutraceuticals plus exercise) may be a more effective treatment for CC. This review focuses on the current state of the field on the role of inflammation and OS in the pathogenesis of muscle atrophy during CC, and how nutraceuticals and physical activity may act synergistically to limit muscle wasting and dysfunction.
Collapse
Affiliation(s)
- Giorgio Aquila
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Andrea David Re Cecconi
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| | - Jeffrey J. Brault
- Indiana Center for Musculoskeletal Health, Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Oscar Corli
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
- Oncology Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy
| | - Rosanna Piccirillo
- Neuroscience Department, Mario Negri Institute for Pharmacological Research IRCCS, 20156 Milan, Italy; (G.A.); (A.D.R.C.)
- Italian Institute for Planetary Health, IIPH, 20156 Milan, Italy;
| |
Collapse
|
25
|
Dual Effect of Soloxolone Methyl on LPS-Induced Inflammation In Vitro and In Vivo. Int J Mol Sci 2020; 21:ijms21217876. [PMID: 33114200 PMCID: PMC7660695 DOI: 10.3390/ijms21217876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
Plant-extracted triterpenoids belong to a class of bioactive compounds with pleotropic functions, including antioxidant, anti-cancer, and anti-inflammatory effects. In this work, we investigated the anti-inflammatory and anti-oxidative activities of a semisynthetic derivative of 18βH-glycyrrhetinic acid (18βH-GA), soloxolone methyl (methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate, or SM) in vitro on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and in vivo in models of acute inflammation: LPS-induced endotoxemia and carrageenan-induced peritonitis. SM used at non-cytotoxic concentrations was found to attenuate the production of reactive oxygen species and nitric oxide (II) and increase the level of reduced glutathione production by LPS-stimulated RAW264.7 cells. Moreover, SM strongly suppressed the phagocytic and migration activity of activated macrophages. These effects were found to be associated with the stimulation of heme oxigenase-1 (HO-1) expression, as well as with the inhibition of nuclear factor-κB (NF-κB) and Akt phosphorylation. Surprisingly, it was found that SM significantly enhanced LPS-induced expression of the pro-inflammatory cytokines interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in RAW264.7 cells via activation of the c-Jun/Toll-like receptor 4 (TLR4) signaling axis. In vivo pre-exposure treatment with SM effectively inhibited the development of carrageenan-induced acute inflammation in the peritoneal cavity, but it did not improve LPS-induced inflammation in the endotoxemia model.
Collapse
|
26
|
Wang ZF, Liu J, Yang YA, Zhu HL. A Review: The Anti-inflammatory, Anticancer and Antibacterial Properties of Four Kinds of Licorice Flavonoids Isolated from Licorice. Curr Med Chem 2020; 27:1997-2011. [PMID: 30277142 DOI: 10.2174/0929867325666181001104550] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
Plants have always been an important source of medicines for humans, and licorice is a very significant herb in the development of humans. As a traditional herb, it is widely cultivated in China, Japan, Russia, Spain and India. With the development of organic chemistry and biochemistry, various chemical ingredients extracted from licorice have been studied and identified. Among them, many chemical components were considered to have strong pharmacological activities, such as anti-inflammatory, anti-ulcer, antibacterial, anticancer and so on. Based on those reports, licorice has attracted the attention of many researchers in recent years, and they are devoted to discovering the active ingredients and mechanism of action of active compounds. Licorice flavonoids are one of the main extracts of licorice root and stem and have many potential biological properties. This paper aims to summarize the four kinds of licorice flavonoids, including liquiritigenin, isoliquiritigenin, licochalcone (including licochalcone A and licochalcone B) and glabridin, about their biological activities of anti-inflammatory, anticancer, antibacterial.
Collapse
Affiliation(s)
- Ze-Feng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| | - Yong-An Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| | - Hai-Liang Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China.,Elionnature Biological Technology Co., Ltd., Nanjing 210038, China
| |
Collapse
|
27
|
Kim KU, Lee SJ, Lee I. Development of an Improved Menopausal Symptom-Alleviating Licorice ( Glycyrrhiza uralensis) by Biotransformation Using Monascus albidulus. J Microbiol Biotechnol 2020; 30:178-186. [PMID: 31752065 PMCID: PMC9728325 DOI: 10.4014/jmb.1909.09037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Licorice (Glycyrrhiza uralensis) contains several compounds that have been reported to alleviate menopausal symptoms via interacting with estrogen receptors (ERs). The compounds exist mainly in the form of glycosides, which exhibit low bioavailability and function. To bioconvert liquiritin and isoliquiritin, the major estrogenic compounds, to the corresponding deglycosylated liquiritigenin and isoliquiritigenin, respectively, licorice was fermented with Monascus, which has been demonstrated to deglycosylate other substances. The contents of liquiritigenin and isoliquiritigenin in Monascus-fermented licorice increased by 10.46-fold (from 38.03 µM to 379.75 µM) and 12.50-fold (from 5.53 µM to 69.14 µM), respectively, compared with their contents in non-fermented licorice. Monascus-fermented licorice exhibited 82.5% of the ERβ binding activity of that observed in the positive control (17 β-estradiol), whereas the non-fermented licorice exhibited 54.1% of the binding activity in an in vivo ER binding assay. The increase in the ERβ binding activity was associated with increases in liquiritigenin and isoliquiritigenin contents. Liquiritigenin acts as a selective ligand for ERβ, which alleviates menopausal symptoms with fewer side effects, such as heart disease and hypertension, compared with a ligand for ERα. In addition, Monascus-fermented licorice contained 731 mg/kg of monacolin K, one of the metabolites produced by Monascus that reduces serum cholesterol. Therefore, Monascus-fermented licorice is a promising material for the prevention and treatment of menopausal syndrome with fewer side effects.
Collapse
Affiliation(s)
- Kang Uk Kim
- Department of Bio and Fermentation Convergence Technology, BK2 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea
| | - Sung-Jin Lee
- Food R&D Center, SK Bioland Co., Ltd., Gyeonggi 15407, Republic of Korea
| | - Inhyung Lee
- Department of Bio and Fermentation Convergence Technology, BK2 PLUS Project, Kookmin University, Seoul 02707, Republic of Korea,Corresponding author Phone: +82-2-910-4771 Fax: +82-2-910-5739 E-mail:
| |
Collapse
|
28
|
Lekar AV, Maksimenko EV, Borisenko SN, Khizrieva SS, Vetrova EV, Borisenko NI, Minkin VI. One-Pot Synthesis of Glycyrrhetinic Acid from Licorice Root in Subcritical Water. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY B 2020. [DOI: 10.1134/s1990793119070170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Zhao C, Wang D, Gao Z, Kan H, Qiu F, Chen L, Li H. Licocoumarone induces BxPC-3 pancreatic adenocarcinoma cell death by inhibiting DYRK1A. Chem Biol Interact 2020; 316:108913. [PMID: 31838052 DOI: 10.1016/j.cbi.2019.108913] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/16/2022]
Abstract
Protein kinases play an indispensable role in signaling pathways that regulate tumor cell functions, which represent potent therapeutic targets in cancers. Dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) as a serine/threonine kinase has recently been reported to be upregulated in pancreatic ductal adenocarcinoma (PDAC) and show protumorigenic effect. By activity-guided phytochemical investigation of the extracts from Glycyrrhiza uralensis Fisch, we expect to find the effective constituents that can suppress pancreatic cancer cell proliferation and/or induce cells apoptotic by inhibiting DYRK1A. Eight isopentenyl-substituted compounds (1-8), including four coumarins (1-4), one benzofuran (5), and three flavonoids (6-8), were isolated and identified from G. uralensis Fisch. Among them, licocoumarone (LC, 5) showed effective inhibitory activity against DYRK1A with an IC50 value of 12.56 μM. Molecular docking analysis suggested that LC completely occupied the whole pocket of DYRK1A and formed obvious hydrophobic interactions and hydrogen bonds with DYRK1A residues. Further in vitro validation, including Microscale Thermophoresis (MST) and drug affinity responsive target stability (DARTS) techniques, demonstrated the specific combining capacity of LC to DYRK1A. Meanwhile, LC induced significant cytotoxicity against DYRK1A-overexpressing BxPC-3 cells with an IC50 value of 50.77 μM. Mechanism studies revealed that LC reduced c-MET protein level by inhibiting DYRK1A. These findings provide preliminary evidences that LC as a natural DYRK1A inhibitor suppresses human pancreatic adenocarcinoma BxPC-3 cell proliferation and induces cell apoptotic, which might present new options and possibilities for targeted therapies in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Chao Zhao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dun Wang
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zexuan Gao
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hongfeng Kan
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Feng Qiu
- School of Chinese Materia Medica and Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| | - Lixia Chen
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Hua Li
- Wuya College of Innovation, School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
30
|
Hsu YC, Chang PJ, Tung CW, Shih YH, Ni WC, Li YC, Uto T, Shoyama Y, Ho C, Lin CL. De-Glycyrrhizinated Licorice Extract Attenuates High Glucose-Stimulated Renal Tubular Epithelial-Mesenchymal Transition via Suppressing the Notch2 Signaling Pathway. Cells 2020; 9:cells9010125. [PMID: 31948095 PMCID: PMC7016866 DOI: 10.3390/cells9010125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/26/2019] [Accepted: 01/02/2020] [Indexed: 02/07/2023] Open
Abstract
Tubulointerstitial fibrosis is a major pathological hallmark of diabetic nephropathy. Increasing evidence has shown that epithelial-to-mesenchymal transition (EMT) of renal proximal tubular cells plays a crucial role in tubulointerstitial fibrosis. Herein, we aimed to elucidate the detailed mechanism of EMT in renal tubular cells under high glucose (HG) conditions, and to investigate the potential of licorice, a medicinal herb, to inhibit HG-induced EMT. Our results showed that renal tubular epithelial cells (normal rat kidney cell clone 52E; NRK-52E) exposed to HG resulted in EMT induction characterized by increased fibronectin and α-SMA (alpha-smooth muscle actin) but decreased E-cadherin. Elevated levels of cleaved Notch2, MAML-1 (mastermind-like transcriptional coactivator 1), nicastrin, Jagged-1 and Delta-like 1 were also concomitantly detected in HG-cultured cells. Importantly, pharmacological inhibition, small interfering RNA (siRNA)-mediated depletion or overexpression of the key components of Notch2 signaling in NRK-52E cells supported that the activated Notch2 pathway is essential for tubular EMT. Moreover, we found that licorice extract (LE) with or without glycyrrhizin, one of bioactive components in licorice, effectively blocked HG-triggered EMT in NRK-52E cells, mainly through suppressing the Notch2 pathway. Our findings therefore suggest that Notch2-mediated renal tubular EMT could be a therapeutic target in diabetic nephropathy, and both LE and de-glycyrrhizinated LE could have therapeutic potential to attenuate renal tubular EMT and fibrosis.
Collapse
Affiliation(s)
- Yung-Chien Hsu
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Pey-Jium Chang
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chun-Wu Tung
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Ya-Hsueh Shih
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Wen-Chiu Ni
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Yi-Chen Li
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Takuhiro Uto
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Yukihiro Shoyama
- Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan; (T.U.); (Y.S.)
| | - Cheng Ho
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Division of Endocrinology and Metabolism, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| | - Chun-Liang Lin
- Departments of Nephrology, Chang Gung Memorial Hospital, Chiayi 613, Taiwan; (Y.-C.H.); (P.-J.C.); (C.-W.T.); (Y.-H.S.); (W.-C.N.); (Y.-C.L.)
- Kidney and Diabetic Complications Research Team (KDCRT), Chang Gung Memorial Hospital, Chiayi 613, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Correspondence: (C.H.); (C.-L.L.)
| |
Collapse
|
31
|
|
32
|
Oh HN, Lee MH, Kim E, Kwak AW, Seo JH, Yoon G, Cho SS, Choi JS, Lee SM, Seo KS, Chae JI, Shim JH. Dual inhibition of EGFR and MET by Echinatin retards cell growth and induces apoptosis of lung cancer cells sensitive or resistant to gefitinib. Phytother Res 2019; 34:388-400. [PMID: 31698509 DOI: 10.1002/ptr.6530] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Patients with non-small-cell lung cancer (NSCLC) containing epidermal growth factor receptor (EGFR) amplification or sensitive mutations initially respond to tyrosine kinase inhibitor gefitinib; however, the treatment is less effective over time. Gefitinib resistance mechanisms include MET gene amplification. A therapeutic strategy targeting MET as well as EGFR can overcome resistance to gefitinib. In the present study we identified Echinatin (Ecn), a characteristic chalcone in licorice, which inhibited both EGFR and MET and strongly altered NSCLC cell growth. The antitumor efficacy of Ecn against gefitinib-sensitive or -resistant NSCLC cells with EGFR mutations and MET amplification was confirmed by suppressing cell proliferation and anchorage-independent colony growth. During the targeting of EGFR and MET, Ecn significantly blocked the kinase activity, which was validated with competitive ATP binding. Inhibition of EGFR and MET by Ecn decreases the phosphorylation of downstream target proteins ERBB3, AKT and ERK compared with total protein expression or control. Ecn induced the G2/M cell cycle arrest, and apoptosis via the intrinsic pathway of caspase-dependent activation. Ecn induced ROS production and GRP78, CHOP, DR5 and DR4 expression as well as depolarized the mitochondria membrane potential. Therefore, our results suggest that Ecn is a promising therapeutic agent in NSCLC therapy.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, P.R. China.,Basic Medical College, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Ah-Won Kwak
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Joon-Seok Choi
- College of Pharmacy, Daegu Catholic University, Gyeongbuk, 38430, Republic of Korea
| | - Sang-Myeong Lee
- Division of Biotechnology, College of Environmental and Bioresources, Jeonbuk National University, Iksan, 54596, Korea
| | - Kang-Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon, 57922, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, Mokpo National University, Jeonnam, 58554, Republic of Korea.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450008, P.R. China
| |
Collapse
|
33
|
Bioactive Candy: Effects of Licorice on the Cardiovascular System. Foods 2019; 8:foods8100495. [PMID: 31615045 PMCID: PMC6836258 DOI: 10.3390/foods8100495] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Licorice, today chiefly utilized as a flavoring additive in tea, tobacco and candy, is one of the oldest used herbs for medicinal purposes and consists of up to 300 active compounds. The main active constituent of licorice is the prodrug glycyrrhizin, which is successively converted to 3β-monoglucuronyl-18β-glycyrrhetinic acid (3MGA) and 18β-glycyrrhetinic acid (GA) in the intestines. Despite many reported health benefits, 3MGA and GA inhibit the 11-β-hydrogenase type II enzyme (11β-HSD2) oxidizing cortisol to cortisone. Through activation of mineralocorticoid receptors, high cortisol levels induce a mild form of apparent mineralocorticoid excess in the kidney and increase systemic vascular resistance. Continuous inhibition of 11β-HSD2 related to excess licorice consumption will create a state of hypernatremia, hypokalemia and increased fluid volume, which can cause serious life-threatening complications especially in patients already suffering from cardiovascular diseases. Two recent meta-analyses of 18 and 26 studies investigating the correlation between licorice intake and blood pressure revealed statistically significant increases both in systolic (5.45 mmHg) and in diastolic blood pressure (3.19/1.74 mmHg). This review summarizes and evaluates current literature about the acute and chronic effects of licorice ingestion on the cardiovascular system with special focus on blood pressure. Starting from the molecular actions of licorice (metabolites) inside the cells, it describes how licorice intake is affecting the human body and shows the boundaries between the health benefits of licorice and possible harmful effects.
Collapse
|
34
|
Kotian SR, Bhat KMR, Padma D, Pai KSR. Influence of traditional medicines on the activity of keratinocytes in wound healing: an in-vitro study. Anat Cell Biol 2019; 52:324-332. [PMID: 31598362 PMCID: PMC6773891 DOI: 10.5115/acb.19.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/21/2019] [Accepted: 04/12/2019] [Indexed: 02/08/2023] Open
Abstract
Natural medicinal systems such as Ayurveda and folk medicine has remedies for wound management. However, the exact cellular and extracellular mechanisms involved in the healing process and its influence on keratinocytes is less discussed. Therefore, the present study was designed to evaluate the effect of certain natural wound healing medicines on the biology of the keratinocytes/HaCaT cells. Test materials such as honey (H), ghee (G), aqueous extracts of roots of Glycyrrhiza glabra (GG) and leaves of Nerium indicum (NI) were considered. The HaCaT cells were treated with the test materials singly and in combinations (H+G, all combined [Tot]) for a specific period (24, 48, and 72 hours). The cells were then subjected to cytotoxicity/proliferation and migration/scratch assays. All the test materials, except NI, were non-cytotoxic and showed increased cell proliferation at variable concentrations. Significant observations were made in the groups treated with honey (100 µg/ml at 48 hours, P<0.05; 1,000 µg/ml at 72 hours, P<0.05), GG (all concentrations at 48 hours, P<0.05; 750 µg/ml at 72 hours, P<0.05), H+G (250 µg/ml at 24 hours, P<0.001; 500 µg/ml at 48 and 72 hours, P<0.05), and Tot (50 µg/ml at 24, 48 and 72 hours, P<0.01). In the in-vitro wound healing assay, all the treated groups showed significant migration and narrowing of the scratch area by 24 and 48 hours (P<0.001) compared to control. The results obtained from the present study signifies the positive influence of these natural wound healing compounds on keratinocytes/HaCaT cells.
Collapse
Affiliation(s)
- Sushma R Kotian
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Kumar M R Bhat
- Department of Anatomy, RAK College of Medical Sciences, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Divya Padma
- Department of Anatomy, Kasturba Medical College Manipal, Manipal Academy of Higher Education, Manipal, India
| | - K Sreedhara R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
35
|
Elabd H, Soror E, El-Asely A, El-Gawad EA, Abbass A. Dietary supplementation of Moringa leaf meal for Nile tilapia Oreochromis niloticus: Effect on growth and stress indices. THE EGYPTIAN JOURNAL OF AQUATIC RESEARCH 2019; 45:265-271. [DOI: 10.1016/j.ejar.2019.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
36
|
Pohl D, Keller PM, Bordier V, Wagner K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J Gastroenterol 2019; 25:4629-4660. [PMID: 31528091 PMCID: PMC6718044 DOI: 10.3748/wjg.v25.i32.4629] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/25/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection is highly prevalent in the human population and may lead to severe gastrointestinal pathology including gastric and duodenal ulcers, mucosa associated tissue lymphoma and gastric adenocarcinoma. In recent years, an alarming increase in antimicrobial resistance and subsequently failing empiric H. pylori eradication therapies have been noted worldwide, also in many European countries. Therefore, rapid and accurate determination of H. pylori’s antibiotic susceptibility prior to the administration of eradication regimens becomes ever more important. Traditionally, detection of H. pylori and its antimicrobial resistance is done by culture and phenotypic drug susceptibility testing that are cumbersome with a long turn-around-time. Recent advances in diagnostics provide new tools, like real-time polymerase chain reaction (PCR) and line probe assays, to diagnose H. pylori infection and antimicrobial resistance to certain antibiotics, directly from clinical specimens. Moreover, high-throughput whole genome sequencing technologies allow the rapid analysis of the pathogen’s genome, thereby allowing identification of resistance mutations and associated antibiotic resistance. In the first part of this review, we will give an overview on currently available diagnostic methods for detection of H. pylori and its drug resistance and their implementation in H. pylori management. The second part of the review focusses on the use of next generation sequencing technology in H. pylori research. To this end, we conducted a literature search for original research articles in English using the terms “Helicobacter”, “transcriptomic”, “transcriptome”, “next generation sequencing” and “whole genome sequencing”. This review is aimed to bridge the gap between current diagnostic practice (histology, rapid urease test, H. pylori culture, PCR and line probe assays) and new sequencing technologies and their potential implementation in diagnostic laboratory settings in order to complement the currently recommended H. pylori management guidelines and subsequently improve public health.
Collapse
Affiliation(s)
- Daniel Pohl
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Peter M Keller
- Institute for Infectious Diseases, University of Bern, Bern 3010, Switzerland
| | - Valentine Bordier
- Division of Gastroenterology, University Hospital of Zurich, Zurich 8006, Switzerland
| | - Karoline Wagner
- Institute of Medical Microbiology, University of Zurich, Zurich 8006, Switzerland
| |
Collapse
|
37
|
Chen M, Zhu J, Kang J, Lai X, Gao Y, Gan H, Yang F. Exploration in the Mechanism of Action of Licorice by Network Pharmacology. Molecules 2019; 24:molecules24162959. [PMID: 31443210 PMCID: PMC6720938 DOI: 10.3390/molecules24162959] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022] Open
Abstract
Licorice is a popular sweetener and a thirst quencher in many food products particularly in Europe and the Middle East and also one of the oldest and most frequently used herbs in traditional Chinese medicine. As a wide application of food additive, it is necessary to clarify bioactive chemical ingredients and the mechanism of action of licorice. In this study, a network pharmacology approach that integrated drug-likeness evaluation, structural similarity analysis, target identification, network analysis, and KEGG pathway analysis was established to elucidate the potential molecular mechanism of licorice. First, we collected and evaluated structural information of 282 compounds in licorice and found 181 compounds that met oral drug rules. Then, structural similarity analysis with known ligands of targets in the ChEMBL database (similarity threshold = 0.8) was applied to the initial target identification, which found 63 compounds in licorice had 86 multi-targets. Further, molecular docking was performed to study their binding modes and interactions, which screened out 49 targets. Finally, 17 enriched KEGG pathways (p < 0.01) of licorice were obtained, exhibiting a variety of biological activities. Overall, this study provided a feasible and accurate approach to explore the safe and effective application of licorice as a food additive and herb medicine.
Collapse
Affiliation(s)
- Meimei Chen
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Jingru Zhu
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Jie Kang
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Xinmei Lai
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China
| | - Yuxing Gao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huijuan Gan
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Fafu Yang
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.
| |
Collapse
|
38
|
Modarresi M, Hajialyani M, Moasefi N, Ahmadi F, Hosseinzadeh L. Evaluation of the Cytotoxic and Apoptogenic Effects of Glabridin and Its Effect on Cytotoxicity and Apoptosis Induced by Doxorubicin Toward Cancerous Cells. Adv Pharm Bull 2019; 9:481-489. [PMID: 31592119 PMCID: PMC6773930 DOI: 10.15171/apb.2019.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/18/2019] [Accepted: 05/04/2019] [Indexed: 12/19/2022] Open
Abstract
Purposes: In the present study, we tried for the first time to examine the anti-proliferative and
anti-apoptogenic effect of Glabridin (Glab) toward three groups of cancer cells (SKNMC,
H1299, and A2780). Furthermore, the possibility of co-administration of Glab with doxorubicin
(DOX) to these cells was also examined to find out whether Glab can potentiate the cytotoxic
effect of this chemotherapy agent.
Methods: Different cellular assays (MTT, caspase-3 activity, MMP, RT-PCR analysis) were carried
out on the cancer cells treated with Glab.
Results: Cellular toxicity assay revealed that Glab can potentially reduce the viability of these
cells with IC50 concentrations up to 10, 12, and 38 μM toward A2780, SKNMC, and H1299 cell
lines, respectively. The results of MMP and caspase-3 activity assays, in association with the
results corresponding to the BAX and Bcl-2 gene expressions, altogether revealed that Glab can
exert apoptogenic effect on these cells. The intrinsic mitochondrial pathway was found to be
the main mechanism, in which Glab induced apoptosis toward H1299 cells and SKNMC cells,
while the apoptosis mechanism for A2780 cells could be probably through extrinsic pathway.
Glab also potentiated the cytotoxic effect of DOX and its accumulation in H1299 cell line.
Conclusion: The results of this study revealed the promising cytotoxic role of Glab on different
carcinoma cells. These data also suggested that co-chemotherapy method using Glab could be
effective for treatment of cancer, but further in-vivo and clinical studies are still needed to assure
these results.
Collapse
Affiliation(s)
- Masoud Modarresi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Marziyeh Hajialyani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Narges Moasefi
- Medical Biology Research Center , Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farahnaz Ahmadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Leila Hosseinzadeh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| |
Collapse
|
39
|
Bonafé GA, Dos Santos JS, Ziegler JV, Umezawa K, Ribeiro ML, Rocha T, Ortega MM. Growth Inhibitory Effects of Dipotassium Glycyrrhizinate in Glioblastoma Cell Lines by Targeting MicroRNAs Through the NF-κB Signaling Pathway. Front Cell Neurosci 2019; 13:216. [PMID: 31191251 PMCID: PMC6546822 DOI: 10.3389/fncel.2019.00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/14/2022] Open
Abstract
It has been shown that nuclear factor kappa-B (NF-κB) is constitutively activated in glioblastoma (GBM), suggesting that the pathway could be a therapeutic target. Glycyrrhetic acid (GA), a compound isolated from licorice (Glycyrrhiza glabra), has been shown to decrease cell viability and increases apoptosis in human cancer cell lines by NF-κB signaling pathway suppression. Dipotassium glycyrrhizinate (DPG), a dipotassium salt of GA, has anti-inflammatory properties without toxicity. The current study examined the effectiveness of DPG as an anti-tumor in U87MG and T98G GBM cell lines. Additionally, we assessed DPG as a candidate for combinational therapy in GBM with temozolomide (TMZ). Our results demonstrated that the viability of U87MG and T98G cells significantly decreased in a time- and dose-dependent manner after DPG treatment, and the apoptotic ratio of DPG-treated groups was significantly higher than that of control groups. In addition, DPG in combination with TMZ revealed synergistic effects. Furthermore, the expression of NF-κB-luciferase-reporter in transfected GBM cell lines was remarkably reduced after DPG exposure by up-regulating miR16 and miR146a, which down-regulate its target genes, IRAK2 and TRAF6. A reduced neuro-sphere formation was also observed after DPG in both GBM cells. In conclusion, DPG presented anti-tumoral effect on GBM cell lines through a decrease on proliferation and an increase on apoptosis. In addition, our data also suggest that DPG anti-tumoral effect is related to NF-κB suppression, where IRAK2- and TRAF6-mediating miR16 and miR146a, respectively, might be a potential therapeutic target of DPG.
Collapse
Affiliation(s)
- Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Jéssica Silva Dos Santos
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Jussara Vaz Ziegler
- Multidisciplinary Research Laboratory, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Kazuo Umezawa
- Department of Molecular Target Medicine, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Thalita Rocha
- Multidisciplinary Research Laboratory, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, Post Graduate Program in Health Science, Universidade São Francisco (USF), Bragança Paulista, Brazil
| |
Collapse
|
40
|
Yang EJ, Song IS, Song KS. Ethanol extract of Glycyrrhizae Radix modulates the responses of antigen-specific splenocytes in experimental autoimmune encephalomyelitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 54:56-65. [PMID: 30668383 DOI: 10.1016/j.phymed.2018.09.189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 08/22/2018] [Accepted: 09/17/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Multiple sclerosis (MS) is an autoimmune disorder resulting in paralysis, and the responses of reactive T cells against self-antigens are hallmarks. Glycyrrhizae Radix (GR) has been used for detoxification and reducing inflammation. However, very few reports have described the effects of GR on MS. PURPOSE The immunomodulatory effects of GR extract on autoimmune responses were evaluated through in vitro, ex vivo, and in vivo assays using primary mouse splenocytes (SPLC), mouse microglia BV2 cell line, and a mouse model of experimental autoimmune encephalomyelitis (EAE). STUDY DESIGN Ethanol extract of GR was used in vitro with primary SPLC in the condition of anti-CD3/CD28 stimulation and interferon (IFN)-γ-producing CD4+ (TH1)/CD8+ (TC1) polarization as well as IFN-γ-stimulated BV2 cells. For EAE induction, female C57BL/6 mice were immunized with 200 μg of myelin oligodendrocyte glycoprotein (MOG)35-55 without pertussis toxin. EAE SPLC (ex vivo) and EAE mice (in vivo) were treated with GR extract to evaluate the changes in antigen-specific responses. SPLC media containing antigen-specific responses were used to stimulate BV2 cells. RESULTS GR extract effectively modulated the responses of reactive splenic T cells through the reduction in IFN-γ+ T cell populations, the expressions of cell adhesion molecules (CAMs), and secretions of cytokines containing IFN-γ and a chemokine IFN-γ-induced protein 10 (IP-10) in vitro. In addition, GR extract significantly decreased nitric oxide production and secretion of tumor necrosis factor (TNF)-α and IP-10 in IFN-γ-stimulated BV2 cells. The antigen-specific TH1 and TC1 populations were decreased following administration of 100 mg/kg of GR extract, whereas CD8+IL-17A+ (TC17) population was increased on day 36 after EAE induction. Moreover, IFN-γ, which showed the highest secretion among examined cytokines, and IP-10 decreased on day 36. SPLC media derived from 100 mg/kg GR extract-administered EAE mice revealed the ameliorative effects on BV2 cell stimulation. CONCLUSION This is the first report on the immunomodulatory effects of GR extract on antigen-specific SPLC responses in EAE. These results could be helpful for the discovery of drug candidates for MS by focusing on IFN-γ-related autoimmune responses.
Collapse
Affiliation(s)
- Eun-Ju Yang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| | - Im-Sook Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Kyung-Sik Song
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| |
Collapse
|
41
|
Ameliorative effect of liquorice extract versus silymarin in experimentally induced chronic hepatitis: A biochemical and genetical study. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2018.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Abstract
As plant-derived natural products, saponins have been widely applied for the dietary modification of metabolic syndrome. However, the underlying mechanisms of their preventive and therapeutic effects are still largely unclear. Nuclear receptors have been identified as potential pharmaceutical targets for treating various types of metabolic disorders. With similar structure to endogenous hormones, several saponins may serve as selective ligands for nuclear receptors. Recently, a series of saponins are proved to exert their physiological activities through binding to nuclear receptors. This review summarizes the biological and pharmacological activities of typical saponins mediated by some of the most well described nuclear receptors, including the classical steroid hormone receptors (ER, GR, MR, and AR) and the adopted orphan receptors (PPAR, LXR, FXR, and PXR).
Collapse
Affiliation(s)
- Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Shuning Zhong
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Tiezhu Li
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| |
Collapse
|
43
|
Nho SH, Yoon G, Seo JH, Oh HN, Cho SS, Kim H, Choi HW, Shim JH, Chae JI. Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol Rep 2018; 41:333-340. [PMID: 30320347 PMCID: PMC6278573 DOI: 10.3892/or.2018.6784] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Licochalcone H (LCH) is a chemical compound that is a positional isomer of licochalcone C (LCC), a chalconoid isolated from the root of Glycyrrhiza inflata, which has various pharmacological properties including anti-inflammatory, antioxidant, antitumor, and anticancer effects. However, the efficacy of LCH on cancer cells has not been investigated. The present study examined the effects of LCH on cell proliferation, induction of apoptosis, and the regulation of matrin 3 (Matr3) protein in oral squamous cell carcinoma (OSCC) cells by Annexin V/propidium iodide (PI) staining and western blot analysis. LCH reduced cell viability and colony forming ability, and induced cell cycle arrest and apoptosis in HSC2 and HSC3 cells through the suppression of Matr3. It was also found that LCH directly bound to Matr3 in a Sepharose 4B pull-down assay. Consequently, the results of the present study suggest that LCH may be used as an anticancer drug in combination with conventional chemotherapy for the treatment of OSCC, and that Matr3 may be a potential effective therapeutic target.
Collapse
Affiliation(s)
- Su-Hyun Nho
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Hangun Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Sunchon, Jeonnam 57922, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan, Jeonnam 58554, Republic of Korea
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
44
|
Zhu X, Shi J, Li H. Liquiritigenin attenuates high glucose-induced mesangial matrix accumulation, oxidative stress, and inflammation by suppression of the NF-κB and NLRP3 inflammasome pathways. Biomed Pharmacother 2018; 106:976-982. [DOI: 10.1016/j.biopha.2018.07.045] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 12/30/2022] Open
|
45
|
Oh HN, Seo JH, Lee MH, Kim C, Kim E, Yoon G, Cho SS, Cho YS, Choi HW, Shim JH, Chae JI. Licochalcone C induced apoptosis in human oral squamous cell carcinoma cells by regulation of the JAK2/STAT3 signaling pathway. J Cell Biochem 2018; 119:10118-10130. [PMID: 30129052 DOI: 10.1002/jcb.27349] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/26/2018] [Indexed: 01/09/2023]
Abstract
Oral cancer is of an aggressive malignancy that arises on oral cavity and lip, 90% of cancers histologically originated in the squamous cells. Licochalcone (LC)C has been known as natural phenolic chalconoid substances, and its origin is the root of Glycyrrhiza glabra or Glycyrrhiza inflata. LCC inhibited oral squamous cell carcinoma (OSCC) cell viability, mitochondrial function, and anchorage-independent growth in a dose-dependent manner. To investigate the ability of LCC to target Janus kinase 2 (JAK2), we performed pull-down binding assay, kinase assay, and docking simulation. The molecular docking studies were performed between JAK2 and the potent inhibitor LCC. It was shown that LCC tightly interacted with ATP-binding site of JAK2. In addition, LCC inhibited the JAK2/signal transducer and activator of transcription 3 pathway, upregulated p21, and downregulated Bcl-2, Mcl-1, and Survivin, while it disrupted mitochondrial membrane potential and subsequently caused cytochrome c release with activation of multi-caspase, eventually leading to apoptosis in HN22 and HSC4 cells. LCC elevated the protein levels of Bax, cleaved Bid and PARP, and increased Apaf-1, and this effect was reversed by LCC treatment. Our results demonstrated that treatment of OSCC cells with LCC induced the death receptor (DR)4 and DR5 expression level with the generation of reactive oxygen species and the upregulation of CHOP protein expression. Taken together, these results could provide the basis for clinical application as a new therapeutic strategy in the treatment of oral cancer.
Collapse
Affiliation(s)
- Ha-Na Oh
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Ji-Hye Seo
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| | - Mee-Hyun Lee
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Cheolhee Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Eunae Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, Republic of Korea
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu, Republic of Korea
| | - Hyun Woo Choi
- Department of Animal Science, Chonbuk National University, Jeonju, Republic of Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-Gun, Jeonnam, Republic of Korea.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Oral Bioscience, BK21 Plus, Chonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
46
|
New fast “One-pot” Technique for the Production of Glycyrrhetinic Acid from the Roots of licorice ( Glycyrrhiza glabra). Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this work was to develop and study a fast “one-pot” procedure for the production of glycyrrhetinic acid (GLA) from the roots of licorice ( Glycyrrhiza glabra L.) using subcritical water (SBW). Technique requires no use expensive and toxic organic solvents. For the first time the new method was used for the production of glycyrrhetinic acid (aglycone of glycyrrhizic acid) by “one-pot” technique. HPLC was used to determine the quantitative compositions of the obtained products. It has been shown that variation of only one parameter of the process (temperature) allows alteration of composition of the products obtained by new “one-pot” technique. The “one-pot” procedure developed for the production of GLA in SBW is faster (12 folds) than conventional methods that use expensive and toxic organic solvents. The proposed procedure has the excellent potential for the future development of the fast and low cost technologies for the production of GLA and its derivatives in the pharmaceutical, food and cosmetic industries.
Collapse
|
47
|
Gong P, Li K, Li Y, Liu D, Zhao L, Jing Y. HDAC and Ku70 axis- an effective target for apoptosis induction by a new 2-cyano-3-oxo-1,9-dien glycyrrhetinic acid analogue. Cell Death Dis 2018; 9:623. [PMID: 29795376 PMCID: PMC5967349 DOI: 10.1038/s41419-018-0602-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/25/2018] [Accepted: 04/16/2018] [Indexed: 02/06/2023]
Abstract
Methyl 2-cyano-3,12-dioxo-18β-olean-1,9(11)-dien-30-oate (CDODO-Me, 10d) derived from glycyrrhetinic acid and methyl-2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO-Me) derived from oleanoic acid are potent apoptosis inducers developed to clinical trials. Both compounds have high affinity for reduced glutathione (GSH), which needs to be overcome to improve their target selectivity. We generated a new 10d analogue methyl 2-cyano-3-oxo-18β-olean-1,9(11), 12-trien-30-oate (COOTO, 10e), which retains high apoptosis inducing ability, while displaying decreased affinity for GSH, and explored the acting targets. We found that it induces Noxa level, reduces c-Flip level and causes Bax/Bak activation. Silencing of either Noxa or Bak significantly attenuated apoptosis induction of 10e. We linked these events due to targeting HDAC3/HDAC6 and Ku70 axis. 10e treatment reduced the levels of HDAC3 and HDAC6 with increased DNA damage/repair marker gamma-H2AX (γ-H2AX) and acetylated Ku70. c-Flip dissociates from acetylated Ku70 undergoing degradation, while Bax dissociates from acetylated Ku70 undergoing activation. Silencing of either HDAC3 or HDAC6 enhanced 10e-induced apoptosis. We reveal a new action cascade of this category of compounds that involves targeting of HADC3/6 proteins and Ku70 acetylation.
Collapse
Affiliation(s)
- Ping Gong
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Kun Li
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Ying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Dan Liu
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Linxiang Zhao
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Yongkui Jing
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, PR China. .,Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
48
|
Inhibitory Effects of Glycyrrhiza glabra and Its Major Constituent Glycyrrhizin on Inflammation-Associated Corneal Neovascularization. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8438101. [PMID: 29849730 PMCID: PMC5937553 DOI: 10.1155/2018/8438101] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/14/2018] [Indexed: 01/25/2023]
Abstract
Glycyrrhiza glabra L. (Leguminosae) is widely used in folk medicines. Glycyrrhizin, an active compound of G. glabra, possesses anti-inflammatory activity. This study investigates the G. glabra methanol extract and glycyrrhizin for the treatment of corneal neovascularization (CNV). G. glabra was extracted in 70% aqueous methanol. Phytochemical tests, thin layer chromatography (TLC), and high performance liquid chromatography (HPLC) were used for the analysis of chemical composition. The topical solution of G. glabra methanol extract (2% w/v) and glycyrrhizin (1% w/v) was prepared in normal saline. After corneal burn (1 N NaOH), animals were left untreated for a week so that neovascularization appears in all groups. Treatments started on day 7 and continued for next 21 consecutive days. The animals were treated with 3 drops of various topical solutions thrice a day. Digital photograph analysis and histological studies were used for the evaluation of CNV. Phytochemical analysis of the G. glabra methanol extract showed the presence of saponins, phenols, carbohydrates, flavonoids, and proteins. TLC and HPLC confirmed the presence of glycyrrhizin. Photograph analysis of the extract and glycyrrhizin treated group showed a considerable decrease in CNV. Histological study of G. glabra and glycyrrhizin treated groups showed no blood vessels with properly arranged collagen fibers. This study showed that G. glabra and glycyrrhizin can be used for the treatment of CNV. Bioassay guided isolation can lead to preparation of ophthalmic solutions for the treatment of CNV.
Collapse
|
49
|
Hussain H, Green IR, Shamraiz U, Saleem M, Badshah A, Abbas G, Rehman NU, Irshad M. Therapeutic potential of glycyrrhetinic acids: a patent review (2010-2017). Expert Opin Ther Pat 2018; 28:383-398. [PMID: 29558289 DOI: 10.1080/13543776.2018.1455828] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Glycyrrhetinic acids (GAs) viz., 18β-glycyrrhetinic acid and 18α-glycyrrhetinic acid, are oleanane-type triterpenes having a carboxylic acid group at C-30, and are extracted from the Chines herbal medicine licorice (Glycyrrhiza uralensis). Although the pharmacological properties of GAs have long been known, attention to them has greatly increased in recent times due to their cytotoxic activity. AREAS COVERED This review represents the patents granted about natural and synthetic glycyrrhetinic acid analogs from January 2010 to December 2017, the advances made by research groups in conjunction with pharmaceutical companies in the discovery of new natural or synthetic glycyrrhetinic acid analogs. EXPERT OPINION GAs demonstrate excellent cytotoxic, antimicrobial, enzyme inhibitory, antiinflammatory, antioxidant, analgesic, and antiviral effects. It is interesting to note that the C-3(OH) and C30-CO2H functional groups make GAs very attractive lead structures for medicinal scientists since these functionalities allow the generation of further chemical diversity for improved pharmacological effects. Moreover, various GA analogues have been prepared via modification of the C30-CO2H. It is noteworthy that the C-30 amide of GA demonstrated better cytotoxic effects compared to the parent compounds. In addition, GAs have the capability to conjugate with other anticancer drugs or be converted into their halo or amino analogs which is expected to stimulate medicinal chemist to synthesize new lead compounds in cancer drug discovery.
Collapse
Affiliation(s)
- Hidayat Hussain
- a Department of Bioorganic Chemistry , Leibniz Institute of Plant Biochemistry , Halle (Saale) , Germany.,b UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
| | - Ivan R Green
- c Department of Chemistry and Polymer Science , University of Stellenbosch , Stellenbosch , South Africa
| | - Umair Shamraiz
- d Department of Chemistry , Quaid-i-Azam University , Islamabad , Pakistan
| | - Muhammad Saleem
- e Department of Chemistry , The Islamia University of Bahawalpur , Bahawalpur , Pakistan
| | - Amin Badshah
- d Department of Chemistry , Quaid-i-Azam University , Islamabad , Pakistan
| | - Ghulam Abbas
- f Department of Biological Sciences and Chemistry, College of Arts and Sciences , University of Nizwa , Nizwa , Sultanate of Oman
| | - Najeeb Ur Rehman
- b UoN Chair of Oman's Medicinal Plants and Marine Natural Products , University of Nizwa , Nizwa , Sultanate of Oman
| | - Muhammad Irshad
- g Department of Chemistry , University of Kotli , Azad Jammu & Kashmir , Pakistan
| |
Collapse
|
50
|
Song X, Yin S, Zhang E, Fan L, Ye M, Zhang Y, Hu H. Glycycoumarin exerts anti-liver cancer activity by directly targeting T-LAK cell-originated protein kinase. Oncotarget 2018; 7:65732-65743. [PMID: 27582549 PMCID: PMC5323188 DOI: 10.18632/oncotarget.11610] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/15/2016] [Indexed: 12/25/2022] Open
Abstract
Glycycoumarin (GCM) is a major bioactive coumarin compound isolated from licorice and the anti-cancer activity of GCM has not been scientifically addressed. In the present study, we have tested the anti-liver cancer activity of GCM using both in vitro and in vivo models and found for the first time that GCM possesses a potent activity against liver cancer evidenced by cell growth inhibition and apoptosis induction in vitro and tumor reduction in vivo. Mechanistically, GCM was able to bind to and inactivate oncogenic kinase T-LAK cell-originated protein kinase (TOPK), which in turn led to activation of p53 pathway. Our findings supported GCM as a novel active compound that contributed to the anti-cancer activity of licorice and TOPK could be an effective target for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Xinhua Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Min Ye
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yong Zhang
- The Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|