1
|
Abbas M, Gururani MA, Ali A, Bajwa S, Hassan R, Batool SW, Imam M, Wei D. Antimicrobial Properties and Therapeutic Potential of Bioactive Compounds in Nigella sativa: A Review. Molecules 2024; 29:4914. [PMID: 39459282 PMCID: PMC11510594 DOI: 10.3390/molecules29204914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Nigella sativa (N. sativa; Ranunculaceae), commonly referred to as black cumin, is one of the most widely used medicinal plants worldwide, with its seeds having numerous applications in the pharmaceutical and food industries. With the emergence of antibiotic resistance in pathogens as an important health challenge, the need for alternative microbe-inhibitory agents is on the rise, whereby black cumin has gained considerable attention from researchers for its strong antimicrobial characteristics owing to its high content in a wide range of bioactive compounds, including thymoquinone, nigellimine, nigellidine, quercetin, and O-cymene. Particularly, thymoquinone increases the levels of antioxidant enzymes that counter oxidative stress in the liver. Additionally, the essential oil in N. sativa seeds effectively inhibits intestinal parasites and shows moderate activity against some bacteria, including Bacillus subtilis and Staphylococcus aureus. Thymoquinone exhibits minimum inhibitory concentrations (MICs) of 8-16 μg/mL against methicillin-resistant Staphylococcus aureus (MRSA) and exhibits MIC 0.25 µg/mL against drug-resistant mycobacteria. Similarly, quercetin shows a MIC of 2 mg/mL against oral pathogens, such as Streptococcus mutans and Lactobacillus acidophilus. Furthermore, endophytic fungi isolated from N. sativa have demonstrated antibacterial activity. Therefore, N. sativa is a valuable medicinal plant with potential for medicinal and food-related applications. In-depth exploration of the corresponding therapeutic potential and scope of industrial application warrants further research.
Collapse
Affiliation(s)
- Munawar Abbas
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
| | - Mayank Anand Gururani
- Biology Department, College of Science, UAE University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amjad Ali
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - Sakeena Bajwa
- Department of Medical Laboratory Technology, Riphah International University, Faisalabad 44000, Pakistan
| | - Rafia Hassan
- Department of Biological Sciences, Pakistan Institute of Engineering and Applied Sciences, Islamabad 45650, Pakistan;
| | - Syeda Wajiha Batool
- Department of Biotechnology, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Mahreen Imam
- Department of Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Dongqing Wei
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China;
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, and Joint Laboratory of International Cooperation in Metabolic and Developmental Sciences, Ministry of Education, Shanghai Jiao Tong University, 800 Dongchuan Road Shanghai, Minhang District, Shanghai 200240, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang 473006, China
- Henan Biological Industry Group, 41, Nongye East Rd, Jinshui, Zhengzhou 450008, China
- Peng Cheng National Laboratory, Vanke Cloud City Phase I Building 8, Xili Street, Nashan District, Shenzhen 518055, China
| |
Collapse
|
2
|
Alabrahim OAA, Lababidi JM, Fritzsche W, Azzazy HMES. Beyond aromatherapy: can essential oil loaded nanocarriers revolutionize cancer treatment? NANOSCALE ADVANCES 2024:d4na00678j. [PMID: 39415775 PMCID: PMC11474398 DOI: 10.1039/d4na00678j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Cancer, a complex global health burden, necessitates the development of innovative therapeutic strategies. While chemotherapy remains the primary treatment approach, its severe side effects and chemoresistance drive the search for novel alternatives. Essential oils (EOs), consisting of diverse bioactive phytochemicals, offer promise as anticancer agents. However, their limitations, such as instability, limited bioavailability, and non-specific targeting, hinder their therapeutic potential. These challenges were circumvented by utilizing nanoparticles and nanosystems as efficient delivery platforms for EOs. This review highlights the accumulating evidence based on loading EOs into several nanocarriers, including polymeric nanoparticles, nanoemulsions, nanofibers, lipid-based nanocapsules and nanostructures, niosomes, and liposomes, as effective anticancer regimens. It covers extraction and chemical composition of EOs, their mechanisms of action, and targeting strategies to various tumors. Additionally, it delves into the diverse landscape of nanocarriers, including their advantages and considerations for cancer targeting and EO encapsulation. The effectiveness of EO-loaded nanocarriers in cancer targeting and treatment is examined, highlighting enhanced cellular uptake, controlled drug release, and improved therapeutic efficacy. Finally, the review addresses existing challenges and future perspectives, emphasizing the potential for clinical translation and personalized medicine approaches.
Collapse
Affiliation(s)
- Obaydah Abd Alkader Alabrahim
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Jude Majed Lababidi
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo AUC Avenue, SSE # 1184, P.O. Box 74 New Cairo 11835 Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology Albert Einstein Str. 9 Jena 07745 Germany
| |
Collapse
|
3
|
Çınar İ, Gıdık B, Dirican E. Determination of anti-cancer effects of Nigella sativa seed oil on MCF7 breast and AGS gastric cancer cells. Mol Biol Rep 2024; 51:491. [PMID: 38578469 DOI: 10.1007/s11033-024-09453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND This study aimed to investigate the cytotoxic, apoptotic, invasion, metastasis, and heat shock proteins (HSPs) effects of N. sativa oil on breast and gastric cancer cells. METHODS We assessed the cytotoxic and apoptotic effects of various concentrations of N. sativa oil (10-50-100-200 µg/mL) on MCF7 breast cancer and AGS, an adenocarcinoma of the gastric cell line, at 24, 48 and 72 h using the MTT test. Additionally, the expression of the Caspase-3, BCL2/Bax, MMP2-9 and HSP60-70 gene was examined using RT-PCR in cell lines treating with N. sativa. RESULTS The MTT experiments demonstrate that N. sativa has a time and dose-dependent inhibitory effect on the proliferation of MCF7 and AGS cancer cells. The vitality rates of MCF7 and AGS cells treated with N. sativa were 77.04-67.50% at 24 h, 65.28-39.14% at 48 h, and 48.95-32.31% at 72 h. The doses of 100 and 200 µg/mL were shown to be the most effective on both cancer cells. RT-PCR analysis revealed that N. sativa oil extract increased caspase-3 levels in both cell lines at higher concentrations and suppressed BCL2/Bax levels. Exposure of MCF7 and AGS cell lines to N. sativa caused a significant decrease in the expression of MMP2-9 and HSP60-70 genes over time, particularly at a dosage of 200 µg/mL compared to the control group (p < 0.05). CONCLUSIONS Our findings indicate that N. sativa oil has a dose-dependent effect on cytotoxicity and the expression of apoptotic, heat shock proteins, and matrix metalloproteinases genes in breast and gastric cancer.
Collapse
Affiliation(s)
- İrfan Çınar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, Kastamonu, Turkey
| | - Betül Gıdık
- Department of Organic Farming Management, Bayburt University, Bayburt, 69000, Turkey
| | - Ebubekir Dirican
- Department of Medical Biology, Faculty of Medicine, Bilecik Şeyh Edabali University, Bilecik, Turkey.
| |
Collapse
|
4
|
Hamed Ali Bakr E, Hamdan Almuraee AA. Protective Effect of Black Seed and Lettuce Oils Against Paracetamol-Induced Hepatotoxicity in Rats. Pak J Biol Sci 2024; 27:59-68. [PMID: 38516747 DOI: 10.3923/pjbs.2024.59.68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
<b>Background and Objective:</b> The liver is one of the organs that play an essential role in the human body, including supporting metabolism, immune functions, digestive system, detoxification, storage of vitamins and other functions. This investigation aimed to study the protective effects of black seed and lettuce oil against hepatotoxicity as induced by paracetamol in experimental rats. <b>Materials and Methods:</b> Twenty male Sprague-Dawley albino rats weighing 150±5 g were divided randomly into four groups (5 rats each) and distributed as follows; 1st group was controlled negative (C -ve group), 2nd group controlled positive (orally administered with 500 mg/kg b.wt., paracetamol), 3rd and 4th groups were orally administered with black seed oil and lettuce oil at a dose of 1 mL/kg b.wt., each) as a preventive dose. All rats were sacrificed and blood was collected for biochemical analysis and then statistically analyzed. <b>Results:</b> The rat administered with black seed and lettuce oils enhanced body weight gain, food intake and feed efficiency ratio. Moreover, exhibited a significant reduction in the liver enzymes AST, ALT, ALP and TBIL. Meanwhile, black seed and lettuce oils significantly improved kidney functions, lipid profiles and some immune biomarkers including creatine kinase (CK), Creatine Kinase-MB (CK-MB) and Lactate Dehydrogenase (LDH). <b>Conclusion:</b> This study revealed that the oils of black seed (<i>Nigella sativa</i>) and lettuce (<i>Lactuca sativa</i>) have a protective role in improving body weight gain, food intake, feed efficiency ratio, liver enzymes, kidney functions, lipid profiles and some immune biomarkers against paracetamol-induced hepatotoxicity in experimental rats.
Collapse
|
5
|
Wahab S, Alsayari A. Potential Pharmacological Applications of Nigella Seeds with a Focus on Nigella sativa and Its Constituents against Chronic Inflammatory Diseases: Progress and Future Opportunities. PLANTS (BASEL, SWITZERLAND) 2023; 12:3829. [PMID: 38005726 PMCID: PMC10675207 DOI: 10.3390/plants12223829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
The leading cause of death worldwide has been identified as chronic illnesses, according to the World Health Organization (WHO). Chronic inflammatory conditions such as asthma, cancer, diabetes, heart disease, and obesity account for three out of every five deaths. Although many people benefit from using nonsteroidal anti-inflammatory medicines (NSAIDs) for pain and inflammation relief, there are significant adverse effects to using these medications. Medicinal plants possess anti-inflammatory properties with minimal or no side effects. Nigella sativa (NS), also known as black cumin, is one of the plants used in traditional medicine the most. Many studies on the NS have shown that their therapeutic properties are attributed to the seed, oil, and secondary metabolites. This plant has been studied extensively and has many medical uses, such as anti-inflammatory. NS or its phytochemical compounds, such as thymoquinone, can cause cell apoptosis via oxidative stress, block efflux pumps, enhance membrane permeability, and exert potent biocidal effects. Notwithstanding the extensively documented anti-inflammatory effectiveness observed in the experimental model, the precise mechanisms underlying its anti-inflammatory effects in diverse chronic inflammatory diseases and its multi-targeting characteristics remain largely unexplored. This review examines NS or its secondary metabolites, a valuable source for the therapeutic development of chronic inflammatory diseases. Most clinical studies were done for diabetes and cardiovascular disease; therefore, more studies are required to examine the NS extracts and phytoconstituents to treat cancer, obesity, diabetes, asthma, neurological disorders, and COVID-19. This study will be a significant resource for clinicians and biologists seeking a pharmaceutical solution for inflammatory diseases.
Collapse
Affiliation(s)
- Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | | |
Collapse
|
6
|
Hisham Shady N, Zhang J, Khalid Sobhy S, Hisham M, Glaeser SP, Alsenani F, Kämpfer P, El-Katatny MH, Abdelmohsen UR. Metabolomic profiling and cytotoxic potential of three endophytic fungi of the genera Aspergillus, Penicillium and Fusarium isolated from Nigella sativa seeds assisted with docking studies. Nat Prod Res 2023; 37:2905-2910. [PMID: 36305731 DOI: 10.1080/14786419.2022.2136660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
Abstract
The main aim of our study is to investigate the anticancer potential of our cultivated entophytic fungal strains from Nigella sativa seeds. The strains were identified by sequencing of the partial 18S rRNA gene and the internal transcribed spacer (ITS) region as Aspergillus sp. (SA4), Penicillium sp. (SA5), and Fusarium sp. (SA6). We carried out metabolic profiling for three fungal strains to investigate their metabolites diversity. Profiling of the different extracts revealed their richness in diverse metabolites and consequently fourteen compounds (1-14) were annotated. In addition, the obtained extracts were examined against three cell lines HepG2, MCF-7 and Caco-2 showed activity with IC50 values in the range of 1.95-39.7 μg/mL. Finally, molecular docking study was performed showing questinol as the lowest glide binding score value (-5.925 kcal/mol) among all identified compounds. Our results showed Nigella sativa-associated endophytes as a promising source for further studies to look for anticancer secondary metabolites.
Collapse
Affiliation(s)
- Nourhan Hisham Shady
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sara Khalid Sobhy
- Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt
- Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Mohamed Hisham
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Deraya University, Minia, Egypt
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus-Liebig University Gießen, Gießen, Germany
| | - Mo'men H El-Katatny
- Department of Botany and Microbiology, Faculty of Science, Minia University, El-Minia, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
7
|
The efficacy of applying some plants and herbs in cancer therapy for humans and animals – a comperhensive review. ANNALS OF ANIMAL SCIENCE 2022. [DOI: 10.2478/aoas-2022-0078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Cancer is a challenging ailment and represents the main reason for death worldwide for humans and animals. Although great developments have hindered cancer progression, several adverse effects are associated with modern chemotherapy. Natural remedies, such as the usage of medicinal plant or their products in cancer treatment, may decrease prejudicial side properties. Recently, the modern research scheme and innovative screening practices for herbs or plants have enabled phytochemical discovery for the prevention and treatment of cancer. This criticism highlights herbs such as acacia, basil, black seeds, cedar, castus, ficus, garlic, ginger, indigo, onion, pomegranate, quince, and thyme, promising anticancer effects. The present review also revealed the mode of action of each herb as anticancer effects at level in vitro and in vivo studies. The item also totalizes the vital mechanisms and signaling molecules involved in preventing cancer diseases. This will fill the investigate gap in the exploration of using natural molecules and encourage researchers in clinical trials of anticancer agents from herbs for humans and animals.
Collapse
|
8
|
Alam M, Hasan GM, Ansari MM, Sharma R, Yadav DK, Hassan MI. Therapeutic implications and clinical manifestations of thymoquinone. PHYTOCHEMISTRY 2022; 200:113213. [PMID: 35472482 DOI: 10.1016/j.phytochem.2022.113213] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Thymoquinone (TQ), a natural phytochemical predominantly found in Nigella sativa, has been investigated for its numerous health benefits. TQ showed anti-cancer, anti-oxidant, and anti-inflammatory properties, validated in various disease models. The anti-cancer potential of TQ is goverened by anti-proliferation, cell cycle arrest, apoptosis induction, ROS production, anti-metastasis and anti-angiogenesis, inhibition of cell migration and invasion action. Additionally, TQ exhibited antitumor activity via the modulation of multiple pathways and molecular targets, including Akt, ERK1/2, STAT3, and NF-κB. The present review highlighted the anticancer potential of TQ . We summarize the anti-cancer, anti-oxidant, and anti-inflammatory properties of TQ, focusing on its molecular targets and its promising action in cancer therapy. We further described the molecular mechanisms by which TQ prevents signaling pathways that mediate cancer progression, invasion, and metastasis.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Md Meraj Ansari
- Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, SAS Nagar, Mohali, Punjab, 160062, India
| | - Rishi Sharma
- Department of Forensic Medicine and Toxicology, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, 249203, India
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsu-gu, Incheon City, 21924, South Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
9
|
Akindele AJ, Sowemimo A, Agunbiade FO, Sofidiya MO, Awodele O, Ade-Ademilua O, Orabueze I, Ishola IO, Ayolabi CI, Salu OB, Akinleye MO, Oreagba IA. Bioprospecting for Anti-COVID-19 Interventions From African Medicinal Plants: A Review. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221096968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) that emanated from Wuhan in China in 2019 has become a global concern. The current situation warrants ethnomedicinal drug discovery and development for delivery of phytomedicines with potential for the treatment of COVID-19. The aim of this review is to provide a detailed evaluation of available information on plant species used in African traditional medicines with antiviral, anti-inflammatory, immunomodulatory, and COVID-19 symptoms relieving effects. Literature from scientific databases such as Scopus, PubMed, Google scholar, African Journals OnLine (AJOL), Science Direct, and Web of Science were used for this review. A total of 35 of the 38 reviewed plants demonstrated a wide range of antiviral activities. Bryophyllum pinnatum, Aframomum melegueta, Garcinia kola, Sphenocentrum jollyanum, Adansonia digitata, Sutherlandia frutescens, Hibiscus sabdariffa, Moringa oleifera, and Nigella sativa possess a combination of antiviral, immunomodulatory, anti-inflammatory, and COVID-19 symptoms relieving activities. Nine, 13, and 10 of the plants representing 23.7%, 34.2%, and 26.3% of the plants studied had antiviral activity with 3 other activities, antiviral activity with 2 other activities, and antiviral with one pharmacological activity alone, respectively. The plants studied were reported to be relatively safe at the subchronic toxicity level, except for 2. The study provides baseline information on the pharmacological activities, toxicity, and chemical components of 9 African medicinal plants with antiviral, immunomodulatory, anti-inflammatory, and symptoms relieving activities, thereby making the plants candidates for further investigation for effectiveness against COVID-19.
Collapse
Affiliation(s)
- Abidemi J. Akindele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Abimbola Sowemimo
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Foluso O. Agunbiade
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Chemistry, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Margaret O. Sofidiya
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Olufunsho Awodele
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Omobolanle Ade-Ademilua
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Botany, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Ifeoma Orabueze
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacognosy, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ismail O. Ishola
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Christianah I. Ayolabi
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Microbiology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | - Olumuyiwa B. Salu
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Medical Microbiology & Parasitology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | - Moshood O. Akinleye
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, Lagos, Nigeria
| | - Ibrahim A. Oreagba
- African Center of Excellence for Drug Research, Herbal Medicine Development and Regulatory Science (ACEDHARS), University of Lagos (UNILAG), Lagos, Nigeria
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Lagos, Nigeria
| | | |
Collapse
|
10
|
The Potential Role of Nigella sativa Seed Oil as Epigenetic Therapy of Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092779. [PMID: 35566130 PMCID: PMC9101516 DOI: 10.3390/molecules27092779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 01/12/2023]
Abstract
Nigella sativa oil, commonly known as black seed oil (BSO), is a well-known Mediterranean food, and its consumption is associated with beneficial effects on human health. A large number of BSO's therapeutic properties is attributed to its pharmacologically active compound, thymoquinone (TQ), which inhibits cell proliferation and induces apoptosis by targeting several epigenetic players, including the ubiquitin-like, containing plant homeodomain (PHD) and an interesting new gene, RING finger domains 1 (UHRF1), and its partners, DNA methyltransferase 1 (DNMT1) and histone deacetylase 1 (HDAC1). This study was designed to compare the effects of locally sourced BSO with those of pure TQ on the expression of the epigenetic complex UHRF1/DNMT1/HDAC1 and the related events in several cancer cells. The gas chromatographs obtained from GC-MS analyses of extracted BSO showed that TQ was the major volatile compound. BSO significantly inhibited the proliferation of MCF-7, HeLa and Jurkat cells in a dose-dependent manner, and it induced apoptosis in these cell lines. BSO-induced inhibitory effects were associated with a significant decrease in mRNA expression of UHRF1, DNMT1 and HDAC1. Molecular docking and MD simulation showed that TQ had good binding affinity to UHRF1 and HDAC1. Of note, TQ formed a stable metal coordinate bond with zinc tom, found in the active site of the HDAC1 protein. These findings suggest that the use of TQ-rich BSO represents a promising strategy for epigenetic therapy for both solid and blood tumors through direct targeting of the trimeric epigenetic complex UHRF1/DNMT1/ HDAC1.
Collapse
|
11
|
Baig WA, Alwosaibai K, Al-Jubran KM, Chaudhry TM, Al-Dowish N, Alsaffar F, Alam MA. Synergistic anti-cancer effects of Nigella sativa seed oil and conventional cytotoxic agent against human breast cancer. Drug Metab Pers Ther 2022; 37:315-321. [PMID: 35405048 DOI: 10.1515/dmpt-2021-0229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/17/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Breast cancer is the most commonly diagnosed invasive non-skin malignancy in women worldwide, and it is the leading cause of cancer-related deaths in them. Nigella sativa Linn. seed oil has been found to be effective in cancer treatment as well as having anti-cancer properties in some other types of cancers. The study looked into the synergistic cytotoxic effects of N. sativa Linn. seed oil and doxorubicin in the treatment of human breast cancer cells (MCF-7). METHODS Nigella sativa Linn. seed oil was used to evaluate its effect on human breast cancer cells, either alone or in conjunction with doxorubicin. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests were used to examine cell proliferation and cell viability, while phase-contrast inverted microscopy was used to examine cellular morphology. Furthermore, the role of N. sativa seed oil in decreasing cell tumorigenicity features was highlighted by testing the cancer cell migration using the wound healing assay. RESULTS Results showed that higher concentrations (50 μg/mL) of N. sativa Linn. seed oil changed the breast cancer cell morphology and decreased the cell proliferation and viability. Breast cancer cells treated with black seed oil decreased cell movement after 24 hours compared to the untreated cell in the wound healing assay. Whereas, only the higher concentration of doxorubicin (0.5-2.5 μg/mL) reduced cell proliferation and cell viability. Moreover, the combination treatment of 50 ug/mL of black seed oil with different concentrations of doxorubicin caused a significant cell proliferation reduction and decreased cell viability. The activity was seen optimum at lower concentration (0.1 µg/mL) of doxorubicin. CONCLUSIONS There was decreased cell proliferation and cell viability when N. sativa seed oil was used alone or in conjunction with doxorubicin in Breast cancer cells (MCF-7) revealing potential opportunities in the field of cancer treatment.
Collapse
Affiliation(s)
- Waheed A Baig
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Khalid M Al-Jubran
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Tariq M Chaudhry
- Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | | | - Md Anzar Alam
- Department of Ilmul Atfal, SUMER, Jamia Hamdard, New Delhi-110062
| |
Collapse
|
12
|
Jehan S, Huang J, Farooq U, Basheer I, Zhou W. Combinatorial effect of thymoquinone with chemo agents for tumor therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153936. [PMID: 35114449 DOI: 10.1016/j.phymed.2022.153936] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Most chemotherapeutics used in cancer therapies exhibit considerable side effects to the patients. Thus, developing new chemo agents to treat cancer patients with minimal toxic and side effects is urgently needed. Recently, the combination of different chemotherapeutics has become a promising strategy to treat malignancies. Thymoquinone (TQ) is a primary bioactive compound derived from the folk medicinal plant Nigella sativa, which has been found an antitumor, chemopreventive and chemopotentiating agent against human neoplastic diseases. PURPOSE We briefly summarize the current research of the biomolecular mechanisms of TQ and evaluate the existing literature on TQ adjuvant therapies against various cancers. METHOD The data in this review were gathered by several search engines including, Google Scholar, PubMed and ScienceDirect. We highlighted and classified the outcomes of both in vitro and in vivo experiments of TQ adjuvant therapies against human cancers and their chemopreventive activities on vital organs. RESULTS Several studies have shown that TQ synergistically potentiated the antitumor activity of numerous chemo agents against human neoplastic disease, including lung, breast, liver, colorectal, skin, prostate, stomach, bone and blood cancers. TQ also acted as a chemopreventive agent and reduced the toxicity of many chemo agents to vital organs, such as the heart, liver, kidneys and lungs. CONCLUSION In summary, we highly recommend an advanced evaluation of TQ adjuvant therapies at the level of preclinical and clinical trials, which could lead to a novel combinatorial therapy for cancer treatment with low or tolerable adverse effects on patients.
Collapse
Affiliation(s)
- Shah Jehan
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China; Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Jiaxin Huang
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China
| | - Umar Farooq
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Irum Basheer
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Tongzipo Road 172, Changsha, Hunan 410013, China.
| |
Collapse
|
13
|
Alam M, Alam S, Shamsi A, Adnan M, Elasbali AM, Al-Soud WA, Alreshidi M, Hawsawi YM, Tippana A, Pasupuleti VR, Hassan MI. Bax/Bcl-2 Cascade Is Regulated by the EGFR Pathway: Therapeutic Targeting of Non-Small Cell Lung Cancer. Front Oncol 2022; 12:869672. [PMID: 35402265 PMCID: PMC8990771 DOI: 10.3389/fonc.2022.869672] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung carcinoma (NSCLC) comprises 80%-85% of lung cancer cases. EGFR is involved in several cancer developments, including NSCLC. The EGFR pathway regulates the Bax/Bcl-2 cascade in NSCLC. Increasing understanding of the molecular mechanisms of fundamental tumor progression has guided the development of numerous antitumor drugs. The development and improvement of rationally planned inhibitors and agents targeting particular cellular and biological pathways in cancer have been signified as a most important paradigm shift in the strategy to treat and manage lung cancer. Newer approaches and novel chemotherapeutic agents are required to accompany present cancer therapies for improving efficiency. Using natural products as a drug with an effective delivery system may benefit therapeutics. Naturally originated compounds such as phytochemicals provide crucial sources for novel agents/drugs and resources for tumor therapy. Applying the small-molecule inhibitors (SMIs)/phytochemicals has led to potent preclinical discoveries in various human tumor preclinical models, including lung cancer. In this review, we summarize recent information on the molecular mechanisms of the Bax/Bcl-2 cascade and EGFR pathway in NSCLC and target them for therapeutic implications. We further described the therapeutic potential of Bax/Bcl-2/EGFR SMIs, mainly those with more potent and selectivity, including gefitinib, EGCG, ABT-737, thymoquinone, quercetin, and venetoclax. In addition, we explained the targeting EGFR pathway and ongoing in vitro and in vivo and clinical investigations in NSCLC. Exploration of such inhibitors facilitates the future treatment and management of NSCLC.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Shoaib Alam
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Abdelbaset Mohamed Elasbali
- Department of Clinical Laboratory Science, College of Applied Sciences-Qurayyat, Jouf University, Sakaka, Saudi Arabia
| | - Waleed Abu Al-Soud
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Health Sciences Research Unit, Jouf University, Sakaka, Saudi Arabia
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | | | - Anitha Tippana
- Regional Agricultural Research Station, Acharya N. G. Ranga Agricultural University (ANGRAU), Tirupati, India
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Bangalore, India
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, India
| |
Collapse
|
14
|
Mehraj T, Elkanayati RM, Farooq I, Mir TM. A review of Nigella sativa and its active principles as anticancer agents. BLACK SEEDS (NIGELLA SATIVA) 2022:91-118. [DOI: 10.1016/b978-0-12-824462-3.00012-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
15
|
Alagawany M, Elnesr SS, Farag MR, Abd El-Hack ME, Khafaga AF, Sharun K, Marappan G, Dhama K. Health-Promoting Activities of Nigella sativa Essential Oil. BLACK CUMIN (NIGELLA SATIVA) SEEDS: CHEMISTRY, TECHNOLOGY, FUNCTIONALITY, AND APPLICATIONS 2021:457-478. [DOI: 10.1007/978-3-030-48798-0_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Korak T, Ergül E, Sazci A. Nigella sativa and Cancer: A Review Focusing on Breast Cancer, Inhibition of Metastasis and Enhancement of Natural Killer Cell Cytotoxicity. Curr Pharm Biotechnol 2020; 21:1176-1185. [PMID: 32351178 DOI: 10.2174/1389201021666200430120453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND In the last decade, there have been accumulating data that the use of medicinal plants could bring additional benefits to the supportive treatment of various diseases. Nigella sativa (N. sativa, family Ranunculaceae) is one of these plants that has attracted considerable interest. The extracts and seeds of N. sativa and its active component thymoquinone have been studied extensively and the results suggest that N. sativa might carry some therapeutic potential for many diseases, including cancer. METHODS The selection criteria for references were applied through Pubmed with "N. sativa and cancer", "N. sativa and breast cancer", "N. sativa and metastasis", "N. sativa and cytotoxicity of natural killer cells". The pathway analysis was performed using the PANTHER tool by using five randomly selected N. sativa affected genes (Cyclin D1, P53, p21 protein (Cdc42/Rac) activated kinase 1 (PAK1), B-cell lymphoma 2 (Bcl-2) and vascular endothelial growth factor (VEGF)) in order to elucidate further potentially affected signaling pathways. RESULTS The aim of this review was to summarize studies regarding the effects of N. sativa in cancer generally, with a focus on breast cancer, its anti-metastatic effects, and how N. sativa modulates the cytotoxicity of Natural Killer cells that play a crucial role in tumor surveillance. CONCLUSION In summary, the data suggest that N. sativa might be used for its anti-cancer and antimetastatic properties and as an immune system activator against cancer.
Collapse
Affiliation(s)
- Tuğcan Korak
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| | - Emel Ergül
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| | - Ali Sazci
- Department of Medical Biology and Genetics, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
17
|
Jehan S, Zhong C, Li G, Zulqarnain Bakhtiar S, Li D, Sui G. Thymoquinone Selectively Induces Hepatocellular Carcinoma Cell Apoptosis in Synergism With Clinical Therapeutics and Dependence of p53 Status. Front Pharmacol 2020; 11:555283. [PMID: 33041795 PMCID: PMC7522566 DOI: 10.3389/fphar.2020.555283] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 12/19/2022] Open
Abstract
Thymoquinone (TQ) is a natural compound extracted from the black seeds of Nigella sativa Linn. belonging to the Ranunculaceae family. TQ exhibits anti-inflammatory and antineoplastic activities against various cancers. Many therapeutics in hepatocellular carcinoma (HCC) treatments, such as doxorubicin (DOX) and cisplatin (DDP), exhibit considerable side effects on patients. We investigated cytotoxic effects of TQ, alone or in combination with DDP and DOX to HCC cells. TQ exhibited selective killing to HCC HepG2 and SMMC-7721 cells, but relatively low toxicity to normal liver HL-7702 cells. Importantly, when used with DOX or DDP, TQ showed synergistic inhibition of HCC cells, but not HL-7702 cells. We also discovered that Hep3B cells with a p53 null status were more sensitive to TQ than HepG2 and SMMC-7721 cells harboring wild type p53. Consistently, shRNA-mediated p53 silencing in HepG2 cells dramatically enhanced TQ-induced apoptosis, measured by caspase 3 and PARP cleavage. Furthermore, TQ-stimulated increase of reactive oxygen species (ROS) in p53-depleted cells was more pronounced than that in cells with intact p53. In summary, we discovered that TQ synergistically improves the anti-cancer activity of DOX and DDP, and loss of p53 sensitizes HCC cells to TQ-induced apoptosis.
Collapse
Affiliation(s)
- Shah Jehan
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chen Zhong
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangyue Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Syed Zulqarnain Bakhtiar
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
18
|
Baptista-Silva S, Borges S, Ramos OL, Pintado M, Sarmento B. The progress of essential oils as potential therapeutic agents: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2020. [DOI: 10.1080/10412905.2020.1746698] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sara Baptista-Silva
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Sandra Borges
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Oscar L. Ramos
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Manuela Pintado
- CBQF Centro de Biotecnologia e Química Fina, Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa , Porto, Portugal
| | - Bruno Sarmento
- I3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto , Porto, Portugal
- INEB Instituto de Engenharia Biomédica, Universidade do Porto , Porto, Portugal
- Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, CESPU , Gandra, Portugal
| |
Collapse
|
19
|
Yimer EM, Tuem KB, Karim A, Ur-Rehman N, Anwar F. Nigella sativa L. (Black Cumin): A Promising Natural Remedy for Wide Range of Illnesses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:1528635. [PMID: 31214267 PMCID: PMC6535880 DOI: 10.1155/2019/1528635] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 01/16/2023]
Abstract
The seed of Nigella sativa (N. sativa) has been used in different civilization around the world for centuries to treat various animal and human ailments. So far, numerous studies demonstrated the seed of Nigella sativa and its main active constituent, thymoquinone, to be medicinally very effective against various illnesses including different chronic illness: neurological and mental illness, cardiovascular disorders, cancer, diabetes, inflammatory conditions, and infertility as well as various infectious diseases due to bacterial, fungal, parasitic, and viral infections. In spite of limited studies conducted so far, the promising efficacy of N. sativa against HIV/AIDS can be explored as an alternative option for the treatment of this pandemic disease after substantiating its full therapeutic efficacy. Moreover, the strong antioxidant property of this valued seed has recently gained increasing attention with regard to its potential role as dietary supplement with minimal side effects. Besides, when combined with different conventional chemotherapeutic agents, it synergizes their effects resulting in reducing the dosage of concomitantly used drugs with optimized efficacy and least and/or no toxicity. A number of pharmaceutical and biological properties have been ascribed to seeds of N. sativa. The present review focuses on the profile of high-value components along with traditional medicinal and biological principles of N. sativa seed and its oil so as to explore functional food and nutraceutical potential of this valued herb.
Collapse
Affiliation(s)
- Ebrahim M. Yimer
- Department of Pharmacology and Toxicology, College of Health Sciences, Mekelle University, Ethiopia
| | - Kald Beshir Tuem
- Department of Pharmacology and Toxicology, College of Health Sciences, Mekelle University, Ethiopia
| | - Aman Karim
- Department of Pharmacognosy, College of Health Sciences, Mekelle University, Ethiopia
| | - Najeeb Ur-Rehman
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Farooq Anwar
- Department of Chemistry, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
20
|
Imran M, Rauf A, Khan IA, Shahbaz M, Qaisrani TB, Fatmawati S, Abu-Izneid T, Imran A, Rahman KU, Gondal TA. Thymoquinone: A novel strategy to combat cancer: A review. Biomed Pharmacother 2018; 106:390-402. [PMID: 29966985 DOI: 10.1016/j.biopha.2018.06.159] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 02/06/2023] Open
Abstract
The higher consumption of fruit, herbs, spices, and vegetables is well known and practical strategy to cure human cancers owing to their presence of bioactive compounds. Among these, Nigella sativa is a promising source of bioactive compounds including thymoquinone, monoterpenes, p-cymene and α-piene etc. Thymoquinone has been found effective to inhibit the different cancer stages such as proliferation, migration and invasion. It also acts as anticancer agent against different human cancers such as breast, pancreatic, prostate, blood, oral, bone, head and neck, cervical, liver and lung. It significantly mediated miR-34a up-regulation, enhanced the levels of miR-34a through p53, and down controlled Rac1 expression. Thymoquinone induces apoptosis, regulates the levels of pro- and anti- apoptotic genes. It also has been known to lower the phosphorylation of NF-κB and IKKα/β and reduces the metastasis as well as also lowered the ERK1/2 and PI3K activities. Thymoquinone inhibits the metastasis through activation of JNK and p38. The present review article highlights the anticancer perspectives of thymoquinone in human by various pathways and use of this compound as diet based therapy has proven new pharmacological agent against several types of cancers.
Collapse
Affiliation(s)
- Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan.
| | - Imtiaz Ali Khan
- Department ofAgriculture, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Shahbaz
- Department of Food science and Technology, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | | | - Sri Fatmawati
- Department of Chemistry,Faculty of Mathematics and Natural Sciences, Institut Teknologi Sepuluh Nopember, Kampus ITS-Sukolilo, Surabaya, Indonesia
| | - Tareq Abu-Izneid
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O.Box 42, Saudi Arabia
| | - Ali Imran
- Institute of Home and Food Sciences, Faculty of Science and Technology, Government College University, Faisalabad, Pakistan
| | - Khaliq Ur Rahman
- Department of Chemistry, University of Swabi, Anbar-23561, Khyber Pakhtunkhwa, Pakistan
| | - Tanweer Aslam Gondal
- School of Exercise and Nutrition, Centre of Advanced Sensory Science, Deakin University, Australia
| |
Collapse
|
21
|
Srinivasan K. Cumin (Cuminum cyminum) and black cumin (Nigella sativa) seeds: traditional uses, chemical constituents, and nutraceutical effects. FOOD QUALITY AND SAFETY 2018; 2:1-16. [DOI: 10.1093/fqsafe/fyx031] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Mahboubi M. Natural therapeutic approach of Nigella sativa (Black seed) fixed oil in management of Sinusitis. Integr Med Res 2018; 7:27-32. [PMID: 29629288 PMCID: PMC5884000 DOI: 10.1016/j.imr.2018.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 12/18/2022] Open
Abstract
Sinusitis is associated with inflammation and infections of air-filled cavities of sinuses. The aim of this study was to evaluate the potential efficacy of Nigella sativa seed fixed oil in management of sinusitis. The information was extracted from accessible international databases, traditional books, electronic resources, and unpublished data. RESULTS The results of investigations on N. sativa seed fixed oil showed its therapeutic potential in treatment of sinusitis by its anti-inflammatory, antioxidant, antihistaminic, immune-modulator, antimicrobial and analgesic effects. The use of N. sativa seed fixed oil can inhibit the inflammation of sinuses and respiratory airways, microbial infections and finally help the patients suffering from clinical symptoms of sinusitis such as coryza, nasal congestion, headache, neck pain, earache and toothache. Clinical studies are required to evaluate its efficacy in patients with sinusitis in future.
Collapse
Affiliation(s)
- Mohaddese Mahboubi
- Department of Microbiology, Medicinal Plants Research Center of Barij, Kashan, Iran
| |
Collapse
|
23
|
Chowdhury FA, Hossain MK, Mostofa AGM, Akbor MM, Bin Sayeed MS. Therapeutic Potential of Thymoquinone in Glioblastoma Treatment: Targeting Major Gliomagenesis Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2018; 2018:4010629. [PMID: 29651429 PMCID: PMC5831880 DOI: 10.1155/2018/4010629] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/27/2017] [Indexed: 02/06/2023]
Abstract
Glioblastoma multiforme (GBM) is one of the most devastating brain tumors with median survival of one year and presents unique challenges to therapy because of its aggressive behavior. Current treatment strategy involves surgery, radiotherapy, immunotherapy, and adjuvant chemotherapy even though optimal management requires a multidisciplinary approach and knowledge of potential complications from both the disease and its treatment. Thymoquinone (TQ), the main bioactive component of Nigella sativa L., has exhibited anticancer effects in numerous preclinical studies. Due to its multitargeting nature, TQ interferes in a wide range of tumorigenic processes and counteract carcinogenesis, malignant growth, invasion, migration, and angiogenesis. TQ can specifically sensitize tumor cells towards conventional cancer treatments and minimize therapy-associated toxic effects in normal cells. Its potential to enter brain via nasal pathway due to volatile nature of TQ adds another advantage in overcoming blood-brain barrier. In this review, we summarized the potential role of TQ in different signaling pathways in GBM that have undergone treatment with standard therapeutic modalities or with TQ. Altogether, we suggest further comprehensive evaluation of TQ in preclinical and clinical level to delineate its implied utility as novel therapeutics to combat the challenges for the treatment of GBM.
Collapse
Affiliation(s)
- Fabliha Ahmed Chowdhury
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kamal Hossain
- Department of Pharmaceutical Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - A. G. M. Mostofa
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Maruf Mohammad Akbor
- Department of Clinical Pharmacy and Pharmacology, University of Dhaka, Dhaka 1000, Bangladesh
| | | |
Collapse
|
24
|
Khanaree C, Pintha K, Tantipaiboonwong P, Suttajit M, Chewonarin T. The effect ofPerilla frutescensleaf on 1, 2-dimethylhydrazine-induced initiation of colon carcinogenesis in rats. J Food Biochem 2018. [DOI: 10.1111/jfbc.12493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chakkrit Khanaree
- Department of Biochemistry, Faculty of Medicine; Chiang Mai University; Sripoom Muang Chiang Mai Thailand
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Maeka Muang Phayao Thailand
| | - Komsak Pintha
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Maeka Muang Phayao Thailand
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Maeka Muang Phayao Thailand
| | - Maitree Suttajit
- Division of Biochemistry and Nutrition, School of Medical Sciences; University of Phayao; Maeka Muang Phayao Thailand
| | - Teera Chewonarin
- Department of Biochemistry, Faculty of Medicine; Chiang Mai University; Sripoom Muang Chiang Mai Thailand
| |
Collapse
|
25
|
Anticancer Effect of a Novel Octahydropyrazino[2,1-a:5,4-a']diisoquinoline Derivative and Its Synergistic Action with Nigella sativa in Human Gastric Cancer Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9153403. [PMID: 29441354 PMCID: PMC5758943 DOI: 10.1155/2017/9153403] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
Many studies have shown that naturally occurring compounds may support prevention and treatment of various diseases, including cancer. Pharmacological investigations revealed a wide spectrum of Nigella sativa biological activities. Combining natural compounds together with synthetic drugs may increase the anticancer activity and limit severe side effects of such a treatment and may be an alternative to monotherapy. The aim of the study was to evaluate the cytotoxic and proapoptotic effects of a novel octahydropyrazino[2,1-a:5,4-a']diisoquinoline derivative and its effect in combination with Nigella sativa seed oil or extract in human gastric cancer cells (AGS). Etoposide was used as a reference. Our studies proved that combination strategy based on novel octahydropyrazino[2,1-a:5,4-a']diisoquinoline derivative (OM-90) with Nigella sativa seed oil or extract represents the strongest efficacy in AGS cancer cells as compared to monotherapy and combined treatment with Nigella sativa seed oil or extract together with etoposide. Such a combination also leads to the activation of mitochondrial pathway, which plays a significant role in molecular mechanism of induction of apoptosis by these compounds.
Collapse
|
26
|
Mollazadeh H, Afshari AR, Hosseinzadeh H. Review on the Potential Therapeutic Roles of Nigella sativa in the Treatment of Patients with Cancer: Involvement of Apoptosis: - Black cumin and cancer. J Pharmacopuncture 2017; 20:158-172. [PMID: 30087792 PMCID: PMC5633668 DOI: 10.3831/kpi.2017.20.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/12/2023] Open
Abstract
Nigella sativa (N. sativa, family Ranunculaceae) is a medicinal plant that has been widely used for centuries throughout the world as a natural remedy. A wide range of chemical compounds found in N. sativa expresses its vast therapeutic effects. Thymoquinone (TQ) is the main component (up to 50%) in the essential oil of N. sativa. Also, pinene (up to 15%), p-cymene (40%), thymohydroquinone (THQ), thymol (THY), and dithymoquinone (DTQ) are other pharmacologically active compounds of its oil. Other terpenoid compounds, such as carvacrol, carvone, 4-terpineol, limonenes, and citronellol, are also found in small quantities in its oil. The main pharmacological characteristics of this plant are immune system stimulatory, anti-inflammatory, hypotensive, hepatoprotective, antioxidant, anti-cancer, hypoglycemic, anti-tussive, milk production, uricosuric, choleretic, anti-fertility, and spasmolytic properties. In this regard, we have searched the scientific databases PubMed, Web of Science, and Google Scholar with keywords of N. sativa, anti-cancer, apoptotic effect, antitumor, antioxidant, and malignancy over the period from 2000 to 2017. The effectiveness of N. sativa against cancer in the blood system, kidneys, lungs, prostate, liver, and breast and on many malignant cell lines has been shown in many studies, but the molecular mechanisms behind that anti-cancer role are still not clearly understood. From among the many effects of N. sativa, including its anti-proliferative effect, cell cycle arrest, apoptosis induction, ROS generation, anti-metastasis/anti-angiogenesis effects, Akt pathway control, modulation of multiple molecular targets, including p53, p73, STAT-3, PTEN, and PPAR-γ, and activation of caspases, the main suggestive anti-cancer mechanisms of N. sativa are its free radical scavenger activity and the preservation of various anti-oxidant enzyme activities, such as glutathione peroxidase, catalase, and glutathione-S-transferase. In this review, we highlight the molecular mechanisms of apoptosis and the anti-cancer effects of N. sativa, with a focus on its molecular targets in apoptosis pathways.
Collapse
Affiliation(s)
- Hamid Mollazadeh
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amir R Afshari
- Department of Pharmacology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Srinivasan K. Antimutagenic and cancer preventive potential of culinary spices and their bioactive compounds. PHARMANUTRITION 2017. [DOI: 10.1016/j.phanu.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Bakal SN, Bereswill S, Heimesaat MM. Finding Novel Antibiotic Substances from Medicinal Plants - Antimicrobial Properties of Nigella Sativa Directed against Multidrug-resistant Bacteria. Eur J Microbiol Immunol (Bp) 2017; 7:92-98. [PMID: 28386474 PMCID: PMC5372484 DOI: 10.1556/1886.2017.00001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 02/05/2017] [Indexed: 12/12/2022] Open
Abstract
The progressive rise in multidrug-resistant (MDR) bacterial strains poses serious problems in the treatment of infectious diseases. While the number of newly developed antimicrobial compounds has greatly fallen, the resistance of pathogens against commonly prescribed drugs is further increasing. This rise in resistance illustrates the need for developing novel therapeutic and preventive antimicrobial options. The medicinal herb Nigella sativa and its derivatives constitute promising candidates. In a comprehensive literature survey (using the PubMed data base), we searched for publications on the antimicrobial effects of N. sativa particularly directed against MDR bacterial strains. In vitro studies published between 2000 and 2015 revealed that N. sativa exerted potent antibacterial effects against both Gram-positive and Gram-negative species including resistant strains. For instance, N. sativa inhibited the growth of bacteria causing significant gastrointestinal morbidity such as Salmonella, Helicobacter pylori, and Escherichia coli. However, Listeria monocytogenes and Pseudomonas aeruginosa displayed resistance against black cumin seed extracts. In conclusion, our literature survey revealed potent antimicrobial properties of N. sativa against MDR strains in vitro that should be further investigated in order to develop novel therapeutic perspectives for combating infectious diseases particularly caused by MDR strains.
Collapse
Affiliation(s)
- Seher Nancy Bakal
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin , Berlin, Germany
| |
Collapse
|
29
|
Majdalawieh AF, Fayyad MW. Recent advances on the anti-cancer properties of Nigella sativa, a widely used food additive. J Ayurveda Integr Med 2016; 7:173-180. [PMID: 27649635 PMCID: PMC5052360 DOI: 10.1016/j.jaim.2016.07.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 07/18/2016] [Accepted: 07/27/2016] [Indexed: 12/14/2022] Open
Abstract
The use of naturally-occurring agents to regulate tumorigenesis is on the rise. Several herbal extracts, pure plant-derived active constituents, and food additives have been reported to possess potent anti-cancer properties and cancer-ameliorating effects. The wide-range anti-cancer effects of Nigella sativa, also known as black seed or black cumin, have been extensively studied using different in vitro and in vivo models. Here, we provide a comprehensive, analytical review of the reported anti-cancer properties of N. sativa seed extracts. This review focuses on analyzing experimental findings related to the ability of N. sativa to exert anti-proliferative, pro-apoptotic, anti-oxidant, cytotoxic, anti-mutagenic, anti-metastatic, and NK cytotoxic activity enhancing effects against various primary cancer cells and cancer cell lines. Moreover, we underline the molecular mechanisms of action and the signal transduction pathways implicated in the suppression of tumorigenesis by N. sativa. The major signaling pathway utilized by N. sativa to manifest its anti-cancer activity is the iNOS signaling pathway. This review underscores the recent developments that highlight an effective therapeutic potential of N. sativa to suppress tumor development, reduce tumor incidence, and ameliorate carcinogenesis. In sum, experimental findings reported in the last two decades strongly suggest that N. sativa fractions could serve, alone or in combination with known chemotherapeutic drugs, as effective agents to control tumor initiation, growth, and metastasis, and hence, treatment of a wide range of cancers. N. sativa exerts cytotoxic, pro-apoptotic, anti-proliferative, anti-oxidant, anti-mutagenic, and anti-metastatic effects. Augmentation of NK cytotoxic activity is a one molecular mechanism by which N. sativa manifests its anti-cancer activity. The anti-cancer effects of N. sativa are primarily mediated via iNOS, p53, and caspase signaling pathways. N. sativa extracts can potentially be employed in the development of effective anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates.
| | - Muneera W Fayyad
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
30
|
Periasamy VS, Athinarayanan J, Alshatwi AA. Anticancer activity of an ultrasonic nanoemulsion formulation of Nigella sativa L. essential oil on human breast cancer cells. ULTRASONICS SONOCHEMISTRY 2016; 31:449-55. [PMID: 26964971 DOI: 10.1016/j.ultsonch.2016.01.035] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 01/28/2016] [Accepted: 01/28/2016] [Indexed: 05/28/2023]
Abstract
Nigella sativa L. (NS) is a plant renowned in traditional holistic medicine systems for almost 1400 years because of its remarkable antioxidant, antimicrobial, anti-inflammatory and anti-cancer properties. The essential oil of N. sativa, in particular, possesses these significant biological properties. However, N. sativa essential oil has many insoluble constituents with properties that have not been fully explored. Nanoemulsion-based insoluble formulations are a widely used carrier system for lipophilic materials. In the present study, we used ultrasonic emulsification, polysorbate 80 and water to formulate a highly stable N. sativa essential oil nanoemulsion (NSEO-NE). To optimize the NSEO-NE preparation, we changed the surfactant concentration, the oil-surfactant mixing ratio and the emulsification time. The droplet size distribution and morphology of the prepared NE was analyzed using dynamic light scattering and scanning electron microscopy, respectively. The droplet size of the NSEO-NE was approximately 20-50 nm in diameter. The anticancer properties of the NE preparation were studied using a modified methyl-thiazolyl-diphenyl tetrazolium bromide (MTT) assay as well as cellular uptake and nuclear morphological analyses. The NSEO-NE significantly reduced the viability of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. The nucleo-cytoplasmic morphological features of NSEO-NE-treated cells included cell membrane blebbing, cytoplasmic vacuolation, marginalization of chromatin, and fragmentation of the nucleus. The results clearly indicate that NSEO-NE induced apoptosis in MCF-7 cells. These findings support the potential application of NSEO-NE in breast cancer therapy, and also merit future translational research.
Collapse
Affiliation(s)
- Vaiyapuri Subbarayan Periasamy
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jegan Athinarayanan
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali A Alshatwi
- Nanobiotechnology and Molecular Biology Research Lab, Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
31
|
Ali-Shtayeh MS, Jamous RM, Salameh NMY, Jamous RM, Hamadeh AMA. Complementary and alternative medicine use among cancer patients in Palestine with special reference to safety-related concerns. JOURNAL OF ETHNOPHARMACOLOGY 2016; 187:104-122. [PMID: 27125594 DOI: 10.1016/j.jep.2016.04.038] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 04/12/2016] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use of CAM including herbal medicine as the most preferred CAM modality, among cancer patients who are taking prescription medications has shown to be highly prevalent worldwide as well as in several Middle Eastern countries, with a high percentage of the patients do not disclose their CAM use to treating physician. AIM OF THE STUDY The current study aimed to evaluate the patterns of CAM use among two cohorts of cancer patients in Palestine over a three-year period, and to identify socio-demographic factors that are associated with CAM use. MATERIALS AND METHODS Across-sectional survey of patients attending outpatient cancer clinics. The method was based on a semi-structured questionnaire. In order to identify safety-related concerns associated with the products listed, a literature search was conducted using different databases (PubMed, Micromedex, AltMedDex, and the Natural Medicine Comprehensive Database). RESULTS In 472 cancer patients including 372 of the 2011 cohort; and 100 of the 2014 cohort, the overall prevalence of CAM use was 69.5%. CAM users were more likely to be ≤65 years old, village resident, being in the midst of chemotherapy, to have high interest spiritual quest, and to have no other chronic diseases. A significant number of CAM users reported using herbal preparations (98.3%, and 89.6% in the two study cohorts, respectively). In the current study, a total of 40 plant taxa belonging to 23 botanical families were reported by ≥3 cancer patients in the two cohort groups. The top most commonly used plant in the 2011 cohort group was Arum palaestinum (43.5%), while Ephedra foeminea emerged as the top most commonly utilized plant (from 0.0% in 2011 to 55.2% in the 2014 cohort), mainly due to a recent publicizing and portraying of the plant in the local media as an effective cancer herbal remedy. Safety-related concerns were associated with 33 (82.5%) herbs, including herb-drug interactions with altered pharmacokinetics (8, 20% herbs), direct toxic effects (16, 40% herbs), and increased in vitro response of cancer cells to chemotherapy (30, 75% herbs). CONCLUSIONS CAM use, especially herbal medicine in cancer is highly prevalent in Palestine. This study has demonstrated the role of the media on the emergence of new CAM herbal therapies among cancer patients in Palestine, and discussed its potential implications on patients and for oncologists who are treating them. Some of the most widely used herbal medicines by cancer patients in the present work are known to interact with conventional anticancer drugs. Hence, the disclosure of the use of herbal remedies by patients to health professionals with sufficient training in CAM use is important for the later in order to assess whether there are any possible herbal drug interactions and/or harmful drug reactions.
Collapse
Affiliation(s)
| | - Rana M Jamous
- Biodiversity and Environmental Research Center-BERC, Til-Nablus, Palestine
| | - Nihaya M Y Salameh
- Biodiversity and Environmental Research Center-BERC, Til-Nablus, Palestine; Palestinian Military Services, Ramallah, Palestine
| | - Rania M Jamous
- Biodiversity and Environmental Research Center-BERC, Til-Nablus, Palestine; Palestinian Military Services, Ramallah, Palestine
| | - Amneh M A Hamadeh
- Biodiversity and Environmental Research Center-BERC, Til-Nablus, Palestine
| |
Collapse
|
32
|
Akram Khan M, Afzal M. Chemical composition of Nigella sativa Linn: Part 2 Recent advances. Inflammopharmacology 2016; 24:67-79. [PMID: 27068721 PMCID: PMC4883276 DOI: 10.1007/s10787-016-0262-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/15/2016] [Indexed: 01/15/2023]
Abstract
The black cumin or Nigella sativa L. seeds have many acclaimed medicinal properties such as bronchodilatory, hypotensive, antibacterial, antifungal, analgesic, anti-inflammatory and immunopotentiating. This review article is an update on the previous article published on Nigella sativa L. in this journal in 1999. It covers the medicinal properties and chemical syntheses of the alkaloids isolated from the seeds of the herb.
Collapse
Affiliation(s)
- M Akram Khan
- Biomolecular Science Centre, Sheffield Hallam University, Howard Street, Sheffield, S1 1WB, UK.
| | - M Afzal
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
33
|
|
34
|
Tomy MJ, Dileep KV, Prasanth S, Preethidan DS, Sabu A, Sadasivan C, Haridas M. Cuminaldehyde as a lipoxygenase inhibitor: in vitro and in silico validation. Appl Biochem Biotechnol 2014; 174:388-97. [PMID: 25080377 DOI: 10.1007/s12010-014-1066-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 07/21/2014] [Indexed: 11/27/2022]
Abstract
The search for lipoxygenase (LOX) inhibitors has been carried out for decades due to its importance in inflammatory diseases. In the present study, it was observed that the methanolic extract of Cuminum cyminum L. inhibited LOX activity. Activity-guided screening of the C. cyminum crude extracts helped the identification and isolation of cuminaldehyde as a 15-LOX inhibitor. The enzyme kinetics analysis suggested cuminaldehyde to be a competitive inhibitor and the IC 50 value derived from LB plots is 1,370 μM. Binding constants of cuminaldehyde on LOX was deduced by isothermal titration calorimetry. The combined thermodynamics and molecular modeling analyses suggested cuminaldehyde as a competitive LOX inhibitor. It is proposed from the present study that the coordinate bond between the Fe(2+) atom in the active site of the enzyme and the cuminaldehyde may be responsible for the enzyme inhibition. The study suggests that cuminaldehyde may be acting as an anti-inflammatory compound and may be therefore included in the category of leads for developing dual COX-LOX inhibitors as non-steroidal anti-inflammatory drugs (NSAIDs).
Collapse
Affiliation(s)
- M J Tomy
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Palayad, 670661, India
| | | | | | | | | | | | | |
Collapse
|
35
|
Therapeutic Implications of Black Seed and Its Constituent Thymoquinone in the Prevention of Cancer through Inactivation and Activation of Molecular Pathways. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:724658. [PMID: 24959190 PMCID: PMC4052177 DOI: 10.1155/2014/724658] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/26/2014] [Accepted: 04/16/2014] [Indexed: 01/08/2023]
Abstract
The cancer is probably the most dreaded disease in both men and women and also major health problem worldwide. Despite its high prevalence, the exact molecular mechanisms of the development and progression are not fully understood. The current chemotherapy/radiotherapy regime used to treat cancer shows adverse side effect and may alter gene functions. Natural products are generally safe, effective, and less expensive substitutes of anticancer chemotherapeutics. Based on previous studies of their potential therapeutic uses, Nigella sativa and its constituents may be proved as good therapeutic options in the prevention of cancer. Black seeds are used as staple food in the Middle Eastern Countries for thousands of years and also in the treatment of diseases. Earlier studies have shown that N. sativa and its constituent thymoquinone (TQ) have important roles in the prevention and treatment of cancer by modulating cell signaling pathways. In this review, we summarize the role of N. sativa and its constituents TQ in the prevention of cancer through the activation or inactivation of molecular cell signaling pathways.
Collapse
|
36
|
Al-Sheddi ES, Farshori NN, Al-Oqail MM, Musarrat J, Al-Khedhairy AA, Siddiqui MA. Cytotoxicity of Nigella Sativa Seed Oil and Extract Against Human Lung Cancer Cell Line. Asian Pac J Cancer Prev 2014; 15:983-7. [DOI: 10.7314/apjcp.2014.15.2.983] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
37
|
Tabasi N, Mahmoudi M, Rastin M, Sadeghnia HR, HosseinPour Mashhadi M, Zamani Taghizade Rabe S, Khajavi Rad A. Cytotoxic and apoptogenic properties ofNigella sativaand thymoquinone, its constituent, in human renal cell carcinoma are comparable with cisplatin. FOOD AGR IMMUNOL 2014. [DOI: 10.1080/09540105.2013.878899] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
38
|
Abstract
In the domain of nutrition, exploring the diet-health linkages is major area of research. The outcomes of such interventions led to widespread acceptance of functional and nutraceutical foods; however, augmenting immunity is a major concern of dietary regimens. Indeed, the immune system is incredible arrangement of specific organs and cells that enabled humans to carry out defense against undesired responses. Its proper functionality is essential to maintain the body homeostasis. Array of plants and their components hold immunomodulating properties. Their possible inclusion in diets could explore new therapeutic avenues to enhanced immunity against diseases. The review intended to highlight the importance of garlic (Allium sativum), green tea (Camellia sinensis), ginger (Zingiber officinale), purple coneflower (Echinacea), black cumin (Nigella sativa), licorice (Glycyrrhiza glabra), Astragalus and St. John's wort (Hypericum perforatum) as natural immune boosters. These plants are bestowed with functional ingredients that may provide protection against various menaces. Modes of their actions include boosting and functioning of immune system, activation and suppression of immune specialized cells, interfering in several pathways that eventually led to improvement in immune responses and defense system. In addition, some of these plants carry free radical scavenging and anti-inflammatory activities that are helpful against cancer insurgence. Nevertheless, interaction between drugs and herbs/botanicals should be well investigated before recommended for their safe use, and such information must be disseminated to the allied stakeholders.
Collapse
Affiliation(s)
- M Tauseef Sultan
- a Department of Food Sciences, Faculty of Agricultural Sciences and Technology , Bahauddin Zakariya University , Multan , Pakistan
| | | | | | | |
Collapse
|
39
|
Dilshad A, Abulkhair O, Nemenqani D, Tamimi W. Antiproliferative properties of methanolic extract of Nigella sativa against the MDA-MB-231 cancer cell line. Asian Pac J Cancer Prev 2013; 13:5839-42. [PMID: 23317266 DOI: 10.7314/apjcp.2012.13.11.5839] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women in the world and is one of the leading causes of death due to cancer. Health benefits have been linked to additive and synergistic combinations of phytochemicals in fruits and vegetables. Nigella sativa has been shown to possess anti-carcinogenic activity, inhibiting growth of several cancer cell lines in vitro. However, the molecular mechanisms of the anti-cancer properties of Nigella sativa phytochemical extracts have not been completely understood. Our data showed that Nigella sativa extracts significantly inhibited human breast cancer MDA-MB-231 cell proliferation at doses of 2.5-5 μg/mL (P<0.05). Apoptotic induction in MDA-MB-231 cells was observed in a dose-dependent manner after exposure to Nigella sativa extracts for 48 h. Real time PCR and flow cytometry analyses suggested that Nigella sativa extracts possess the ability to suppress the proliferation of human breast cancer cells through induction of apoptosis.
Collapse
Affiliation(s)
- Ahmad Dilshad
- Department of Laboratory and Medicine, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.
| | | | | | | |
Collapse
|
40
|
Asfour W, Almadi S, Haffar L. Ethanolic Extract of <i>Nigella sativa</i> Seeds Lacks the Chemopreventive Efficacy in the Post Initiation Phase of DMH-Induced Colon Cancer in a Rat Model. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/pp.2013.42031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Randhawa MA, Alghamdi MS. Anticancer activity of Nigella sativa (black seed) - a review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 39:1075-91. [PMID: 22083982 DOI: 10.1142/s0192415x1100941x] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nigella sativa (N. sativa) seed has been an important nutritional flavoring agent and natural remedy for many ailments for centuries in ancient systems of medicine, e.g. Unani, Ayurveda, Chinese and Arabic Medicines. Many active components have been isolated from N. sativa, including thymoquinone, thymohydroquinone, dithymoquinone, thymol, carvacrol, nigellimine-N-oxide, nigellicine, nigellidine and alpha-hederin. In addition, quite a few pharmacological effects of N. sativa seed, its oil, various extracts and active components have been identified to include immune stimulation, anti-inflammation, hypoglycemic, antihypertensive, antiasthmatic, antimicrobial, antiparasitic, antioxidant and anticancer effects. Only a few authors have reviewed the medicinal properties of N. sativa and given some description of the anticancer effects. A literature search has revealed that a lot more studies have been recently carried out related to the anticancer activities of N. sativa and some of its active compounds, such as thymoquinone and alpha-hederin. Acute and chronic toxicity studies have recently confirmed the safety of N. sativa oil and its most abundant active component, thymoquinone, particularly when given orally. The present work is aimed at summarizing the extremely valuable work done by various investigators on the effects of N. sativa seed, its extracts and active principles against cancer. Those related to the underlying mechanism of action, derivatives of thymoquinone, nano thymoquinone and combinations of thymoquinone with the currently used cytotoxic drugs are of particular interest. We hope this review will encourage interested researchers to conduct further preclinical and clinical studies to evaluate the anticancer activities of N. sativa, its active constituents and their derivatives.
Collapse
|
42
|
Ben-Arye E, Schiff E, Hassan E, Mutafoglu K, Lev-Ari S, Steiner M, Lavie O, Polliack A, Silbermann M, Lev E. Integrative oncology in the Middle East: from traditional herbal knowledge to contemporary cancer care. Ann Oncol 2012; 23:211-221. [PMID: 21447617 DOI: 10.1093/annonc/mdr054] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Based on traditional, historical, ethnobotanical, laboratory, and clinical findings, we present research framework aiming to identify Middle Eastern herbs that are worthy of further research for their anticancer potential. METHODS A comprehensive research project was developed by a multinational team comprising family physicians, medicine specialists, oncologists, an Islamic medicine history specialist, a traditional medicine ethnobotanist, and a basic research scientist. The project followed two consecutive phases: (i) historical and ethnobotanical search for cancer-related keywords and (ii) Medline search for in vitro and in vivo studies. RESULTS This search yielded 44 herbs associated with cancer care. The Medline search yielded 34 herbs of which 9 herbs were reported in various clinical studies. CONCLUSIONS This multidisciplinary survey was found to be a valuable way to identify herbs with potential clinical significance in cancer care. Based on this pilot study, it is suggested that the Middle East can serve as a valuable region for future multicultural-oriented cancer research.
Collapse
Affiliation(s)
- E Ben-Arye
- Integrative Oncology Program, The Oncology Service and Lin Medical Center, Clalit Health Services, Haifa, Israel; Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - E Schiff
- Department of Internal Medicine, Bnai-Zion Hospital, Haifa, Israel; Department for Complementary/Integrative Medicine, Law and Ethics,The International Center for Health, Law and Ethics, Haifa University, Haifa, Israel
| | - E Hassan
- Department of Botany, National Research Centre, Dokki, Giza, Egypt
| | - K Mutafoglu
- Department of Pediatric Oncology, Institute of Oncology, Dokuz Eylul University, Inciralti Izmir, Turkey
| | - S Lev-Ari
- Complementary Medicine Unit, Tel-Aviv Medical Center, Tel-Aviv
| | - M Steiner
- Department of Oncology, The Oncology Service and Lin Medical Center, Clalit Health Services, Haifa
| | - O Lavie
- Department of Obstetrics and Gynecology, Carmel Medical Center, Haifa
| | - A Polliack
- Department of Hematology, Hadassah University Hospital, Hebrew University Medical School, Jerusalem
| | | | - E Lev
- Department of Eretz Israel Studies, University of Haifa, Haifa, Israel
| |
Collapse
|
43
|
Zaid H, Silbermann M, Ben-Arye E, Saad B. Greco-arab and islamic herbal-derived anticancer modalities: from tradition to molecular mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2011; 2012:349040. [PMID: 22203868 PMCID: PMC3235667 DOI: 10.1155/2012/349040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
The incidence of cancer is increasing in the developed countries and even more so in developing countries parallel to the increase in life expectancy. In recent years, clinicians and researchers advocate the need to include supportive and palliative care since the establishment of the diagnosis and throughout the duration of treatment, with the goal of improving patients' quality of life. This patient-centered approach in supportive care is also shared by various traditional and complementary medicine approaches. Traditional Arab-Islamic medicine offers a variety of therapeutic modalities that include herbal, nutritional, and spiritual approaches. Physicians and scholars, such as Avicenna (980-1037), Rhazes (965-915), Al Zahrawi (936-1013), and Ibn al Nafis (1218-1288) referred to cancer etiology in various medicinal texts and suggested both preventive and therapeutic remedies to alleviate suffering. This review presents research data related to the anticancer activities of herbs used in Arab-Islamic medicine and allude to their potential role in improving the quality of life of cancer patients.
Collapse
Affiliation(s)
- Hilal Zaid
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
- Faculty of Arts and Sciences, Arab American University Jenin, P.O. Box 240, Jenin, Palestine
| | - Michael Silbermann
- Technion—Israel Institute of Technology, Middle East Cancer Consortium, Haifa, Israel
| | - Eran Ben-Arye
- Integrative Oncology Program, The Oncology Service, Lin Medical Center, Clalit Health Services, Western Galilee District, Haifa, Israel
- Complementary and Traditional Medicine Unit, Department of Family Medicine, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel and Clalit Health Services, Western Galilee District, Haifa, Israel
| | - Bashar Saad
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, Baqa El-Gharbia 30100, Israel
- Faculty of Arts and Sciences, Arab American University Jenin, P.O. Box 240, Jenin, Palestine
| |
Collapse
|
44
|
Khan MA, Chen HC, Tania M, Zhang DZ. Anticancer activities of Nigella sativa (black cumin). AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2011; 8:226-32. [PMID: 22754079 DOI: 10.4314/ajtcam.v8i5s.10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nigella sativa has been used as traditional medicine for centuries. The crude oil and thymoquinone (TQ) extracted from its seeds and oil are effective against many diseases like cancer, cardiovascular complications, diabetes, asthma, kidney disease etc. It is effective against cancer in blood system, lung, kidney, liver, prostate, breast, cervix, skin with much safety. The molecular mechanisms behind its anticancer role is still not clearly understood, however, some studies showed that TQ has antioxidant role and improves body's defense system, induces apoptosis and controls Akt pathway. Although the anti-cancer activity of N. sativa components was recognized thousands of years ago but proper scientific research with this important traditional medicine is a history of last 2∼3 decades. There are not so many research works done with this important traditional medicine and very few reports exist in the scientific database. In this article, we have summarized the actions of TQ and crude oil of N. sativa against different cancers with their molecular mechanisms.
Collapse
Affiliation(s)
- Md Asaduzzaman Khan
- Department of Biochemistry, School of Biological Science and Technology, Central South University, Changsha, Hunan 410013, P R China
| | | | | | | |
Collapse
|
45
|
Sorenson BS, Banton KL, Augustin LB, Leonard AS, Saltzman DA. Antioxidant oils and Salmonella enterica Typhimurium reduce tumor in an experimental model of hepatic metastasis. Onco Targets Ther 2011; 4:59-69. [PMID: 21691578 PMCID: PMC3116794 DOI: 10.2147/ott.s17081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Indexed: 01/30/2023] Open
Abstract
Fruit seeds high in antioxidants have been shown to have anticancer properties and enhance host protection against microbial infection. Recently we showed that a single oral dose of Salmonella enterica serovar Typhimurium expressing a truncated human interleukin-2 gene (SalpIL2) is avirulent, immunogenic, and reduces hepatic metastases through increased natural killer cell populations in mice. To determine whether antioxidant compounds enhance the antitumor effect seen in SalpIL2-treated animals, we assayed black cumin (BC), black raspberry (BR), and milk thistle (MT) seed oils for the ability to reduce experimental hepatic metastases in mice. In animals without tumor, BC and BR oil diets altered the kinetics of the splenic lymphocyte response to SalpIL2. Consistent with previous reports, BR and BC seed oils demonstrated independent antitumor properties and moderate adjuvant potential with SalpIL2. MT oil, however, inhibited the efficacy of SalpIL2 in our model. Based on these data, we conclude that a diet high in antioxidant oils promoted a more robust immune response to SalpIL2, thus enhancing its antitumor efficacy.
Collapse
Affiliation(s)
- Brent S Sorenson
- Department of Surgery, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | | | | | | |
Collapse
|
46
|
Ben-Arye E, Lev E, Schiff E. Complementary medicine oncology research in the Middle-East: Shifting from traditional to integrative cancer care. Eur J Integr Med 2011. [DOI: 10.1016/j.eujim.2011.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Acharya A, Das I, Chandhok D, Saha T. Redox regulation in cancer: a double-edged sword with therapeutic potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2010; 3:23-34. [PMID: 20716925 PMCID: PMC2835886 DOI: 10.4161/oxim.3.1.10095] [Citation(s) in RCA: 345] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress, implicated in the etiology of cancer, results from an imbalance in the production of reactive oxygen species (ROS) and cell’s own antioxidant defenses. ROS deregulate the redox homeostasis and promote tumor formation by initiating an aberrant induction of signaling networks that cause tumorigenesis. Ultraviolet (UV) exposures, γ-radiation and other environmental carcinogens generate ROS in the cells, which can exert apoptosis in the tumors, thereby killing the malignant cells or induce the progression of the cancer growth by blocking cellular defense system. Cancer stem cells take the advantage of the aberrant redox system and spontaneously proliferate. Oxidative stress and gene-environment interactions play a significant role in the development of breast, prostate, pancreatic and colon cancer. Prolonged lifetime exposure to estrogen is associated with several kinds of DNA damage. Oxidative stress and estrogen receptor-associated proliferative changes are suggested to play important roles in estrogen-induced breast carcinogenesis. BRCA1, a tumor suppressor against hormone responsive cancers such as breast and prostate cancer, plays a significant role in inhibiting ROS and estrogen mediated DNA damage; thereby regulate the redox homeostasis of the cells. Several transcription factors and tumor suppressors are involved during stress response such as Nrf2, NFκB and BRCA1. A promising strategy for targeting redox status of the cells is to use readily available natural substances from vegetables, fruits, herbs and spices. Many of the phytochemicals have already been identified to have chemopreventive potential, capable of intervening in carcinogenesis.
Collapse
Affiliation(s)
- Asha Acharya
- Lombardi Comprehensive Cancer Center, Pre Clinical Science, Washington DC, USA.
| | | | | | | |
Collapse
|
48
|
Hassan MI, Mabrouk GM, Shehata HH, Aboelhussein MM. Antineoplastic effects of bee honey and Nigella sativa on hepatocellular carcinoma cells. Integr Cancer Ther 2010; 11:354-63. [PMID: 21147814 DOI: 10.1177/1534735410387422] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To evaluate in vitro antitumor effects of bee honey (BH) and Nigella sativa (NS) on HepG2 through their antioxidant and apoptotic activities. METHODS HepG2 cell line was treated with different concentrations of diluted unfractionated BH and different concentrations of alcohol extract of NS. Exposure lasted for different time durations (6-72 hours), both dose-response and time course-response were conducted. Cell viability was tested by trypan blue exclusion test. Total antioxidant status and caspase-3 activity were estimated in the cell lysate. Nitric oxide levels were measured in culture supernatants of both treated and untreated HepG2 at all indicated times. RESULTS Treatment of HepG2 cells with BH and NS leads to a significant decrease in both the number of viable HepG2 cells and the levels of nitric oxide on one hand, but improvement of the total antioxidant status and caspase-3 activity on the other, especially in HepG2 cells treated with higher doses of BH and NS (20% and 5000 μg/mL, respectively) and for longer duration (72 hours). CONCLUSIONS BH and NS are effective in reducing the viability of HepG2 cells, improving their antioxidant status and inducing their apoptotic death.
Collapse
|
49
|
Abstract
Coinage of terms like nutraceuticals, functional, and pharma foods has diverted the attention of human beings to where they are seeking more natural cures. Though pharmaceutical drugs have been beneficial for human health and have cured various diseases but they also impart some side effects. Numerous plants have been tested for their therapeutic potential; Nigella sativa, commonly known as black cumin, is one of them. It possesses a nutritional dense profile as its fixed oil (lipid fraction), is rich in unsaturated fatty acids while essential oil contains thymoquinone and carvacrol as antioxidants. N. sativa seeds also contain proteins, alkaloids (nigellicines and nigelledine), and saponins (alpha-hederin) in substantial amounts. Recent pharmacological investigations suggested its potential role, especially for the amelioration of oxidative stress through free radical scavenging activity, the induction of apoptosis to cure various cancer lines, the reduction of blood glucose, and the prevention of complications from diabetes. It regulates hematological and serological aspects and can be effective in dyslipidemia and respiratory disorders. Moreover, its immunopotentiating and immunomodulating role brings balance in the immune system. Evidence is available supporting the utilization of Nigella sativa and its bioactive components in a daily diet for health improvement. This review is intended to focus on the composition of Nigella sativa and to elaborate its possible therapeutic roles as a functional food to prevent an array of maladies.
Collapse
Affiliation(s)
- Masood Sadiq Butt
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | | |
Collapse
|
50
|
Salim EI. Cancer chemopreventive potential of volatile oil from black cumin seeds, Nigella sativa L., in a rat multi-organ carcinogenesis bioassay. Oncol Lett 2010; 1:913-924. [PMID: 22966405 DOI: 10.3892/ol_00000162] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 07/05/2010] [Indexed: 01/10/2023] Open
Abstract
Nigella sativa (N. sativa) is a herbal plant of the Ranunculaceae family that has been widely used for various medicinal and nutritional purposes. Volatile oil extracts along with its major constituents, such as thymoquinone, have recently attracted considerable attention for their antioxidant, immunoprotective and antitumor properties. The present study was conducted to assess the chemopreventive potential of crude oils in N. sativa on tumor formation using a well-established rat multi-organ carcinogenesis model featuring initial treatment with five different carcinogens. Post-initiation administration of 1000 or 4000 ppm N. sativa volatile oil in the diet of male Wistar rats for 30 weeks significantly reduced malignant and benign colon tumor sizes, incidences and multiplicities. The treatment also significantly decreased the incidences and multiplicities of tumors in the lungs and in different parts of the alimentary canal, particularly the esophagus and forestomach. Bromodeoxyuridine labeling indices, reflecting cell proliferation were significantly decreased in various organs and lesions after treatment with the two doses of N. sativa. The plasma levels of insulin growth factor, triglycerides and prostaglandin E2 were also altered. The findings show, for the first time, that N. sativa administration exerts potent inhibitory effects on rat tumor development and on cellular proliferation in multiple organ sites. In particular, the ability to significantly inhibit murine colon, lung, esophageal and forestomach tumors was demonstrated in the post-initiation phase, with no evidence of clinical side effects. The mechanisms are likely to be related to suppression of cell proliferation.
Collapse
Affiliation(s)
- Elsayed I Salim
- Research Laboratory of Experimental and Molecular Carcinogenesis, Department of Zoology, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|