1
|
Ducasse H, Arnal A, Vittecoq M, Daoust SP, Ujvari B, Jacqueline C, Tissot T, Ewald P, Gatenby RA, King KC, Bonhomme F, Brodeur J, Renaud F, Solary E, Roche B, Thomas F. Cancer: an emergent property of disturbed resource-rich environments? Ecology meets personalized medicine. Evol Appl 2015; 8:527-40. [PMID: 26136819 PMCID: PMC4479509 DOI: 10.1111/eva.12232] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/17/2015] [Indexed: 12/13/2022] Open
Abstract
For an increasing number of biologists, cancer is viewed as a dynamic system governed by evolutionary and ecological principles. Throughout most of human history, cancer was an uncommon cause of death and it is generally accepted that common components of modern culture, including increased physiological stresses and caloric intake, favor cancer development. However, the precise mechanisms for this linkage are not well understood. Here, we examine the roles of ecological and physiological disturbances and resource availability on the emergence of cancer in multicellular organisms. We argue that proliferation of 'profiteering phenotypes' is often an emergent property of disturbed, resource-rich environments at all scales of biological organization. We review the evidence for this phenomenon, explore it within the context of malignancy, and discuss how this ecological framework may offer a theoretical background for novel strategies of cancer prevention. This work provides a compelling argument that the traditional separation between medicine and evolutionary ecology remains a fundamental limitation that needs to be overcome if complex processes, such as oncogenesis, are to be completely understood.
Collapse
Affiliation(s)
- Hugo Ducasse
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Audrey Arnal
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Marion Vittecoq
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Centre de Recherche de la Tour du ValatArles, France
| | - Simon P Daoust
- Department of Biology, John Abbott CollegeSainte-Anne-de-Bellevue, QC, Canada
| | - Beata Ujvari
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin UniversityWaurn Ponds, Vic., Australia
| | - Camille Jacqueline
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Tazzio Tissot
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Paul Ewald
- Department of Biology and the Program on Disease Evolution, University of LouisvilleLouisville, KY, USA
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center & Research InstituteTampa, FL, USA
| | - Kayla C King
- Department of Zoology, University of OxfordOxford, UK
| | - François Bonhomme
- ISEM Institut des sciences de l'évolution, Université Montpellier 2, CNRS/IRD/UM2 UMR 5554Montpellier Cedex, France
| | - Jacques Brodeur
- Institut de Recherche en Biologie Végétale, Université de MontréalMontréal, QC, Canada
| | - François Renaud
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| | - Eric Solary
- INSERM U1009, Université Paris-Sud, Gustave RoussyVillejuif, France
| | - Benjamin Roche
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
- Unité mixte internationale de Modélisation Mathématique et Informatique des Systèmes Complexes (UMI IRD/UPMC UMMISCO)BondyCedex, France
| | - Frédéric Thomas
- MIVEGEC, UMR IRD/CNRS/UM 5290Montpellier Cedex 5, France
- CREEC, Université Montpellier 2Montpellier Cedex 5, France
| |
Collapse
|
2
|
González-Vallinas M, González-Castejón M, Rodríguez-Casado A, Ramírez de Molina A. Dietary phytochemicals in cancer prevention and therapy: a complementary approach with promising perspectives. Nutr Rev 2013; 71:585-99. [DOI: 10.1111/nure.12051] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
3
|
Jeong JB, Hong SC, Koo JS, Jeong HJ. Induction of Apoptosis and Acetylation of Histone H3 and H4 by Arctigenin in the Human Melanoma Cell Line SK-MEL-28. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/fns.2011.22018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Synthesis, structural characterisation and biological evaluation of fluorinated analogues of resveratrol. Bioorg Med Chem 2009; 17:4510-22. [DOI: 10.1016/j.bmc.2009.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/29/2009] [Accepted: 05/04/2009] [Indexed: 11/17/2022]
|
5
|
Kibriya MG, Jasmine F, Argos M, Verret WJ, Rakibuz-Zaman M, Ahmed A, Parvez F, Ahsan H. Changes in gene expression profiles in response to selenium supplementation among individuals with arsenic-induced pre-malignant skin lesions. Toxicol Lett 2007; 169:162-76. [PMID: 17293063 PMCID: PMC1924917 DOI: 10.1016/j.toxlet.2007.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 01/09/2007] [Accepted: 01/09/2007] [Indexed: 12/27/2022]
Abstract
The molecular basis and downstream targets of oral selenium supplementation in individuals with elevated risk of cancer due to chronic exposure from environmental carcinogens has been largely unexplored. In this study, we investigated genome-wide differential gene expression in peripheral blood mononuclear cells (PBMC) from individuals with pre-malignant arsenic (As)-induced skin lesions before and after 6 months daily oral supplementation of 200 microg L-selenomethionine. The Affymetrix GeneChip Human 133A 2.0 array, containing probes for 22,277 gene transcripts, was used to assess gene expression. Three different normalization methods, RMA (robust multi-chip analysis), GC-RMA and PLIER (Probe logarithmic intensity error), were applied to explore differentially expressed genes. We identified a list of 28 biologically meaningful, significantly differentially expressed genes. Genes up-regulated by selenium supplementation included TNF, IL1B, IL8, SOD2, CXCL2 and several other immunological and oxidative stress-related genes. When mapped to a biological association network, many of the differentially expressed genes were found to regulate functional classes such as fibroblast growth factor, collagenase, matrix metalloproteinase and stromelysin-1, and thus, considered to affect cellular processes like apoptosis, proliferation and others. Many of the significantly up-regulated genes following selenium-supplementation were previously found by us to be down-regulated in a different set of individuals with As-induced skin lesions compared to those without. In conclusion, findings from this study may elucidate the biological effect of selenium supplementation in humans. Additionally, this study suggests that long-term selenium supplementation may revert some of the gene expression changes presumably induced by chronic As exposure in individuals with pre-malignant skin lesions.
Collapse
Affiliation(s)
- Muhammad G Kibriya
- Department of Epidemiology, Mailman School of Public Health, Columbia University, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Clifton Leaf, in his article "Why We're Losing the War on Cancer," presents criticisms of past research approaches and the small impact of this research thus far on producing cures or substantially extending the life of many cancer patients. It is true that gains in long-term survival for people with advanced cancers have been modest, hindered in part by the heterogeneity of tumors, which allows the cancers to persist using alternate molecular pathways and so evade many cancer therapeutics. In contrast, clinical trials have demonstrated that it is possible to reduce the incidence or improve cancer survival through prevention and early detection. Strides have been made in preventing or detecting early the four deadliest cancers in the United States (i.e., lung, breast, prostate, and colorectal). For example, 7-year follow-up data from the Breast Cancer Prevention Trial (BCPT) provides evidence that tamoxifen reduces the occurrence of invasive breast tumors by more than 40%; recent studies using aromatase inhibitors and raloxifene are also promising. The Prostate Cancer Prevention Trial (PCPT) showed that finasteride reduced prostate cancer incidence by 25%, and the ongoing Selenium and Vitamin E Cancer Prevention Trial (SELECT) is investigating selenium and vitamin E for prostate cancer prevention based on encouraging results from earlier studies. Living a healthy lifestyle, including regular physical activity, avoiding obesity, and eating primarily a plant-based diet has been associated with a lower risk of colorectal cancer. In addition, noninvasive stool DNA tests for early detection are being studied, which may lessen the reluctance of people to be screened for colorectal polyps and cancer. Behavioral and medical approaches for smoking prevention are ways to reduce the incidence of lung cancer, with antinicotine vaccines on the horizon that may help former smokers to avoid relapse. The US National Lung Screening Trial is testing whether early detection via spiral CT screening will reduce lung cancer mortality. Prevention and earlier detection offer efficient and practical strategies to reduce the cancer burden. Several of the suggestions Mr. Leaf makes, such as developing interdisciplinary collaborations and allocating resources to research earlier in the process of carcinogenesis, have become an integral strategy in the National Cancer Institute's (NCI) approach in the past decade, specifically in the realm of cancer prevention and early detection. For example, an aggressive program to identify biomarkers for earlier detection of cancer--the NCI's Early Detection Research Detection (EDRN)--has identified three promising biomarkers since its establishment in 2000. It collaborates with the National Institute of Standards and Technology and extramural scientists to develop validation standards and to identify the best technologies to use for systematic investigations. If these biomarkers can be validated, they might help to reduce cancer mortality.
Collapse
Affiliation(s)
- Peter Greenwald
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-7309, USA
| |
Collapse
|
7
|
Patlolla JMR, Raju J, Swamy MV, Rao CV. Beta-escin inhibits colonic aberrant crypt foci formation in rats and regulates the cell cycle growth by inducing p21(waf1/cip1) in colon cancer cells. Mol Cancer Ther 2006; 5:1459-66. [PMID: 16818504 DOI: 10.1158/1535-7163.mct-05-0495] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Extracts of Aesculus hippocastanum (horse chestnut) seed have been used in the treatment of chronic venous insufficiency, edema, and hemorrhoids. Most of the beneficial effects of horse chestnut are attributed to its principal component beta-escin or aescin. Recent studies suggest that beta-escin may possess anti-inflammatory, anti-hyaluronidase, and anti-histamine properties. We have evaluated the chemopreventive efficacy of dietary beta-escin on azoxymethane-induced colonic aberrant crypt foci (ACF). In addition, we analyzed the cell growth inhibitory effects and the induction of apoptosis in HT-29 human colon cancer cell line. To evaluate the inhibitory properties of beta-escin on colonic ACF, 7-week-old male F344 rats were fed experimental diets containing 0%, 0.025%, or 0.05% beta-escin. After 1 week, the rats received s.c. injections of azoxymethane (15 mg/kg body weight, once weekly for 2 weeks) or an equal volume of normal saline (vehicle). Rats were continued on respective experimental diets and sacrificed 8 weeks after the azoxymethane treatment. Colons were evaluated histopathologically for ACF. Administration of dietary 0.025% and 0.05% beta-escin significantly suppressed total colonic ACF formation up to approximately 40% (P < 0.001) and approximately 50% (P < 0.0001), respectively, when compared with control diet group. Importantly, rats fed beta-escin showed dose-dependent inhibition (approximately 49% to 65%, P < 0.0001) of foci containing four or more aberrant crypts. To understand the growth inhibitory effects, HT-29 human colon carcinoma cell lines were treated with various concentrations of beta-escin and analyzed by flow cytometry for apoptosis and cell cycle progression. Beta-escin treatment in HT-29 cells induced growth arrest at the G1-S phase, which was associated with the induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1), and this correlated with reduced phosphorylation of retinoblastoma protein. Results also indicate that beta-escin inhibited growth of colon cancer cells with either wild-type or mutant p53. This novel feature of beta-escin, a triterpene saponin, may be a useful candidate agent for colon cancer chemoprevention and treatment.
Collapse
Affiliation(s)
- Jagan M R Patlolla
- Department of Medicine, OU Cancer Institute, University of Oklahoma Health Sciences Center, 975 Northeast 10th Street, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
8
|
Novoselov SV, Calvisi DF, Labunskyy VM, Factor VM, Carlson BA, Fomenko DE, Moustafa ME, Hatfield DL, Gladyshev VN. Selenoprotein deficiency and high levels of selenium compounds can effectively inhibit hepatocarcinogenesis in transgenic mice. Oncogene 2005; 24:8003-11. [PMID: 16170372 DOI: 10.1038/sj.onc.1208940] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The micronutrient element selenium (Se) has been shown to be effective in reducing the incidence of cancer in animal models and human clinical trials. Selenoproteins and low molecular weight Se compounds were implicated in the chemopreventive effect, but specific mechanisms are not clear. We examined the role of Se and selenoproteins in liver tumor formation in TGFalpha/c-Myc transgenic mice, which are characterized by disrupted redox homeostasis and develop liver cancer by 6 months of age. In these mice, both Se deficiency and high levels of Se compounds suppressed hepatocarcinogenesis. In addition, both treatments induced expression of detoxification genes, increased apoptosis and inhibited cell proliferation. Within low-to-optimal levels of dietary Se, tumor formation correlated with expression of most selenoproteins. These data suggest that changes in selenoprotein expression may either suppress or promote tumorigenesis depending on cell type and genotype. Since dietary Se may have opposing effects on cancer, it is important to identify the subjects who will benefit from Se supplementation as well as those who will not.
Collapse
Affiliation(s)
- Sergey V Novoselov
- Department of Biochemistry, University of Nebraska, N 151 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang Z, Hsieh TC, Zhang Z, Ma Y, Wu JM. Identification and purification of resveratrol targeting proteins using immobilized resveratrol affinity chromatography. Biochem Biophys Res Commun 2004; 323:743-9. [PMID: 15381063 PMCID: PMC3641935 DOI: 10.1016/j.bbrc.2004.08.174] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Indexed: 11/24/2022]
Abstract
The phytochemical resveratrol (trans-3,4',5-trihydroxystilbene) is a naturally occurring polyphenol with a plethora of health-beneficial properties, including a preventive role in cancer. We surmise that resveratrol may exert its diverse biological effects by interacting with specific target proteins, denoted RTPs. To test this possibility, resveratrol was immobilized on epoxy-activated agarose forming a resveratrol affinity column (RAC), which was used to detect and isolate RTPs. Distinct RTPs can be resolved on RAC by fractionation with increasing NaCl, followed by 1mM ATP, and finally, with 1-2mM resveratrol. A 22-kDa polypeptide, RTP-22, eluted with resveratrol was identified by MALDI-TOF MS and cloning/expression in Escherichia coli, as dihydronicotinamide riboside quinone reductase 2 (NQO2). The utility of RAC was additionally explored with extracts derived from different staging prostate cancer cells. NQO2 was most abundant in CWR22Rv1, a model for prostate cancer transition from androgen-dependent to the hormone-refractory state, but was marginally expressed in JCA-1 cells as representing more advanced stage prostate cancer. These results provide evidence for the existence of distinctive RTPs in mammalian cells and that RAC is a facile approach to identify and purify RTPs.
Collapse
Affiliation(s)
- Zhirong Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Tze-chen Hsieh
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY 10595, USA
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
| | - Yuliang Ma
- Proteomics Facility, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Joseph M. Wu
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, USA
- Brander Cancer Research Institute, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
10
|
Raju J, Patlolla JM, Swamy MV, Rao CV. Diosgenin, a Steroid Saponin of Trigonella foenum graecum (Fenugreek), Inhibits Azoxymethane-Induced Aberrant Crypt Foci Formation in F344 Rats and Induces Apoptosis in HT-29 Human Colon Cancer Cells. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1392.13.8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Trigonella foenum graecum (fenugreek) is traditionally used to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Recent studies suggest that fenugreek and its active constituents may possess anticarcinogenic potential. We evaluated the preventive efficacy of dietary fenugreek seed and its major steroidal saponin constituent, diosgenin, on azoxymethane-induced rat colon carcinogenesis during initiation and promotion stages. Preneoplastic colonic lesions or aberrant crypt foci (ACF) were chosen as end points. In addition, we assessed the mechanism of tumor growth inhibition of diosgenin in HT-29 human colon cancer cells. To evaluate the effect of the test agent during the initiation and postinitiation stages, 7-week-old male F344 rats were fed experimental diets containing 0% or 1% fenugreek seed powder (FSP) or 0.05% or 0.1% diosgenin for 1 week and were injected with azoxymethane (15 mg/kg body weight). Effects during the promotional stage were studied by feeding 1% FSP or 0.1% diosgenin 4 weeks after the azoxymethane injections. Rats were sacrificed 8 weeks after azoxymethane injection, and their colons were evaluated for ACF. We found that, by comparison with control, continuous feeding of 1% FSP and 0.05% and 0.1% diosgenin suppressed total colonic ACF up to 32%, 24%, and 42%, respectively (P ≤ 0.001 to 0.0001). Dietary FSP at 1% and diosgenin at 0.1% fed only during the promotional stage also inhibited total ACF up to 33% (P ≤ 0.001) and 39% (P ≤ 0.0001), respectively. Importantly, continuous feeding of 1% FSP or 0.05% or 0.1% diosgenin reduced the number of multicrypt foci by 38%, 20%, and 36% by comparison with the control assay (P ≤ 0.001). In addition, 1% FSP or 0.1% diosgenin fed during the promotional stage caused a significant reduction (P ≤ 0.001) of multicrypt foci compared with control. Dietary diosgenin at 0.1% and 0.05% inhibited total colonic ACF and multicrypt foci formation in a dose-dependent manner. Results from the in vitro experiments indicated that diosgenin inhibits cell growth and induces apoptosis in the HT-29 human colon cancer cell line in a dose-dependent manner. Furthermore, diosgenin induced apoptosis in HT-29 cells at least in part by inhibition of bcl-2 and by induction of caspase-3 protein expression. On the basis of these findings, the fenugreek constituent diosgenin seems to have potential as a novel colon cancer preventive agent.
Collapse
Affiliation(s)
- Jayadev Raju
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Jagan M.R. Patlolla
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Malisetty V. Swamy
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Chinthalapally V. Rao
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| |
Collapse
|
11
|
Chalabi N, Le Corre L, Maurizis JC, Bignon YJ, Bernard-Gallon DJ. The effects of lycopene on the proliferation of human breast cells and BRCA1 and BRCA2 gene expression. Eur J Cancer 2004; 40:1768-75. [PMID: 15251168 DOI: 10.1016/j.ejca.2004.03.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 03/18/2004] [Indexed: 01/07/2023]
Abstract
The purpose of this study was to demonstrate the effects of lycopene, the major tomato carotenoid, on the expression of the BRCA1 and BRCA2 genes in three breast tumour cell lines, MCF-7, HBL-100, MDA-MB-231 and the fibrocystic breast cell line MCF-10a. Flow cytometry analysis showed a G(1)/S phase cell cycle-arrest after treatment of the cells with 10 microM lycopene for 48 h. mRNA expression was studied by quantitative reverse transcription-polymerase chain reaction using the Taqman method. We observed an increase of BRCA1 and BRCA2 mRNA in the oestrogen receptor (ER)-positive cell lines (MCF-7 and HBL-100), and a decrease (MDA-MB-231) or no change (MCF-10a) in the ER-negative cell lines. BRCA1 and BRCA2 proteins were quantified by perfusion affinity chromatography. No variation in their expression was observed. These preliminary results on the effects of lycopene on the expression of BRCA1 and BRCA2 oncosuppressor genes in breast cancer may reflect cross-talk between the oestrogen and retinoic acid receptor (RAR) pathways.
Collapse
Affiliation(s)
- N Chalabi
- Laboratoire d'Oncologie Moléculaire, Centre Jean Perrin, UMR 484 INSERM-UdA, 58, Rue Montalembert, BP 392, 63011 Clermont-Ferrand Cedex 1, France
| | | | | | | | | |
Collapse
|
12
|
Gupta S, Adhami VM, Subbarayan M, MacLennan GT, Lewin JS, Hafeli UO, Fu P, Mukhtar H. Suppression of prostate carcinogenesis by dietary supplementation of celecoxib in transgenic adenocarcinoma of the mouse prostate model. Cancer Res 2004; 64:3334-43. [PMID: 15126378 DOI: 10.1158/0008-5472.can-03-2422] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Epidemiological studies and clinical observations suggest that nonsteroidal anti-inflammatory drugs and certain selective cyclooxygenase (COX)-2 inhibitors may reduce the relative risk of clinically evident prostate cancer. This prompted us to investigate the chemopreventive potential of celecoxib, a selective COX-2 inhibitor, against prostate carcinogenesis in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Similar to prostate cancer in humans, prostate malignancies in TRAMP mice progress from precursor intraepithelial lesions, to invasive carcinoma that metastasizes to lymph nodes, liver, lungs, and occasionally to bone. The basal enzyme activity and protein expression of COX-2 is significantly higher (>4-fold) in the dorsolateral prostate of TRAMP mice up to 24 weeks of age compared with their nontransgenic littermates. Eight-week-old TRAMP mice were randomly divided and fed either control diet (AIN 76A) or a custom prepared AIN 76A diet containing 1500-ppm celecoxib ad libitum for 24 weeks, a dosage that would compare with the normal recommended dose for the treatment of human disease. Studies from two independent experiments, each consisting of 10 mice on test, showed that the cumulative incidence of prostate cancer development at 32 weeks of age in animals fed with AIN 76A diet was 100% (20 of 20) as observed by tumor palpation, whereas 65% (13 of 20), 35% (7 of 20), and 20% (4 of 20) of the animals exhibited distant site metastases to lymph nodes, lungs, and liver. Celecoxib supplementation to TRAMP mice from 8-32 weeks of age exhibited significant reduction in tumor development (5 of 20) with no signs of metastasis. Celecoxib feeding resulted in a significant decrease in prostate (56%; P < 0.0003) and genitourinary weight (48%; P < 0.008). Sequential magnetic resonance imaging analysis of celecoxib-fed mice documented lower prostate volume compared with the AIN 76A-fed group. Histopathological examination of celecoxib-fed animals showed reduced proliferation, and down-modulation of COX-2 and prostaglandin E2 levels in the dorsolateral prostate and plasma, respectively. These results correlated with retention of antimetastasis markers, viz E-cadherin, and alpha- and beta-catenin, along with a significant decrease in vascular endothelial growth factor protein expression. Celecoxib supplementation also resulted in enhanced in vivo apoptosis in the prostate as monitored by several techniques including a recently perfected technique of 99mTc-labeled annexin V in live animals followed by phosphor imaging. One striking observation in an additional study was that celecoxib feeding to mice with established tumors (16 weeks of age) significantly improved their overall survival (P = 0.014), compared with AIN 76A-fed group. Our findings suggest that celecoxib may be useful in chemoprevention of prostate cancer.
Collapse
Affiliation(s)
- Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Research Laboratory, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|