1
|
Ling R, Du C, Li Y, Wang S, Cong X, Huang D, Chen S, Zhu S. Protective Effect of Selenium-enriched Peptide from Cardamine violifolia on Ethanol-induced L-02 Hepatocyte Injury. Biol Trace Elem Res 2025; 203:139-152. [PMID: 38538964 DOI: 10.1007/s12011-024-04159-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/23/2024] [Indexed: 01/07/2025]
Abstract
In this study, we investigated the protective effect of selenium (Se)-enriched peptide isolated from Cardamine violifolia (SPE) against ethanol-induced liver injury. Cell proliferation assays show that different concentrations of SPE protect human embryonic liver L-02 cells against ethanol-induced injury in a dose-dependent manner. Treatment with 12 μmol/L Se increases the cell survival rate (82.44%) and reduces the release of alanine aminotransferase, aspartate transaminase, lactate dehydrogenase, and apoptosis rate. SPE treatment with 12 μmol/L Se effectively reduces the concentration of intracellular reactive oxygen species and increases the contents of intracellular superoxide dismutase (51.64 U/mg), catalase (4.41 U/mg), glutathione peroxidase (1205.28 nmol/g), and glutathione (66.67 μmol/g), thereby inhibiting the effect of ethanol-induced oxidative damage. The results of the transcriptomic analysis show that the glutathione metabolism and apoptotic pathway play significant roles in the protection of L-02 hepatocytes by SPE. Real-time qPCR analysis shows that SPE increases the mRNA expression of GPX1 and NGFR. The results of this study highlight the protective effects of SPE against ethanol-induced liver injury.
Collapse
Affiliation(s)
- Rongrui Ling
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 4122, Jiangsu, China
| | - Chaodong Du
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Yue Li
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shan Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd, Enshi, 445000, Hubei, China
- National R&D Center for Se-Rich Agricultural Products Processing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, Singapore, 117543, Singapore
| | - Shangwei Chen
- Analysis and Testing Center, Jiangnan University, Wuxi, 4122, Jiangsu, China
| | - Song Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 4122, Jiangsu, China.
| |
Collapse
|
2
|
Malveira AT, Guimarães VHD, Lima SR, Farias LC, de Paula AMB, Guimarães ALS, Santos SHS. Development of a malnutrition model in mice: Comparative evaluation of food restriction percentage and different diets. J Nutr Biochem 2024; 134:109721. [PMID: 39128608 DOI: 10.1016/j.jnutbio.2024.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Malnutrition is a complicated illness that affects people worldwide and is linked to higher death rates, a heightened vulnerability to infections, and delayed cognitive development. Experimental models have been constructed to comprehend the mechanisms associated with hunger. In this regard, the current study used two different types of food aiming to validate a murine model of malnutrition based on dietary restriction. The study was conducted with fifty-six Swiss male mice (eight-week-old) divided into eight groups (n=7 each) and fed the following experimental diets (10 weeks): Standard Diet (ST) ad libitum; ST 20% dietary restriction; ST 40% dietary restriction; ST 60% dietary restriction; AIN93-M diet ad libitum; AIN93-M 20% dietary restriction; AIN93-M 40% dietary restriction; AIN93-M 60% dietary restriction. Body, biochemical, and histological parameters were measured, and the restriction effects on genes related to oxidative stress (GPX1 and GPX4) in epididymal adipose tissue were evaluated. The results obtained showed that 20%, 40%, and 60% of dietary restrictions were able to reduce body weight when compared to controls, highlighting the accentuated weight loss in animals with 60% restrictions, especially those fed with AIN-93 M, which showed physical changes such as whitish skin and dull coat, voracious eating, and hunched posture. The present animal model also showed biochemical changes with hypoalbuminemia, as well as histological epididymal adipose tissue modulation. The presence of increased oxidative stress was observed when evaluating the GPX4 gene. Given the results, 60% food restriction using the AIN93-M diet was the best protocol for inducing malnutrition.
Collapse
Affiliation(s)
- André Tiago Malveira
- Postgraduate Program in Food and Health. Federal University of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Victor Hugo Dantas Guimarães
- Health Sciences Laboratory, Postgraduate Program in Health Sciences, State University of Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sonielle Rodrigues Lima
- Institute of Agricultural Sciences (ICA), Postgraduate Program in Food and Health, Federal University of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil
| | - Lucyana Conceição Farias
- Health Sciences Laboratory, Postgraduate Program in Health Sciences, State University of Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Alfredo Maurício Batista de Paula
- Health Sciences Laboratory, Postgraduate Program in Health Sciences, State University of Montes Claros (Unimontes), Minas Gerais, Brazil
| | - André Luiz Sena Guimarães
- Health Sciences Laboratory, Postgraduate Program in Health Sciences, State University of Montes Claros (Unimontes), Minas Gerais, Brazil
| | - Sérgio Henrique Sousa Santos
- Postgraduate Program in Food and Health. Federal University of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Institute of Agricultural Sciences (ICA), Postgraduate Program in Food and Health, Federal University of Minas Gerais (UFMG), Montes Claros, Minas Gerais, Brazil; Health Sciences Laboratory, Postgraduate Program in Health Sciences, State University of Montes Claros (Unimontes), Minas Gerais, Brazil.
| |
Collapse
|
3
|
Vilchis-Landeros MM, Vázquez-Meza H, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Antioxidant Enzymes and Their Potential Use in Breast Cancer Treatment. Int J Mol Sci 2024; 25:5675. [PMID: 38891864 PMCID: PMC11171593 DOI: 10.3390/ijms25115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
According to the World Health Organization (WHO), breast cancer (BC) is the deadliest and the most common type of cancer worldwide in women. Several factors associated with BC exert their effects by modulating the state of stress. They can induce genetic mutations or alterations in cell growth, encouraging neoplastic development and the production of reactive oxygen species (ROS). ROS are able to activate many signal transduction pathways, producing an inflammatory environment that leads to the suppression of programmed cell death and the promotion of tumor proliferation, angiogenesis, and metastasis; these effects promote the development and progression of malignant neoplasms. However, cells have both non-enzymatic and enzymatic antioxidant systems that protect them by neutralizing the harmful effects of ROS. In this sense, antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), thioredoxin reductase (TrxR), and peroxiredoxin (Prx) protect the body from diseases caused by oxidative damage. In this review, we will discuss mechanisms through which some enzymatic antioxidants inhibit or promote carcinogenesis, as well as the new therapeutic proposals developed to complement traditional treatments.
Collapse
Affiliation(s)
- María Magdalena Vilchis-Landeros
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Héctor Vázquez-Meza
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| | - Melissa Vázquez-Carrada
- Institute of Microbiology, Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Uribe-Ramírez
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu 399, Nueva Industrial Vallejo, Gustavo A. Madero, Mexico City C.P. 07738, Mexico;
| | - Deyamira Matuz-Mares
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Cd. Universitaria, Mexico City C.P. 04510, Mexico; (M.M.V.-L.); (H.V.-M.)
| |
Collapse
|
4
|
Maia LB, Maiti BK, Moura I, Moura JJG. Selenium-More than Just a Fortuitous Sulfur Substitute in Redox Biology. Molecules 2023; 29:120. [PMID: 38202704 PMCID: PMC10779653 DOI: 10.3390/molecules29010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Living organisms use selenium mainly in the form of selenocysteine in the active site of oxidoreductases. Here, selenium's unique chemistry is believed to modulate the reaction mechanism and enhance the catalytic efficiency of specific enzymes in ways not achievable with a sulfur-containing cysteine. However, despite the fact that selenium/sulfur have different physicochemical properties, several selenoproteins have fully functional cysteine-containing homologues and some organisms do not use selenocysteine at all. In this review, selected selenocysteine-containing proteins will be discussed to showcase both situations: (i) selenium as an obligatory element for the protein's physiological function, and (ii) selenium presenting no clear advantage over sulfur (functional proteins with either selenium or sulfur). Selenium's physiological roles in antioxidant defence (to maintain cellular redox status/hinder oxidative stress), hormone metabolism, DNA synthesis, and repair (maintain genetic stability) will be also highlighted, as well as selenium's role in human health. Formate dehydrogenases, hydrogenases, glutathione peroxidases, thioredoxin reductases, and iodothyronine deiodinases will be herein featured.
Collapse
Affiliation(s)
- Luisa B. Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - Biplab K. Maiti
- Department of Chemistry, School of Sciences, Cluster University of Jammu, Canal Road, Jammu 180001, India
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| | - José J. G. Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology | NOVA FCT, 2829-516 Caparica, Portugal; (I.M.); (J.J.G.M.)
| |
Collapse
|
5
|
Dogaru CB, Duță C, Muscurel C, Stoian I. "Alphabet" Selenoproteins: Implications in Pathology. Int J Mol Sci 2023; 24:15344. [PMID: 37895024 PMCID: PMC10607139 DOI: 10.3390/ijms242015344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Selenoproteins are a group of proteins containing selenium in the form of selenocysteine (Sec, U) as the 21st amino acid coded in the genetic code. Their synthesis depends on dietary selenium uptake and a common set of cofactors. Selenoproteins accomplish diverse roles in the body and cell processes by acting, for example, as antioxidants, modulators of the immune function, and detoxification agents for heavy metals, other xenobiotics, and key compounds in thyroid hormone metabolism. Although the functions of all this protein family are still unknown, several disorders in their structure, activity, or expression have been described by researchers. They concluded that selenium or cofactors deficiency, on the one hand, or the polymorphism in selenoproteins genes and synthesis, on the other hand, are involved in a large variety of pathological conditions, including type 2 diabetes, cardiovascular, muscular, oncological, hepatic, endocrine, immuno-inflammatory, and neurodegenerative diseases. This review focuses on the specific roles of selenoproteins named after letters of the alphabet in medicine, which are less known than the rest, regarding their implications in the pathological processes of several prevalent diseases and disease prevention.
Collapse
Affiliation(s)
| | | | - Corina Muscurel
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
6
|
Zhang D, Deng JJ, Xu Q, Zeng Y, Jiang J. MiR-146b-5p regulates the scavenging effect of GPx-3 on peroxide in papillary thyroid cancer cells. Heliyon 2023; 9:e18489. [PMID: 37533981 PMCID: PMC10392075 DOI: 10.1016/j.heliyon.2023.e18489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Background Glutathione peroxidase (GPx) is an important antioxidant enzyme in thyroid follicular cells. Reduced levels of glutathione peroxidase 3 (GPx-3) expression in papillary thyroid cancer (PTC) are associated with poor prognosis. However, the reason for the decreased expression level of GPx-3 in PTC is unclear. Methods The expression of GPx-3 in papillary thyroid carcinoma and adjacent normal tissue (n = 18) was detected by Western blotting. Bioinformatics was used to predict the relationship between the level of GPx-3 and gender, age, lymph node metastasis, stage, BRAFV600E mutation, and recurrence-free survival of patients. The possible upstream microRNAs of GPx-3 were analyzed by bioinformatics tools also. We verified the relationship between GPx-3 and upstream microRNA by dual luciferase reporter assay and enzyme-linked immunosorbent assay (ELISA). Results The protein level of GPx-3 decreased in PTC, and analysis of public database datasets suggests that its decreased expression may be associated with the BRAFV600E mutation. MiR-146b-5p was significantly overexpressed in PTC. The dual luciferase reporter assay verified the effect of miR-146b-5p on 3'-UTR of GPx-3 mRNA. Knockdown of miR-146b-5p in thyroid cancer cell lines TPC-1 and BCPAP increased GPx-3 expression levels, accompanied by an increase in the conversion of glutathione (GSH) to oxidized glutathione (GSSG). Conclusions In conclusion, the level of GPx-3 decreases in papillary thyroid carcinoma and impairs intracellular peroxide clearance, due to the inhibitory effect of miR-146b-5p. The accumulation of intracellular peroxides may contribute to the poor prognosis of thyroid cancer.
Collapse
Affiliation(s)
- Dan Zhang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, PR China
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Yibin, PR China
| | - Ji-Jun Deng
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, PR China
| | - Qin Xu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, PR China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, PR China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, PR China
| |
Collapse
|
7
|
Pilat JM, Brown RE, Chen Z, Berle NJ, Othon AP, Washington MK, Anant SA, Kurokawa S, Ng VH, Thompson JJ, Jacobse J, Goettel JA, Lee E, Choksi YA, Lau KS, Short SP, Williams CS. SELENOP modifies sporadic colorectal carcinogenesis and WNT signaling activity through LRP5/6 interactions. J Clin Invest 2023; 133:e165988. [PMID: 37166989 PMCID: PMC10313376 DOI: 10.1172/jci165988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Although selenium deficiency correlates with colorectal cancer (CRC) risk, the roles of the selenium-rich antioxidant selenoprotein P (SELENOP) in CRC remain unclear. In this study, we defined SELENOP's contributions to sporadic CRC. In human single-cell cRNA-Seq (scRNA-Seq) data sets, we discovered that SELENOP expression rose as normal colon stem cells transformed into adenomas that progressed into carcinomas. We next examined the effects of Selenop KO in a mouse adenoma model that involved conditional, intestinal epithelium-specific deletion of the tumor suppressor adenomatous polyposis coli (Apc) and found that Selenop KO decreased colon tumor incidence and size. We mechanistically interrogated SELENOP-driven phenotypes in tumor organoids as well as in CRC and noncancer cell lines. Selenop-KO tumor organoids demonstrated defects in organoid formation and decreases in WNT target gene expression, which could be reversed by SELENOP restoration. Moreover, SELENOP increased canonical WNT signaling activity in noncancer and CRC cell lines. In defining the mechanism of action of SELENOP, we mapped protein-protein interactions between SELENOP and the WNT coreceptors low-density lipoprotein receptor-related proteins 5 and 6 (LRP5/6). Last, we confirmed that SELENOP-LRP5/6 interactions contributed to the effects of SELENOP on WNT activity. Overall, our results position SELENOP as a modulator of the WNT signaling pathway in sporadic CRC.
Collapse
Affiliation(s)
| | - Rachel E. Brown
- Program in Cancer Biology
- Medical Scientist Training Program, and
| | - Zhengyi Chen
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
| | - Nathaniel J. Berle
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - M. Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Suguru Kurokawa
- Department of Pharmacy, Osaka Ohtani University, Tondabayashi, Osaka, Japan
| | | | | | - Justin Jacobse
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Willem Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Jeremy A. Goettel
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ethan Lee
- Program in Cancer Biology
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Yash A. Choksi
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| | - Ken S. Lau
- Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Epithelial Biology Center, VUMC, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology and
- Department of Surgery, VUMC, Nashville, Tennessee, USA
| | - Sarah P. Short
- Program in Cancer Biology
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Christopher S. Williams
- Program in Cancer Biology
- Medical Scientist Training Program, and
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Center for Mucosal Inflammation and Cancer, VUMC, Nashville, Tennessee, USA
| |
Collapse
|
8
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
9
|
Chen Y, Guo N, Zhang L, Hu K, Yang J, Shi K. A rapid determination of selenium in tea samples using anion chromatographic column combined with automatic system separation and HR-ICP-MS measurement. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-022-08707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med 2022; 188:419-433. [PMID: 35803440 PMCID: PMC9341242 DOI: 10.1016/j.freeradbiomed.2022.06.232] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Accepted: 06/16/2022] [Indexed: 02/07/2023]
Abstract
We published the first paper to characterize GPX2 (aka GSHPx-GI) as a selenoenzyme with glutathione peroxidase activity in 1993. Among the four Se-GPX isozymes, GPX1-4, GPX1 and GPX2 are closely related in terms of structure, substrate specificities, and subcellular localization. What sets them apart are distinct patterns of gene regulation, tissue distribution and response to selenium. While we identified the digestive tract epithelium as the main site of GPX2 expression, later work has shown GPX2 is found more widely in epithelial tissues with concentration of expression in stem cell and proliferative compartments. GPX2 expression is regulated over a wide range of levels by many pathways, including NRF2, WNT, p53, RARE and this often results in attaching undue significance to GPX2 as GPX2 is only a part of a system of hydroperoxidase activities, including GPX1, peroxiredoxins and catalase. These other activities may play equal or greater roles, particularly in cell lines cultured without selenium supplementation and often with very low GPX2 levels. This could be assessed by examining levels of mRNA and protein among these various peroxidases at the outset of studies. As an example, it was found that GPX1 responds to the absence of GPX2 in mouse ileum and colon epithelium with higher expression. As such, both Gpx1 and Gpx2 had to be knocked out in mice to produce ileocolitis. However, we note that the actual role of GPX1 and GPX2 in relation to peroxiredoxin function is unclear. There may be an interdependence that requires only low amounts of GPX1 and/or GPX2 in a supporting role to maintain proper peroxiredoxin function. GPX2 levels may be prognostic for cancer progression in colon, breast, prostate and liver, however, there is no consistent trend for higher or lower levels to be favorable.
Collapse
Affiliation(s)
- R Steven Esworthy
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| | - Fong-Fong Chu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute of City of Hope. Duarte, California, USA, 91010.
| |
Collapse
|
11
|
Chemoproteomic interrogation of selenocysteine by low-pH isoTOP-ABPP. Methods Enzymol 2022; 662:187-225. [DOI: 10.1016/bs.mie.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Yang Y, Li D, Wu W, Huang D, Zheng H, Aihaiti Y. A Pan-Cancer Analysis of the Role of Selenoprotein P mRNA in Tumorigenesis. Int J Gen Med 2021; 14:7471-7485. [PMID: 34754222 PMCID: PMC8568700 DOI: 10.2147/ijgm.s332031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
Background Selenium (Se) exhibits its anti-carcinogenic properties by regulating the redox system. However, the relationship between selenoprotein P (SeP), mRNA (SELENOP mRNA) and tumorigenesis remains unclear. Plasma SeP transports Se to various target tissues and has antioxidant characteristics. The present study aimed to explore the multifaceted pan-cancer properties of SELENOP in terms of its tissue-specific expression, prognostic value, immune function, and signaling pathway enrichment. Patients and Methods The expression profile of SELENOP was determined in 33 tumor types and survival, pathway enrichment, and correlation analyses were conducted based on TCGA database. The relationship between SELENOP expression and immune infiltration and macrophage subtype gene markers was investigated using the TIMER and GEPIA. Results SELENOP gene expression was decreased in many cancer tissues, but was upregulated in brain lower grade glioma (LGG). Furthermore, SELENOP expression was associated with a better prognosis in most cancers, but a poorer prognosis in LGG and uterine corpus endometrioid carcinoma (UCEC). Our results showed that SELENOP was correlated with infiltration level of six immune cell types, where SELENOP also showed a strong correlation with macrophages in some cancer types. However, we failed to determine macrophage polarization in 33 tumor types. SELENOP negatively regulated vascular endothelial cell proliferation in LGG and UCEC and epidermal cell differentiation in six tumor types. In contrast, upregulation was related to immune function, including T cell activation, B cell-mediated immunity, adaptive immune response and immune response regulation cell surface receptor signaling pathways in another six tumor types. Conclusion These findings highlighted the tissue-specific expression, prognostic value and immune characteristics of SELENOP in pan-cancer, and provided insights for illustrating the role of SELENOP in tumorigenesis.
Collapse
Affiliation(s)
- Yanni Yang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, People's Republic of China.,Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Daning Li
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Wentao Wu
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dingxing Huang
- School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Haishi Zheng
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| | - Yirixiati Aihaiti
- Department of Joint Surgery, Xi'an Jiaotong University Affiliated HongHui Hospital, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
13
|
Lack of Association between Common Polymorphisms in Selenoprotein P Gene and Susceptibility to Colorectal Cancer, Breast Cancer, and Prostate Cancer: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6525449. [PMID: 34616844 PMCID: PMC8490044 DOI: 10.1155/2021/6525449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/30/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022]
Abstract
Method We search the PubMed, Embase, Google Scholar, and Wanfang (China) databases (up to December 1, 2020) to identify all eligible publications. The pooled odds ratio (OR) correspondence with 95% confidence interval (CI) was calculated to evaluate the associations. Results Finally, nine eligible studies with 7,157 cases and 6,440 controls and five studies with 2,278 cases and 2,821 controls were enrolled in rs3877899 and rs7579 polymorphisms, individually. However, a null significant association was detected between the two polymorphisms in SEPP1 and susceptibility to colorectal, breast, and prostate cancer in all comparison models. Subsequently, subgroup analysis based on tumor type, no significant association was identified for prostate, breast, and colorectal cancer. In addition, when the stratification analyses were conducted by the source of control, HWE status, and ethnicity, yet no significant association was found. Conclusions The current meta-analysis shows that SEPP1 rs3877899 and rs7579 polymorphisms may not be associated with susceptibility to colon cancer, breast cancer, and prostate cancer, and further well-designed studies with a larger sample size are warranted to validate our findings.
Collapse
|
14
|
Kadioglu O, Saeed MEM, Mahmoud N, Azawi S, Mrasek K, Liehr T, Efferth T. Identification of novel drug resistance mechanisms by genomic and transcriptomic profiling of glioblastoma cells with mutation-activated EGFR. Life Sci 2021; 284:119601. [PMID: 33991550 DOI: 10.1016/j.lfs.2021.119601] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/29/2022]
Abstract
AIMS Epidermal growth factor receptor (EGFR) is not only involved in carcinogenesis, but also in chemoresistance. We characterized U87.MGΔEGFR glioblastoma cells with constitutively active EGFR due to deletion at the ligand binding domain in terms of gene expression profiling and chromosomal aberrations. Wild-type U87.MG cells served as control. MATERIALS AND METHODS RNA sequencing and network analyses (Ingenuity Pathway Analysis) were performed to identify novel drug resistance mechanisms related to expression of mutation activated EGFR. Chromosomal aberrations were characterized by multicolor fluorescence in situ hybridization (mFISH) and array comparative genomic hybridization (aCGH). KEY FINDINGS U87.MGΔEGFR cells presented much more chromosomal aberrations, amplifications and deletions than wild-type U87.MG cells. Still, both cell lines were near-triploid. Numerous genes were overexpressed in U87.MGΔEGFR cells, some of which have been already linked to drug resistance. PXDN, which is associated with epithelial mesenchymal transition, was the most upregulated gene (901.8-fold). TENM1 was 331.6-fold upregulated, and it was previously reported to modulate neural development. EGFR-AS1 (161.2-fold upregulated) has been reported to increase the EGFR mRNA stability and its expression - in accordance with that of EGFR - was upregulated (85.5-fold). In addition to well-known resistance genes, numerous novel genes and genomic aberrations were identified. ANGPT2 upregulation and CPM downregulation were validated by Western blotting. SIGNIFICANCE Transcriptomics and genomics analyses in U87.MGΔEGFR cells unraveled a range of novel drug resistance mechanisms including apoptosis, DNA repair, ferroptosis, glutathione related gene activities, heat shock, oxidative stress, transcription factor activities, which may have important implications for future treatment strategies.
Collapse
Affiliation(s)
- Onat Kadioglu
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Mohamed E M Saeed
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Nuha Mahmoud
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Shaymaa Azawi
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Kristin Mrasek
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
15
|
Wang J, Shen P, Liao S, Duan L, Zhu D, Chen J, Chen L, Sun X, Duan Y. Selenoprotein P inhibits cell proliferation and ROX production in HCC cells. PLoS One 2020; 15:e0236491. [PMID: 32735635 PMCID: PMC7394388 DOI: 10.1371/journal.pone.0236491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Selenoprotein P (SEPP1) is a kind of secretory glycoproteins with an antioxidant effect during the development of some diseases. In this study, we attempted to observe the expression of SEPP1 in livers from the patients with hepatocellular carcinoma (HCC) and explore its effect on HCC cells. All the tissues from patients with HCC were obtained from Affiliated Hospital of Nantong University. Western blot and immunohistochemical results showed that SEPP1 was reduced in HCC liver tissues. Its expression was negatively correlated with Ki67 expression in tissues. The expression of SEPP1 in normal liver cell line was significantly higher than those in the liver cancer cell lines. Serum starvation and release experiment demonstrated that SEPP1 expression was reduced and PCNA expression was increased, when the serum was re-added into cell culture system and the cells were on a proliferation state. After SEPP1 over-expression plasmid was transfected into HepG2 cells, cell proliferation of HepG2 cells and PCNA expression level were all inhibited by SEPP1. Results obtained via 8-isoprostane ELISA further indicated that inhibited ROS level was found in HepG2 cells transfected with SEPP1 over-expression plasmid. In addition, RT-qPCR results demonstrated that GPX1 expression levels increased in HepG2 cells transfected with SEPP1 over-expression plasmid. In conclusion, SEPP1 may inhibit the proliferation of HCC cells, accompanied by the reduction of ROS production and the increasing of GPX1 expression.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
- * E-mail: (JW); (YD)
| | - Pei Shen
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Sha Liao
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Lian Duan
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Jinling Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Liuting Chen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Xiaolei Sun
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, Jiangsu, People’s Republic of China
- * E-mail: (JW); (YD)
| |
Collapse
|
16
|
Zhang ML, Wu HT, Chen WJ, Xu Y, Ye QQ, Shen JX, Liu J. Involvement of glutathione peroxidases in the occurrence and development of breast cancers. J Transl Med 2020; 18:247. [PMID: 32571353 PMCID: PMC7309991 DOI: 10.1186/s12967-020-02420-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023] Open
Abstract
Glutathione peroxidases (GPxs) belong to a family of enzymes that is important in organisms; these enzymes promote hydrogen peroxide metabolism and protect cell membrane structure and function from oxidative damage. Based on the establishment and development of the theory of the pathological roles of free radicals, the role of GPxs has gradually attracted researchers' attention, and the involvement of GPxs in the occurrence and development of malignant tumors has been shown. On the other hand, the incidence of breast cancer in increasing, and breast cancer has become the leading cause of cancer-related death in females worldwide; breast cancer is thought to be related to the increased production of reactive oxygen species, indicating the involvement of GPxs in these processes. Therefore, this article focused on the molecular mechanism and function of GPxs in the occurrence and development of breast cancer to understand their role in breast cancer and to provide a new theoretical basis for the treatment of breast cancer.
Collapse
Affiliation(s)
- Man-Li Zhang
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Hua-Tao Wu
- Department of General Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wen-Jia Chen
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Ya Xu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
| | - Qian-Qian Ye
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China
| | - Jia-Xin Shen
- Department of Hematology, the First Affiliated Hospital of Shantou University Medical College, Shantou, People's Republic of China
| | - Jing Liu
- Changjiang Scholar's Laboratory/Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Shantou University Medical College, Shantou, 515041, China.
- Department of Physiology/Cancer Research Center, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
17
|
Arias-Borrego A, Callejón-Leblic B, Calatayud M, Gómez-Ariza JL, Collado MC, García-Barrera T. Insights into cancer and neurodegenerative diseases through selenoproteins and the connection with gut microbiota - current analytical methodologies. Expert Rev Proteomics 2019; 16:805-814. [PMID: 31482748 DOI: 10.1080/14789450.2019.1664292] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Selenium plays many key roles in health especially in connection with cancer and neurodegenerative diseases. However, it needs to be appreciated that the essentiality/toxicity of selenium depends on both, a narrow range of concentration and the chemical specie involved. In this context, selenoproteins are essential biomolecules against these disorders, mainly due to its antioxidant action. To this end, analytical methodologies may allow identifying and quantifying individual selenospecies in human biofluids and tissues. Areas covered: This review focus on the role of selenoproteins in medicine, with special emphasis in cancer and neurodegenerative diseases, considering the possible link with gut microbiota. In particular, this article reviews the analytical techniques and procedures recently developed for the absolute quantification of selenoproteins and selenometabolites in human biofluids and tissues. Expert commentary: The beneficial role of selenium in human health has been extensively studied and reviewed. However, several challenges remain unsolved as discussed in this article: (i) speciation of selenium (especially selenoproteins) in cancer and neurodegenerative disease patients; (ii) supplementation of selenium in humans using functional foods and nutraceuticals; (iii) the link between selenium and selenoproteins expression and the gut microbiota and (iv) analytical methods and pitfalls for the absolute quantification of selenoproteins and selenometabolites.
Collapse
Affiliation(s)
- Ana Arias-Borrego
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Belén Callejón-Leblic
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Marta Calatayud
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain.,Center for Microbial Ecology and Technology (CMET), Ghent University , Ghent , Belgium
| | - José Luis Gómez-Ariza
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology (IATA-CSIC), Food Biotechnology , Paterna , Valencia , Spain
| | - Tamara García-Barrera
- Research Center of Natural Resources, Health and the Environment (RENSMA). Department of Chemistry, Faculty of Experimental Sciences, University of Huelva , Huelva , Spain
| |
Collapse
|
18
|
Amini G, Salehi R, Moshtaghi AA, Kazemi M, Behjati M, Khosravi S. Evaluation of SEPP1 and Selenoprotein S Gene Polymorphisms (rs7579 and rs34713741) in Relation to Colorectal Cancer Susceptibility in Subset of Iranian Population: A Case-control Study. Adv Biomed Res 2019; 8:47. [PMID: 31523666 PMCID: PMC6683409 DOI: 10.4103/abr.abr_249_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Colorectal cancer (CRC) is rated as the second cause of cancer death worldwide. Selenium (Se) has antioxidant activity and antitumor effect, especially in colon cancer. This important role occurs through selenoproteins. Low Se intake or low plasma Se and selenoproteins concentrations are associated with higher risk of CRC. rs7579 polymorphism in 3' untranslated region of the SEPP1 gene can effect on selenocysteine incorporation during protein synthesis and also effect on microRNA -messengerRNA interaction and sequentially change in SEPP1 expression. rs34713741 polymorphism as a promoter variant in selenoprotein S (SELS) gene can effect on SElS expression and finally lead to increased CRC risk. Methods A case-control study using 60 CRC patients and 74 noncancerous counterparts were undertaken in order to determine rs7579 and rs34713741 genotypes using real-time polymerase chain reaction high-resolution melting method. Results We found an association of borderline statistical significance between allele A for rs7579 in SEPP1 and CRC risk (adjusted odds ratio = 1.63; confidential interval = 0.99-2.07; P = 0.05). The frequency of genotypes rs34713741 of the mentioned polymorphisms was not significantly different between case and control groups (P = 0.23 and P = 0.93, respectively). Conclusions The results suggest that these polymorphisms probably has not a substantial role in Iranian CRC risk and is not a serious potential factor in risk assessment of mentioned disease among Iranians.
Collapse
Affiliation(s)
- Guilda Amini
- Department of Biochemistry, Falavarjan Islamic Azad University, Falavarjan, Iran.,Depatment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasoul Salehi
- Depatment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Asghar Moshtaghi
- Department of Biochemistry, Falavarjan Islamic Azad University, Falavarjan, Iran
| | - Mohammad Kazemi
- Depatment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohaddeseh Behjati
- Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sharifeh Khosravi
- Depatment of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
Hughes DJ, Kunická T, Schomburg L, Liška V, Swan N, Souček P. Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer. Nutrients 2018; 10:nu10111812. [PMID: 30469315 PMCID: PMC6266908 DOI: 10.3390/nu10111812] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Dietary selenium (Se) intake is essential for synthesizing selenoproteins that are important in countering oxidative and inflammatory processes linked to colorectal carcinogenesis. However, there is limited knowledge on the selenoprotein expression in colorectal adenoma (CRA) and colorectal cancer (CRC) patients, or the interaction with Se status levels. We studied the expression of seventeen Se pathway genes (including fifteen of the twenty-five human selenoproteins) in RNA extracted from disease-normal colorectal tissue pairs, in the discovery phase of sixty-two CRA/CRC patients from Ireland and a validation cohort of a hundred and five CRC patients from the Czech Republic. Differences in transcript levels between the disease and paired control mucosa were assessed by the Mann-Whitney U-test. GPX2 and TXNRD3 showed a higher expression and GPX3, SELENOP, SELENOS, and SEPHS2 exhibited a lower expression in the disease tissue from adenomas and both cancer groups (p-values from 0.023 to <0.001). In the Czech cohort, up-regulation of GPX1, SELENOH, and SOD2 and down-regulation of SELENBP1, SELENON, and SELENOK (p-values 0.036 to <0.001) was also observed. We further examined the correlation of gene expression with serum Se status (assessed by Se and selenoprotein P, SELENOP) in the Irish patients. While there were no significant correlations with both Se status markers, SELENOF, SELENOK, and TXNRD1 tumor tissue expression positively correlated with Se, while TXNRD2 and TXNRD3 negatively correlated with SELENOP. In an analysis restricted to the larger Czech CRC patient cohort, Cox regression showed no major association of transcript levels with patient survival, except for an association of higher SELENOF gene expression with both a lower disease-free and overall survival. Several selenoproteins were differentially expressed in the disease tissue compared to the normal tissue of both CRA and CRC patients. Altered selenoprotein expression may serve as a marker of functional Se status and colorectal adenoma to cancer progression.
Collapse
Affiliation(s)
- David J Hughes
- Cancer Biology and Therapeutics Group, UCD Conway Institute, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - Tereza Kunická
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
| | - Lutz Schomburg
- Institute for Experimental Endocrinology, University Medical School Berlin, D-13353 Berlin, Germany.
| | - Václav Liška
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Teaching Hospital and Medical School, Charles University in Prague, 306 05 Pilsen, Czech Republic.
| | - Niall Swan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, D04 T6F4 Dublin, Ireland.
| | - Pavel Souček
- Biomedical Centre, Medical and Teaching School Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic.
- Teaching Hospital and Medical School, Charles University in Prague, 306 05 Pilsen, Czech Republic.
| |
Collapse
|
20
|
Short SP, Pilat JM, Williams CS. Roles for selenium and selenoprotein P in the development, progression, and prevention of intestinal disease. Free Radic Biol Med 2018; 127:26-35. [PMID: 29778465 PMCID: PMC6168360 DOI: 10.1016/j.freeradbiomed.2018.05.066] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Selenium (Se) is a micronutrient essential to human health, the function of which is mediated in part by incorporation into a class of proteins known as selenoproteins (SePs). As many SePs serve antioxidant functions, Se has long been postulated to protect against inflammation and cancer development in the gut by attenuating oxidative stress. Indeed, numerous studies over the years have correlated Se levels with incidence and severity of intestinal diseases such as inflammatory bowel disease (IBD) and colorectal cancer (CRC). Similar results have been obtained with the Se transport protein, selenoprotein P (SELENOP), which is decreased in the plasma of both IBD and CRC patients. While animal models further suggest that decreases in Se or SELENOP augment colitis and intestinal tumorigenesis, large-scale clinical trials have yet to show a protective effect in patient populations. In this review, we discuss the function of Se and SELENOP in intestinal diseases and how research into these mechanisms may impact patient treatment.
Collapse
Affiliation(s)
- Sarah P Short
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, USA.
| |
Collapse
|
21
|
Peters KM, Carlson BA, Gladyshev VN, Tsuji PA. Selenoproteins in colon cancer. Free Radic Biol Med 2018; 127:14-25. [PMID: 29793041 PMCID: PMC6168369 DOI: 10.1016/j.freeradbiomed.2018.05.075] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/18/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Selenocysteine-containing proteins (selenoproteins) have been implicated in the regulation of various cell signaling pathways, many of which are linked to colorectal malignancies. In this in-depth excurse into the selenoprotein literature, we review possible roles for human selenoproteins in colorectal cancer, focusing on the typical hallmarks of cancer cells and their tumor-enabling characteristics. Human genome studies of single nucleotide polymorphisms in various genes coding for selenoproteins have revealed potential involvement of glutathione peroxidases, thioredoxin reductases, and other proteins. Cell culture studies with targeted down-regulation of selenoproteins and studies utilizing knockout/transgenic animal models have helped elucidate the potential roles of individual selenoproteins in this malignancy. Those selenoproteins, for which strong links to development or progression of colorectal cancer have been described, may be potential future targets for clinical interventions.
Collapse
Affiliation(s)
- Kristin M Peters
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| | - Bradley A Carlson
- National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| | - Vadim N Gladyshev
- Dept. of Medicine, Brigham & Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, United States.
| | - Petra A Tsuji
- Dept. of Biological Sciences, Towson University, 8000 York Rd, Towson, MD 21252, United States.
| |
Collapse
|
22
|
Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett 2018; 438:154-164. [PMID: 30223069 DOI: 10.1016/j.canlet.2018.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 12/22/2022]
Abstract
Radiotherapy represents a major anti-cancer modality and effectively kills cancer cells through generation of reactive oxygen species (ROS). However, cancer cells are commonly characterized by increased activity of ROS-scavenging enzymes in adaptation to intrinsic oxidative stress, leading to radioresistance. Abrogation of this defense network by pharmacological ROS insults therefore is shown to improve radioresponse in preclinical models; some of them are then tested in clinical trials. In this review, we address (1) the importance of ROS in radioresponse, (2) the main systems regulating redox homeostasis with a special focus on their prognostic effect and predictive role in radiotherapy, and (3) the potential radiosensitizers acting through inhibition of antioxidant enzymes.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Hui Wang
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mark De Ridder
- Department of Radiotherapy, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
23
|
Liu K, Jin M, Xiao L, Liu H, Wei S. Distinct prognostic values of mRNA expression of glutathione peroxidases in non-small cell lung cancer. Cancer Manag Res 2018; 10:2997-3005. [PMID: 30214294 PMCID: PMC6118261 DOI: 10.2147/cmar.s163432] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction Glutathione peroxidases (GPxs) constitutes an enzyme family which has the ability to reduce free hydrogen peroxide to water and lipid hydroperoxides to their corresponding alcohols, and its main biological roles are to protect organisms from oxidative stress-induced damage. GPxs include eight members in different tissues of the body, and they play essential roles in carcinogenesis. However, the prognostic value of individual GPx in non-small cell lung cancer (NSCLC) remains elusive. Materials and methods In the current study, we investigated the prognostic value of GPxs in NSCLC patients through the “Kaplan–Meier plotter” database, wherein updated gene expression data and survival information from a total of 1,926 NSCLC patients are included. Results High expression of GPx1 mRNA was correlated with worse overall survival (OS) in adenocarcinoma patients. High expression of GPx2 mRNA was correlated with worse OS for all NSCLC patients. In contrast, high expression of GPx3 mRNA was associated with better OS for all NSCLC patients. High expression of GPx4 mRNA was significantly correlated with worsening adenocarcinoma in these patients. GPx5 mRNA high expression correlated with worsening OS for all NSCLC patients. Discussion The current findings of prognostic values of individual mRNA expression of GPxs in NSCLC patients indicate some GPxs may have prognostic value in NSCLC patients, and this needs further study.
Collapse
Affiliation(s)
- Kui Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Li Xiao
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China, ;
| |
Collapse
|
24
|
A Quantitative Chemoproteomic Platform to Monitor Selenocysteine Reactivity within a Complex Proteome. Cell Chem Biol 2018; 25:1157-1167.e4. [PMID: 29983274 DOI: 10.1016/j.chembiol.2018.05.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/09/2018] [Accepted: 05/25/2018] [Indexed: 12/20/2022]
Abstract
Mammalian selenocysteine (Sec)-containing proteins, selenoproteins, are important to (patho)physiological processes, including redox homeostasis. Sec residues have been recalcitrant to mass spectrometry-based chemoproteomic methods that enrich for reactive cysteine (Cys) residues with electrophilic chemical probes, despite confirmed reactivity of Sec with these electrophiles. Highly abundant Cys peptides likely suppress low-abundant Sec peptides. By exploiting the decreased pKa of Sec relative to Cys, we have developed a chemoproteomic platform that relies on low pH (pH 5.75) electrophile labeling, reducing Cys reactivity and enhancing identification of Sec-containing peptides across mouse tissues and cell lines. The utility of this Sec-profiling platform is underscored by evaluation of the selectivity of auranofin, an inhibitor of the selenoprotein, thioredoxin reductase, against both reactive Cys- and Sec-containing proteins. Platform limitations pertain to the non-physiological low-pH conditions that could perturb protein structure and function. Future work necessitates the discovery of Sec-selective electrophiles that function at physiological pH.
Collapse
|
25
|
Gharipour M, Ouguerram K, Nazih EH, Salehi M, Behmanesh M, Roohafza H, Hosseini SM, Nezafati P, Dianatkhah M, Gharipour A, Haghjoo S, Sarrafzadegan N, Sadeghi M. Effects of selenium supplementation on expression of SEPP1 in mRNA and protein levels in subjects with and without metabolic syndrome suffering from coronary artery disease: Selenegene study a double-blind randomized controlled trial. J Cell Biochem 2018; 119:8282-8289. [PMID: 29932230 DOI: 10.1002/jcb.26844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 03/09/2018] [Indexed: 01/13/2023]
Abstract
Selenoprotein P (SePP) is involved in the protection against diseases. The present study is the first investigation of the effect of selenium supplementation on plasma selenium and expression of SEPP1 in mRNA and protein levels based on metabolic syndrome (MetS), in individuals suffering from coronary artery diseases. In this clinical trial, 160 patients with angiographically documented stenosis of more than 75% in each vessel were enrolled. Patients received either 200-mg selenium yeast tablets or placebo tablets orally after a meal, once daily for 60 days. The mRNA and protein levels of the selenium and SePP1 products were determined before and after the study. From the initial 160 participants, 145 subjects (71 MetS-affected individuals, 74 MetS-unaffected individuals) enrolled in this study. Comparing the selenium and placebo groups, no significant percentage changes of plasma selenium, △Ct SEPP1, or SePP were shown (P > 0.05). Moreover, beyond a significant difference for the expression of SePP in the selenium group compared to its baseline level (P < 0.05), no other significant differences were revealed for plasma selenium and △Ct SEPP1 after the intervention in either group (P > 0.05). Selenium supplementation did not affect plasma selenium or the mRNA or protein level of SePP in either groups after a 2-months intervention beyond a significant increase of SePP in the MetS group. This trial suggests that further studies should investigate the long-term use of selenium supplementation and the effect of a SePP increase on MetS as a potential therapeutic effect.
Collapse
Affiliation(s)
- Mojgan Gharipour
- Division of Genetic Studies, Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medicine Sciences, Isfahan, Iran
| | - Khadija Ouguerram
- UMR PHAN, INRA, and Université de Nantes, IMAD, CRNH-Ouest, Nantes, France
| | - El-Hassane Nazih
- Faculté de Pharmacie, EA 2160 MMS - Institut Universitaire Mer et Littoral FR3473 CNRS, Centre de Recherche en Nutrition Humaine Ouest (CRNH Ouest), ULB Université de Nantes, Nantes, France
| | - Mansour Salehi
- Department of Genetics and Molecular Biology Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrdad Behmanesh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamidreza Roohafza
- Psychosomatic Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Syed Mohsen Hosseini
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Nezafati
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Minoo Dianatkhah
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medicine Sciences, Isfahan, Iran
| | - Amin Gharipour
- Griffith University, School of Information and Communication Technology, Gold Coast Campus, Australia
| | - Shaghayegh Haghjoo
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medicine Sciences, Isfahan, Iran
| | - Masoumeh Sadeghi
- Cardiac Rehabilitation Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Pan Y, Lu L, Chen J, Zhong Y, Dai Z. Identification of potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma. Hereditas 2018; 155:21. [PMID: 29760609 PMCID: PMC5941338 DOI: 10.1186/s41065-018-0061-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Background This study aimed to identify potential crucial genes and construction of microRNA-mRNA negative regulatory networks in osteosarcoma by comprehensive bioinformatics analysis. Methods Data of gene expression profiles (GSE28424) and miRNA expression profiles (GSE28423) were downloaded from GEO database. The differentially expressed genes (DEGs) and miRNAs (DEMIs) were obtained by R Bioconductor packages. Functional and enrichment analyses of selected genes were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and visualized in Cytoscape. The relationships among the DEGs and module in PPI network were analyzed by plug-in NetworkAnalyzer and MCODE seperately. Through the TargetScan and comparing target genes with DEGs, the miRNA-mRNA regulation network was established. Results Totally 346 DEGs and 90 DEMIs were found to be differentially expressed. These DEGs were enriched in biological processes and KEGG pathway of inflammatory immune response. 25 genes in the PPI network were selected as hub genes. Top 10 hub genes were TYROBP, HLA-DRA, VWF, PPBP, SERPING1, HLA-DPA1, SERPINA1, KIF20A, FERMT3, HLA-E. PPI network of DEGs followed a pattern of power law network and met the characteristics of small-world network. MCODE analysis identified 4 clusters and the most significant cluster consisted of 11 nodes and 55 edges. SEPP1, CKS2, TCAP, BPI were identified as the seed genes in their own clusters, respectively. The miRNA-mRNA regulation network which was composed of 89 pairs was established. MiR-210 had the highest connectivity with 12 target genes. Among the predicted target of MiR-96, HLA-DPA1 and TYROBP were the hub genes. Conclusion Our study indicated possible differentially expressed genes and miRNA, and microRNA-mRNA negative regulatory networks in osteosarcoma by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Yue Pan
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Lingyun Lu
- Department of Orthopaedics, the Fifth Hospital of Xiamen, Xiamen, 361101 China
| | - Junquan Chen
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| | - Yong Zhong
- 3Department of Nephrology, Xiangya Hospital of Central South University, Changsha, 410008 China
| | - Zhehao Dai
- 1Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410011 China
| |
Collapse
|
27
|
Liu C, He X, Wu X, Wang Z, Zuo W, Hu G. Clinicopathological and prognostic significance of GPx2 protein expression in nasopharyngeal carcinoma. Cancer Biomark 2018; 19:335-340. [PMID: 28453466 DOI: 10.3233/cbm-160542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study was designed to evaluate the relation between GPx2 (glutathione peroxidase 2) expressions and clinicopathological features as well as prognosis of patients with nasopharyngeal carcinoma (NPC). METHODS A total of 89 cases of NPC were investigated to examine the immunohistochemical expression of GPx2. Fourteen pairs of NPC and the control samples were analyzed respectively by qRT-PCR and Western blot. The correlations of GPx2 expressions with the clinicopathologic features and the prognosis of NPC patients were also analyzed. RESULTS The expression of GPx2 in NPC tissues was elevated immunohistochemically when compared with normal nasopharyngeal tissues (P< 0.05). The mRNA expression of GPx2 in carcinoma tissues was highly elevated compared with the control tissues (P< 0.05). GPx2 protein in carcinoma tissues was also over expressed than in control tissues (P< 0.05). Also GPx2 expression was significantly higher in the late clinical stage (P= 0.02). While there was no significant association between GPx2 expression and patient age, sex, T-stage, N-stage and the metastasis. CONCLUSIONS GPx2 may play an important role in the development of nasopharyngeal carcinoma. Furthermore, GPx2 may serve as a prognostic biomarker for NPC patient.
Collapse
|
28
|
Naiki T, Naiki-Ito A, Iida K, Etani T, Kato H, Suzuki S, Yamashita Y, Kawai N, Yasui T, Takahashi S. GPX2 promotes development of bladder cancer with squamous cell differentiation through the control of apoptosis. Oncotarget 2018; 9:15847-15859. [PMID: 29662611 PMCID: PMC5882302 DOI: 10.18632/oncotarget.24627] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 02/27/2018] [Indexed: 01/10/2023] Open
Abstract
Herein, we elucidated the molecular mechanisms and therapeutic potential of glutathione peroxidase 2 (GPX2) in bladder cancer. GPX2 expression gradually increased during progression from normal to papillary or nodular hyperplasia (PNHP) and urothelial carcinoma (UC) in a rat N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder carcinogenesis model. GPX2 overexpression was more marked in UC with squamous differentiation (SqD) than in pure UC. Clinical intraepithelial lesions of papillary UC and invasive UC with SqD also had strong GPX2 expression in human radical cystectomy specimens. In addition, prognostic analysis using transurethral specimens revealed that low expression level of GPX2 predicted poor prognosis in patients with pure UC. Further, UC cell lines, BC31 and RT4, cultured in vitro also overexpressed GPX2. Knock-down of GPX2 induced significant inhibition of intracellular reactive oxygen species (ROS) production, in addition to significant growth inhibition and increased apoptosis with activation of caspase 3 or 7 in both BC31 and RT4 cells. Interestingly, tumor growth of BC31 cells subcutaneously transplanted in nude mice was significantly caused the induction of apoptosis, as well as inhibition of angiogenesis and SqD by GPX2 down-regulation. Our findings demonstrated that GPX2 plays an important role in bladder carcinogenesis through the regulation of apoptosis against intracellular ROS, and may be considered as a novel biomarker or therapeutic target in bladder cancer.
Collapse
Affiliation(s)
- Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan.,Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Keitaro Iida
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshiki Etani
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Noriyasu Kawai
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Takahiro Yasui
- Department of Nephro-Urology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University, Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
29
|
Heim D, Gil-Ibanez I, Herden J, Parplys AC, Borgmann K, Schmidt-Arras D, Lohse AW, Rose-John S, Wege H. Constitutive gp130 activation rapidly accelerates the transformation of human hepatocytes via an impaired oxidative stress response. Oncotarget 2018; 7:55639-55648. [PMID: 27489351 PMCID: PMC5342442 DOI: 10.18632/oncotarget.10956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/09/2016] [Indexed: 01/29/2023] Open
Abstract
Pro-inflammatory signaling pathways, especially interleukin 6 (IL-6), and reactive oxygen species (ROS) promote carcinogenesis in the liver. In order to elucidate the underlying oncogenic mechanism, we activated the IL-6 signal transducer glycoprotein 130 (gp130) via stable expression of a constitutively active gp130 construct (L-gp130) in untransformed telomerase-immortalized human fetal hepatocytes (FH-hTERT). As known from hepatocellular adenomas, forced gp130 activation alone was not sufficient to induce malignant transformation. However, additional challenge of FH-hTERT L-gp130 clones with oxidative stress resulted in 2- to 3-fold higher ROS levels and up to 6-fold more DNA-double strand breaks (DSB). Despite increased DNA damage, ROS-challenged FH-hTERT L-gp130 clones displayed an enhanced proliferation and rapidly developed colony growth capabilities in soft agar. As driving gp130-mediated oncogenic mechanism, we detected a decreased expression of antioxidant genes, in particular glutathione peroxidase 3 and apolipoprotein E, and an absence of P21 upregulation following ROS-conferred induction of DSB. In summary, an impaired oxidative stress response in hepatocytes with gp130 gain-of-function mutations, as detected in dysplastic intrahepatic nodules and hepatocellular adenomas, is one of the central oncogenic mechanisms in chronic liver inflammation.
Collapse
Affiliation(s)
- Denise Heim
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ines Gil-Ibanez
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Herden
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Ann Christin Parplys
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Dirk Schmidt-Arras
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Ansgar W Lohse
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stefan Rose-John
- Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Henning Wege
- Department of Gastroenterology and Hepatology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
30
|
Jiao Y, Wang Y, Guo S, Wang G. Glutathione peroxidases as oncotargets. Oncotarget 2017; 8:80093-80102. [PMID: 29108391 PMCID: PMC5668124 DOI: 10.18632/oncotarget.20278] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is a disturbance in the equilibrium among free radicals, reactive oxygen species, and endogenous antioxidant defense mechanisms. Oxidative stress is a result of imbalance between the production of reactive oxygen and the biological system's ability to detoxify the reactive intermediates or to repair the resulting damage. Mounting evidence has implicated oxidative stress in various physiological and pathological processes, including DNA damage, proliferation, cell adhesion, and survival of cancer cells. Glutathione peroxidases (GPxs) (EC 1.11.1.9) are an enzyme family with peroxidase activity whose main biological roles are to protect organisms from oxidative damage by reducing lipid hydroperoxides as well as free hydrogen peroxide. Currently, 8 sub-members of GPxs have been identified in humans, all capable of reducing H2O2 and soluble fatty acid hydroperoxides. A large number of publications has demonstrated that GPxs have significant roles in different stages of carcinogenesis. In this review, we will update recent progress in the study of the roles of GPxs in cancer. Better mechanistic understanding of GPxs will potentially contribute to the development and advancement of improved cancer treatment models.
Collapse
Affiliation(s)
- Yang Jiao
- Department of Stomatology, PLA Army General Hospital, Beijing, P.R. China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, P.R. China
| | - Shanchun Guo
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- RCMI Cancer Research Center and Department of Chemistry, Xavier University of Louisiana, New Orleans, LA, USA
| |
Collapse
|
31
|
Mohammaddoust S, Salehi Z, Saeidi Saedi H. SEPP1 and SEP15 gene polymorphisms and susceptibility to breast cancer. Br J Biomed Sci 2017; 75:36-39. [PMID: 28598259 DOI: 10.1080/09674845.2017.1333241] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Zivar Salehi
- a Faculty of Sciences, Department of Biology , University of Guilan , Rasht , Iran
| | - Hamid Saeidi Saedi
- b Department of Radiation Oncology , Cancer Research Center, Guilan University of Medical Sciences (GUMS) , Rasht , Iran
| |
Collapse
|
32
|
Tarek M, Louka ML, Khairy E, Ali-Labib R, Zakaria Zaky D, Montasser IF. Role of microRNA-7 and selenoprotein P in hepatocellular carcinoma. Tumour Biol 2017; 39:1010428317698372. [DOI: 10.1177/1010428317698372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
There is an obvious need to diagnose hepatocellular carcinoma using novel non-invasive and sensitive biomarkers. In this regard, the aim of this study was to evaluate and correlate both relative quantification of microRNA-7 using quantitative real time polymerase chain reaction and quantitative analysis of selenoprotein P using enzyme-linked immunosorbent assay in sera of hepatocellular carcinoma patients, chronic liver disease patients, as well as normal healthy subjects in order to establish a new diagnostic biomarker with a valid non-invasive technique. In addition, this study aimed to investigate whether changes in selenium supply affect microRNA-7 expression and selenoprotein P levels in human hepatocarcinoma cell line (HepG2). The results showed a highly significant decrease in serum microRNA-7 relative quantification values and selenoprotein P levels in malignant group in comparison with benign and control groups. The best cutoff for serum microRNA-7 and selenoprotein P to discriminate hepatocellular carcinoma group from benign and control groups was 0.06 and 4.30 mg/L, respectively. Furthermore, this study showed that changes in selenium supply to HepG2 cell line can alter the microRNA-7 profile and are paralleled by changes in the concentration of its target protein (selenoprotein P). Hence, serum microRNA-7 and selenoprotein P appear to be potential non-invasive diagnostic markers for hepatocellular carcinoma. Moreover, the results suggest that selenium could be used as an anticancer therapy for hepatocellular carcinoma by affecting both microRNA-7 and selenoprotein P.
Collapse
Affiliation(s)
- Marwa Tarek
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Manal Louis Louka
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Randa Ali-Labib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Doaa Zakaria Zaky
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Iman F Montasser
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Pérez S, Taléns-Visconti R, Rius-Pérez S, Finamor I, Sastre J. Redox signaling in the gastrointestinal tract. Free Radic Biol Med 2017; 104:75-103. [PMID: 28062361 DOI: 10.1016/j.freeradbiomed.2016.12.048] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/20/2016] [Accepted: 12/31/2016] [Indexed: 12/16/2022]
Abstract
Redox signaling regulates physiological self-renewal, proliferation, migration and differentiation in gastrointestinal epithelium by modulating Wnt/β-catenin and Notch signaling pathways mainly through NADPH oxidases (NOXs). In the intestine, intracellular and extracellular thiol redox status modulates the proliferative potential of epithelial cells. Furthermore, commensal bacteria contribute to intestine epithelial homeostasis through NOX1- and dual oxidase 2-derived reactive oxygen species (ROS). The loss of redox homeostasis is involved in the pathogenesis and development of a wide diversity of gastrointestinal disorders, such as Barrett's esophagus, esophageal adenocarcinoma, peptic ulcer, gastric cancer, ischemic intestinal injury, celiac disease, inflammatory bowel disease and colorectal cancer. The overproduction of superoxide anion together with inactivation of superoxide dismutase are involved in the pathogenesis of Barrett's esophagus and its transformation to adenocarcinoma. In Helicobacter pylori-induced peptic ulcer, oxidative stress derived from the leukocyte infiltrate and NOX1 aggravates mucosal damage, especially in HspB+ strains that downregulate Nrf2. In celiac disease, oxidative stress mediates most of the cytotoxic effects induced by gluten peptides and increases transglutaminase levels, whereas nitrosative stress contributes to the impairment of tight junctions. Progression of inflammatory bowel disease relies on the balance between pro-inflammatory redox-sensitive pathways, such as NLRP3 inflammasome and NF-κB, and the adaptive up-regulation of Mn superoxide dismutase and glutathione peroxidase 2. In colorectal cancer, redox signaling exhibits two Janus faces: On the one hand, NOX1 up-regulation and derived hydrogen peroxide enhance Wnt/β-catenin and Notch proliferating pathways; on the other hand, ROS may disrupt tumor progression through different pro-apoptotic mechanisms. In conclusion, redox signaling plays a critical role in the physiology and pathophysiology of gastrointestinal tract.
Collapse
Affiliation(s)
- Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Isabela Finamor
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100 Valencia, Spain.
| |
Collapse
|
34
|
Abstract
Selenium is a micronutrient essential to human health and has long been associated with cancer prevention. Functionally, these effects are thought to be mediated by a class of selenium-containing proteins known as selenoproteins. Indeed, many selenoproteins have antioxidant activity which can attenuate cancer development by minimizing oxidative insult and resultant DNA damage. However, oxidative stress is increasingly being recognized for its "double-edged sword" effect in tumorigenesis, whereby it can mediate both negative and positive effects on tumor growth depending on the cellular context. In addition to their roles in redox homeostasis, recent work has also implicated selenoproteins in key oncogenic and tumor-suppressive pathways. Together, these data suggest that the overall contribution of selenoproteins to tumorigenesis is complicated and may be affected by a variety of factors. In this review, we discuss what is currently known about selenoproteins in tumorigenesis with a focus on their contextual roles in cancer development, growth, and progression.
Collapse
Affiliation(s)
- Sarah P Short
- Vanderbilt University Medical Center, Nashville, TN, United States
| | - Christopher S Williams
- Vanderbilt University Medical Center, Nashville, TN, United States; Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN, United States; Vanderbilt University, Nashville, TN, United States; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, United States; Veterans Affairs Tennessee Valley HealthCare System, Nashville, TN, United States.
| |
Collapse
|
35
|
Selenoproteins and oxidative stress-induced inflammatory tumorigenesis in the gut. Cell Mol Life Sci 2016; 74:607-616. [PMID: 27563706 DOI: 10.1007/s00018-016-2339-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/02/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Selenium is an essential micronutrient that is incorporated into at least 25 selenoproteins encoded by the human genome, many of which serve antioxidant functions. Because patients with inflammatory bowel disease (IBD) demonstrate nutritional deficiencies and are at increased risk for colon cancer due to heightened inflammation and oxidative stress, selenoprotein dysfunction may contribute to disease progression. Over the years, numerous studies have analyzed the effects of selenoprotein loss and shown that they are important mediators of intestinal inflammation and carcinogenesis. In particular, recent work has focused on the role of selenoprotein P (SEPP1), a major selenium transport protein which also has endogenous antioxidant function. These experiments determined SEPP1 loss altered immune and epithelial cellular function in a murine model of colitis-associated carcinoma. Here, we discuss the current knowledge of SEPP1 and selenoprotein function in the setting of IBD, colitis, and inflammatory tumorigenesis.
Collapse
|
36
|
Thompson PA, Ashbeck EL, Roe DJ, Fales L, Buckmeier J, Wang F, Bhattacharyya A, Hsu CH, Chow HHS, Ahnen DJ, Boland CR, Heigh RI, Fay DE, Hamilton SR, Jacobs ET, Martinez ME, Alberts DS, Lance P. Selenium Supplementation for Prevention of Colorectal Adenomas and Risk of Associated Type 2 Diabetes. J Natl Cancer Inst 2016; 108:djw152. [PMID: 27530657 DOI: 10.1093/jnci/djw152] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Selenium supplementation may help to prevent colorectal cancer; as precursors of colorectal cancer, colorectal adenomas are a surrogate for colorectal cancer. Selenium supplementation may increase risk of type 2 diabetes (T2D). METHODS The Selenium and Celecoxib (Sel/Cel) Trial was a randomized, placebo controlled trial of selenium 200 µg daily as selenized yeast and celecoxib 400 mg once daily, alone or together, for colorectal adenoma prevention. Men and women between age 40 and 80 years were eligible following colonoscopic removal of colorectal adenomas. The primary outcome was adenoma development. Celecoxib was suspended because of cardiovascular toxicity in other trials, but accrual continued to selenium and placebo. A total of 1621 participants were randomly assigned to selenium or placebo, of whom 1374 (84.8%) were available for analysis. All statistical tests were two-sided. RESULTS In the respective placebo and selenium arms of 689 and 685 participants, adenoma detection after medians of 33.6 (range = 0.0-85.1 months) and 33.0 months (range = 0.0-82.6 months) were 42.8% and 44.1% (relative risk [RR] = 1.03, 95% confidence interval [CI] = 0.91 to 1.16, P = .68). In participants with baseline advanced adenomas, adenoma recurrence was reduced by 18% with selenium (RR = 0.82, 95% CI = 0.71 to 0.96, P = .01). In participants receiving selenium, the hazard ratio for new-onset T2D was 1.25 (95% CI = 0.74 to 2.11, P = .41), with a statistically significantly increased risk of selenium-associated T2D among older participants (RR = 2.21; 95% CI = 1.04 to 4.67, P = .03). CONCLUSIONS Overall, selenium did not prevent colorectal adenomas and showed only modest benefit in patients with baseline advanced adenomas. With limited benefit and similar increases in T2D to other trials, selenium is not recommended for preventing colorectal adenomas in selenium-replete individuals.
Collapse
Affiliation(s)
- Patricia A Thompson
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Erin L Ashbeck
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Denise J Roe
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Liane Fales
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Julie Buckmeier
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Fang Wang
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Achyut Bhattacharyya
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Chiu-Hsieh Hsu
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - H H Sherry Chow
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Dennis J Ahnen
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - C Richard Boland
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Russell I Heigh
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - David E Fay
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Stanley R Hamilton
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Elizabeth T Jacobs
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Maria Elena Martinez
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - David S Alberts
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| | - Peter Lance
- University of Arizona Cancer Center, Tucson, AZ (PAT, ELA, DJR, LF, JB, FW, CHH, HHSC, ETJ, DSA, PL); Department of Pathology, University of Arizona, Tucson, AZ (AB); Denver Department of Veterans Affairs Medical Center and University of Colorado, Denver, CO (DJA); GI Cancer Research Laboratory, Baylor University Medical Center, Dallas, TX (CRB); Division of Gastroenterology & Hepatology, Mayo Clinic, Scottsdale, AZ (RIH); Endoscopy Center of Western New York, Buffalo, NY (DEF); Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX (SRH); University of California, San Diego, Moores Cancer Center, La Jolla, CA (MEM). Current affiliation: Stony Brook University, Stony Brook, New York, NY (PAT)
| |
Collapse
|
37
|
Cardoso BR, Busse AL, Hare DJ, Cominetti C, Horst MA, McColl G, Magaldi RM, Jacob-Filho W, Cozzolino SMF. Pro198Leu polymorphism affects the selenium status and GPx activity in response to Brazil nut intake. Food Funct 2016; 7:825-33. [DOI: 10.1039/c5fo01270h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenoproteins play important roles in antioxidant mechanisms, but it is hypothesised that single polymorphism nucleotides (SNPs) may affect their function.
Collapse
Affiliation(s)
- Bárbara R. Cardoso
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Alexandre L. Busse
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Dominic J. Hare
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
- Elemental Bio-imaging Facility
| | | | - Maria A. Horst
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| | - Gawain McColl
- The Florey Institute of Neuroscience and Mental Health
- The University of Melbourne
- Parkville
- Australia
| | - Regina M. Magaldi
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Wilson Jacob-Filho
- Geriatrics Division
- Department of Internal Medicine
- University of São Paulo Medical School
- São Paulo
- Brazil
| | - Silvia M. F. Cozzolino
- Faculty of Pharmaceutical Sciences
- Department of Food and Experimental Nutrition
- University of São Paulo
- São Paulo
- Brazil
| |
Collapse
|
38
|
Barrett CW, Reddy VK, Short SP, Motley AK, Lintel MK, Bradley AM, Freeman T, Vallance J, Ning W, Parang B, Poindexter SV, Fingleton B, Chen X, Washington MK, Wilson KT, Shroyer NF, Hill KE, Burk RF, Williams CS. Selenoprotein P influences colitis-induced tumorigenesis by mediating stemness and oxidative damage. J Clin Invest 2015; 125:2646-60. [PMID: 26053663 DOI: 10.1172/jci76099] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/30/2015] [Indexed: 12/19/2022] Open
Abstract
Patients with inflammatory bowel disease are at increased risk for colon cancer due to augmented oxidative stress. These patients also have compromised antioxidant defenses as the result of nutritional deficiencies. The micronutrient selenium is essential for selenoprotein production and is transported from the liver to target tissues via selenoprotein P (SEPP1). Target tissues also produce SEPP1, which is thought to possess an endogenous antioxidant function. Here, we have shown that mice with Sepp1 haploinsufficiency or mutations that disrupt either the selenium transport or the enzymatic domain of SEPP1 exhibit increased colitis-associated carcinogenesis as the result of increased genomic instability and promotion of a protumorigenic microenvironment. Reduced SEPP1 function markedly increased M2-polarized macrophages, indicating a role for SEPP1 in macrophage polarization and immune function. Furthermore, compared with partial loss, complete loss of SEPP1 substantially reduced tumor burden, in part due to increased apoptosis. Using intestinal organoid cultures, we found that, compared with those from WT animals, Sepp1-null cultures display increased stem cell characteristics that are coupled with increased ROS production, DNA damage, proliferation, decreased cell survival, and modulation of WNT signaling in response to H2O2-mediated oxidative stress. Together, these data demonstrate that SEPP1 influences inflammatory tumorigenesis by affecting genomic stability, the inflammatory microenvironment, and epithelial stem cell functions.
Collapse
|
39
|
Selenium and chronic diseases: a nutritional genomics perspective. Nutrients 2015; 7:3621-51. [PMID: 25988760 PMCID: PMC4446770 DOI: 10.3390/nu7053621] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/28/2015] [Accepted: 05/06/2015] [Indexed: 01/10/2023] Open
Abstract
Mechanistic data have revealed a key role for selenium (Se) and selenoproteins in biological pathways known to be altered in multifactorial diseases, such as cellular maintenance, response to oxidative stress and correct protein folding. Although epidemiological studies indicate that low Se intake is linked to increased risk for various chronic diseases, supplementation trials have given confusing outcomes, suggesting that additional genetic factors could affect the relationship between Se and health. Genetic data support this hypothesis, as risk for several chronic diseases, in particular cancer, was linked to a number of single nucleotide polymorphisms (SNP) altering Se metabolism, selenoprotein synthesis or activity. Interactions between SNPs in selenoprotein genes, SNPs in related molecular pathways and biomarkers of Se status were found to further modulate the genetic risk carried by the SNPs. Taken together, nutritional genomics approaches uncovered the potential implication of some selenoproteins as well as the influence of complex interactions between genetic variants and Se status in the aetiology of several chronic diseases. This review discusses the results from these genetic associations in the context of selenoprotein functions and epidemiological investigations and emphasises the need to assess in future studies the combined contribution of Se status, environmental stress, and multiple or individual SNPs to disease risk.
Collapse
|
40
|
Chang IW, Lin VCH, Hung CH, Wang HP, Lin YY, Wu WJ, Huang CN, Li CC, Li WM, Wu JY, Li CF. GPX2 underexpression indicates poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder. World J Urol 2015; 33:1777-89. [PMID: 25813210 DOI: 10.1007/s00345-015-1522-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 03/01/2015] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Oxidative stress is believed to be one of the important etiologies in carcinogenesis that has not been systemically investigated in urothelial carcinoma (UC). Through data mining from a published transcriptomic database of UC of urinary bladders (UBUCs) (GSE31684), glutathione peroxidase 2 (GPX2) was identified as the most significant downregulated gene among those response to oxidative stress (GO:0006979). We therefore analyze GPX2 transcript and protein expressions and its clinicopathological significance. METHODS Real-time RT-PCR assay was used to detect GPX2 mRNA level in 20 fresh UBUC specimens. Immunohistochemistry was used to determine GPX2 protein expression in 340 urothelial carcinomas of upper tracts (UTUCs) and 295 UBUCs with mean/median follow-up of 44.7/38.9 and 30.8/23.1 months, respectively. Its expression status was further correlated with clinicopathological features and evaluated for its impact on disease-specific survival and metastasis-free survival (MeFS). RESULTS Decrease in GPX2 transcript level was associated with both higher pT and positive nodal status in 20 UBUCs (all p < 0.05). GPX2 protein underexpression was also significantly associated with advanced pT status, nodal metastasis, high histological grade, vascular invasion, and frequent mitoses in both groups of UCs (all p < 0.05). GPX2 underexpression not only predicted dismal DDS and MeFS at univariate analysis, but also implicated worse DDS (UTUC, p = 0.002; UBUC, p = 0.029) and MeFS (UTUC, p = 0.001; UBUC, p = 0.032) in multivariate analysis. CONCLUSIONS GPX2 underexpression is associated with advanced tumor status and implicated unfavorable clinical outcome of UCs, suggesting its role in tumor progression and may serve as a theranostic biomarker of UCs.
Collapse
Affiliation(s)
- I-Wei Chang
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.,Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Victor Chia-Hsiang Lin
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan.,Department of Urology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Hsin Hung
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Hua-Pin Wang
- Department of Urology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yung-Yao Lin
- Department of Urology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Chun-Nung Huang
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chia Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jui-Yu Wu
- College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Feng Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Pathology, Chi Mei Foundation Medical Center, No. 901, Zhonghua Rd., Yongkang Dist., Tainan, 701, Taiwan. .,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan.
| |
Collapse
|
41
|
Zhang L, Zhou ZQ, Li G, Fu MZ. The effect of deposition Se on the mRNA expression levels of GPxs in goats from a Se-enriched county of China. Biol Trace Elem Res 2013; 156:111-23. [PMID: 24072670 DOI: 10.1007/s12011-013-9830-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/16/2013] [Indexed: 01/18/2023]
Abstract
Previous studies revealed that Se was an important regulatory factor for glutathione peroxidase (GPx) genes. However, the relationship between Se concentrations and mRNA expression levels of GPxs were unclear in goats, especially the goats living in natural Se-enriched area. Thus, the aim of this study was to determine the Se concentrations and the mRNA expression levels of GPx-1, GPx-2, GPx-3, and GPx-4 in goats from Ziyang County (ZY-H and ZY-L goats) and Baoji City (BJ-P goats), which were Se-rich region and Se-poor region in China, respectively. Atomic fluorescence spectrometry was used as an essential method to determine the Se concentrations in heart, liver, spleen, lung, kidney, longissimus, biceps femoris, and serum, and the gene expressions were quantified in mRNA samples extracted from the above tissues by real-time quantitative reverse transcription-polymerase chain reaction. We found that the Se concentrations in ZY-H and ZY-L goats were higher than that in BJ-P goats significantly (P < 0.05), and the pertinence relations of Se levels between serum and heart, liver, spleen, and kidney were significant (P < 0.05). The mRNA levels of GPx-1 in ZY-H and ZY-L goats were higher than that in BJ-P goats very significantly (P < 0.01) except for longissimus (P < 0.05). Our results indicated a significant trend for GPx-2 in the direction of increasing mRNA levels with increasing Se concentrations in goats but had no statistical significance (P > 0.05) in our experimental conditions. As to GPx-3, its mRNA expression in spleen, lung, and kidney (P < 0.05) were upregulated and were consensual to high Se contents in ZY-H goats, but no significant effects were observed in heart, liver, longissimus, and biceps femoris among our three groups (P > 0.05). The mRNA levels of GPx-4 in heart, liver, lung, and kidney of ZY-H and ZY-L goats were higher than that of BJ-P goats (P < 0.05), and the difference was very significant in lung especially (P < 0.01), but no change in spleen, longissimus, and biceps femoris (P > 0.05). In summary, these data suggested that the goats living in Ziyang County were rich in Se, and the deposition Se played important roles in the mRNA expression of GPx-1, GPx-3, and GPx-4 in certain tissues of goats differentially.
Collapse
Affiliation(s)
- Lei Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, Xianyang, Shaanxi, 712100, China,
| | | | | | | |
Collapse
|
42
|
Speckmann B, Bidmon HJ, Borchardt A, Sies H, Steinbrenner H. Intestinal selenoprotein P in epithelial cells and in plasma cells. Arch Biochem Biophys 2013; 541:30-6. [PMID: 24157689 DOI: 10.1016/j.abb.2013.10.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 10/26/2022]
Abstract
The micronutrient selenium and selenium-containing selenoproteins are involved in prevention of inflammation and carcinogenesis in the gut. Selenoprotein P (Sepp1), the plasma selenium transport protein, is secreted primarily from hepatocytes, but Sepp1 mRNA is also abundant in the intestine. By immunofluorescence analysis, we show that Sepp1 levels in epithelial cells of the rat jejunum increase along the crypt-to-villus axis. A different Sepp1 distribution pattern was observed in the rat colon, where the epithelial cells located at the base and at the top of the crypts were similarly positive for Sepp1. In addition, we found pronounced Sepp1 immunoreactivity in CD138-positive plasma cells scattered within the lamina propria of the colon. This hitherto unrecognized presence in terminally differentiated B-cells was corroborated by detection of Sepp1 in plasma cells residing in the rat spleen. Following supplementation with dietary selenium compounds, polarized intestinal epithelial Caco-2 cells secreted Sepp1 into the culture medium across the basolateral membrane. Our data suggest that Sepp1 secreted from epithelial cells may support the intestinal immune system by providing immune cells (including plasma cells) with selenium for the biosynthesis of endogenous selenoproteins.
Collapse
Affiliation(s)
- Bodo Speckmann
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Hans-Jürgen Bidmon
- C & O Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Andrea Borchardt
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany; Leibniz-Institut für Umweltmedizinische Forschung (IUF), Heinrich-Heine-University, 40225 Düsseldorf, Germany; College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, 40225 Düsseldorf, Germany.
| |
Collapse
|
43
|
Steinbrenner H, Speckmann B, Sies H. Toward understanding success and failures in the use of selenium for cancer prevention. Antioxid Redox Signal 2013; 19:181-91. [PMID: 23421468 PMCID: PMC3689159 DOI: 10.1089/ars.2013.5246] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Adequate and supranutritional selenium (Se) intake, maintaining full expression of selenoproteins, has been assumed to be beneficial for human health with respect to prevention of cancer. Strikingly, the effectiveness of dietary Se supplementation depends on many factors: baseline Se status, age, gender, and genetic background of an individual; type of cancer; and time point of intervention in addition to metabolic conversion and dose of applied Se compounds. RECENT ADVANCES Se intake levels for optimization of plasma selenoproteins in humans have been delineated. Regulation, function, and genetic variants of several selenoproteins have been characterized in the intestine, where Se-mediated prevention of colorectal cancer appears to be particularly promising. CRITICAL ISSUES Numerous cell culture and animal studies indicate anticarcinogenic capacity of various Se compounds but, at present, the outcome of human studies is inconsistent and, in large part, disappointing. Moreover, supranutritional Se intake may even trigger adverse health effects, possibly increasing the risk for Type 2 diabetes in Se-replete populations. FUTURE DIRECTIONS To improve protocols for the use of Se in cancer prevention, knowledge on cellular and systemic actions of Se compounds needs to be broadened and linked to individual-related determinants such as the occurrence of variants in selenoprotein genes and the Se status. Based on better mechanistic insight, populations and individuals that may benefit most from dietary Se supplementation need to be defined and studied in suitably planned intervention trials.
Collapse
Affiliation(s)
- Holger Steinbrenner
- Institute for Biochemistry and Molecular Biology I, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | |
Collapse
|
44
|
Barrett CW, Singh K, Motley AK, Lintel MK, Matafonova E, Bradley AM, Ning W, Poindexter SV, Parang B, Reddy VK, Chaturvedi R, Fingleton BM, Washington MK, Wilson KT, Davies SS, Hill KE, Burk RF, Williams CS. Dietary selenium deficiency exacerbates DSS-induced epithelial injury and AOM/DSS-induced tumorigenesis. PLoS One 2013; 8:e67845. [PMID: 23861820 PMCID: PMC3701622 DOI: 10.1371/journal.pone.0067845] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/21/2013] [Indexed: 12/13/2022] Open
Abstract
Selenium (Se) is an essential micronutrient that exerts its functions via selenoproteins. Little is known about the role of Se in inflammatory bowel disease (IBD). Epidemiological studies have inversely correlated nutritional Se status with IBD severity and colon cancer risk. Moreover, molecular studies have revealed that Se deficiency activates WNT signaling, a pathway essential to intestinal stem cell programs and pivotal to injury recovery processes in IBD that is also activated in inflammatory neoplastic transformation. In order to better understand the role of Se in epithelial injury and tumorigenesis resulting from inflammatory stimuli, we examined colonic phenotypes in Se-deficient or -sufficient mice in response to dextran sodium sulfate (DSS)-induced colitis, and azoxymethane (AOM) followed by cyclical administration of DSS, respectively. In response to DSS alone, Se-deficient mice demonstrated increased morbidity, weight loss, stool scores, and colonic injury with a concomitant increase in DNA damage and increases in inflammation-related cytokines. As there was an increase in DNA damage as well as expression of several EGF and TGF-β pathway genes in response to inflammatory injury, we sought to determine if tumorigenesis was altered in the setting of inflammatory carcinogenesis. Se-deficient mice subjected to AOM/DSS treatment to model colitis-associated cancer (CAC) had increased tumor number, though not size, as well as increased incidence of high grade dysplasia. This increase in tumor initiation was likely due to a general increase in colonic DNA damage, as increased 8-OHdG staining was seen in Se-deficient tumors and adjacent, non-tumor mucosa. Taken together, our results indicate that Se deficiency worsens experimental colitis and promotes tumor development and progression in inflammatory carcinogenesis.
Collapse
Affiliation(s)
- Caitlyn W. Barrett
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kshipra Singh
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
| | - Amy K. Motley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary K. Lintel
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Elena Matafonova
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Amber M. Bradley
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Wei Ning
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Shenika V. Poindexter
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Bobak Parang
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Vishruth K. Reddy
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Rupesh Chaturvedi
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
| | - Barbara M. Fingleton
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Mary K. Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Keith T. Wilson
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
| | - Sean S. Davies
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kristina E. Hill
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Raymond F. Burk
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Christopher S. Williams
- Department of Medicine, Division of Gastroenterology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Health Care System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
BACKGROUND With increasing evidence that hydroperoxides are not only toxic but rather exert essential physiological functions, also hydroperoxide removing enzymes have to be re-viewed. In mammals, the peroxidases inter alia comprise the 8 glutathione peroxidases (GPx1-GPx8) so far identified. SCOPE OF THE REVIEW Since GPxs have recently been reviewed under various aspects, we here focus on novel findings considering their diverse physiological roles exceeding an antioxidant activity. MAJOR CONCLUSIONS GPxs are involved in balancing the H2O2 homeostasis in signalling cascades, e.g. in the insulin signalling pathway by GPx1; GPx2 plays a dual role in carcinogenesis depending on the mode of initiation and cancer stage; GPx3 is membrane associated possibly explaining a peroxidatic function despite low plasma concentrations of GSH; GPx4 has novel roles in the regulation of apoptosis and, together with GPx5, in male fertility. Functions of GPx6 are still unknown, and the proposed involvement of GPx7 and GPx8 in protein folding awaits elucidation. GENERAL SIGNIFICANCE Collectively, selenium-containing GPxs (GPx1-4 and 6) as well as their non-selenium congeners (GPx5, 7 and 8) became key players in important biological contexts far beyond the detoxification of hydroperoxides. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Department of Biochemistry of Micronutrients, German Institute of Human Nutrition, Nuthetal, Germany.
| | | |
Collapse
|
46
|
|
47
|
Brigelius-Flohé R, Kipp AP. Physiological functions of GPx2 and its role in inflammation-triggered carcinogenesis. Ann N Y Acad Sci 2012; 1259:19-25. [PMID: 22758632 DOI: 10.1111/j.1749-6632.2012.06574.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mammalian glutathione peroxidases (GPxs) are reviewed with emphasis on the role of the gastrointestinal GPx2 in tumorigenesis. GPx2 ranks high in the hierarchy of selenoproteins, corroborating its importance. Colocalization of GPx2 with the Wnt pathway in crypt bases of the intestine and its induction by Wnt signals point to a role in mucosal homeostasis, but GPx2 might also support tumor growth when increased by a dysregulated Wnt pathway. In contrast, the induction of GPx2 by Nrf2 activators and the upregulation of COX2 in cells with a GPx2 knockdown reveal inhibition of inflammation and suggest prevention of inflammation-mediated carcinogenesis. The Janus-faced role of GPx2 has been confirmed in a mouse model of inflammation-associated colon carcinogenesis (AOM/DSS), where GPx2 deletion increased inflammation and consequently tumor development, but decreased tumor size. The model further revealed a GPx2-independent decrease in tumor development by selenium (Se) and detrimental effects of the Nrf2-activator sulforaphane in moderate Se deficiency.
Collapse
Affiliation(s)
- Regina Brigelius-Flohé
- Biochemistry of Micronutrients Department, German Institute of Human Nutrition, Potsdam-Rehbruecke, Germany
| | | |
Collapse
|
48
|
Abstract
The discovery of multiple selenoproteins has raised tantalizing questions about their role in maintaining normal cellular function. Unfortunately, many of these remain inadequately investigated. While they have a role in maintaining redox balance, other functions are becoming increasingly recognized. As the roles of these selenoproteins are further characterized, a better understanding of the true physiological significance of this trace element will arise. This knowledge will be essential in defining optimum intakes to achieve cellular homeostasis in order to optimize health, including a reduction in cancer, for diverse populations. Human variation in the response to selenium likely reflects significant interactions between the type and amounts of selenium consumed with the genome and a host of environmental factors including the totality of the diet, as discussed in this review.
Collapse
Affiliation(s)
- Cindy D. Davis
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
- Current address: Office of Dietary Supplements, National Institutes of Health, Rockville, Maryland 20892
| | - Petra A. Tsuji
- Department of Biological Sciences, Towson University, Towson, Maryland 21252
| | - John A. Milner
- Nutritional Science Research Group, National Cancer Institute, Rockville, Maryland 20892;,
| |
Collapse
|
49
|
Barrera LN, Cassidy A, Wang W, Wei T, Belshaw NJ, Johnson IT, Brigelius-Flohé R, Bao Y. TrxR1 and GPx2 are potently induced by isothiocyanates and selenium, and mutually cooperate to protect Caco-2 cells against free radical-mediated cell death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1914-24. [PMID: 22820176 DOI: 10.1016/j.bbamcr.2012.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 07/03/2012] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Currently, there is significant interest in the field of diet-gene interactions and the mechanisms by which food compounds regulate gene expression to modify cancer susceptibility. From a nutrition perspective, two key components potentially exert cancer chemopreventive effects: isothiocyanates (ITCs), present in cruciferous vegetables, and selenium (Se) which, as selenocysteine, is an integral part of selenoproteins. However, the role of these compounds in the expression of key selenoenzymes once the cancer process has been initiated still needs elucidation. Therefore, this investigation examined the effect of two forms of selenium, selenium-methylselenocysteine and sodium selenite, both individually and in combination with two ITCs, sulforaphane or iberin, on the expression of the two selenoenzymes, thioredoxin reductase 1 (TrxR1) and gastrointestinal glutathione peroxidase (GPx2), which are targets of ITCs, in Caco-2 cells. Co-treatment with both ITCs and Se induced expression of TrxR1 and GPx2 more than either compound alone. Moreover, pre-treatment of cells with ITC+Se enhanced cytoprotection against H(2)O(2)-induced cell death through a ROS-dependent mechanism. Furthermore, a single and double knockdown of TrxR1 and/or GPx2 suggested that both selenoproteins were responsible for protecting against H(2)O(2)-induced cell death. Together, these data shed new light on the mechanism of interactions between ITC and Se in which translational expression of the enhanced transcripts by the former is dependent on an adequate Se supply, resulting in a cooperative antioxidant protective effect against cell death.
Collapse
Affiliation(s)
- Lawrence N Barrera
- Department of Nutrition, Norwich Medical School, University of East Anglia, Norwich, UK
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Takata Y, King IB, Lampe JW, Burk RF, Hill KE, Santella RM, Kristal AR, Duggan DJ, Vaughan TL, Peters U. Genetic variation in GPX1 is associated with GPX1 activity in a comprehensive analysis of genetic variations in selenoenzyme genes and their activity and oxidative stress in humans. J Nutr 2012; 142:419-26. [PMID: 22259188 PMCID: PMC3278265 DOI: 10.3945/jn.111.151845] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Previous studies suggest some effects of selenium on risk of several chronic diseases, which may be mediated through a small number of selenoenzymes with antioxidant properties. In this cross-sectional analysis of 195 participants from the Seattle Barrett's Esophagus Study who were free of esophageal cancer at the time of blood draw, we examined whether the number of the minor alleles in 26 tagging single nucleotide polymorphisms (SNP) of five selenoenzyme genes [i.e., glutathione peroxidase 1-4 (GPX1-4) and selenoprotein P (SEPP1)] was associated with activity of GPX1 in white blood cells and GPX3 in plasma, and concentrations of SEPP1 and markers of oxidative stress [malondialdehyde (MDA) and protein carbonyl content] in plasma. At the gene level, associations were observed between overall variation in GPX1 and GPX1 activity (P = 0.02) as well as between overall variation in GPX2 and SEPP1 concentrations (P = 0.03). By individual SNP, two variants in GPX1 (rs8179164 and rs1987628) showed a suggestive association with GPX1 activity (P = 0.10 and 0.08, respectively) and two GPX2 variants (rs4902346 and rs2071566) were associated with SEPP1 concentration (P = 0.004 and 0.002, respectively). Furthermore, two SNP in the SEPP1 gene (rs230813 and rs230819) were associated with MDA concentrations (P = 0.03 and 0.02, respectively). Overall, our study supports the hypothesis that common genetic variants in selenoenzymes affect their activity.
Collapse
Affiliation(s)
- Yumie Takata
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Irena B. King
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA,Department of Internal Medicine, University of New Mexico, Albuquerque, NM
| | - Johanna W. Lampe
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Raymond F. Burk
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Kristina E. Hill
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University School of Medicine, Nashville, TN
| | - Regina M. Santella
- Department of Environmental Health Sciences, Columbia University, New York, NY
| | - Alan R. Kristal
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - David J. Duggan
- Division of Genetic Basis of Human Disease, Translational Genomics Research Institute, Phoenix, AZ
| | - Thomas L. Vaughan
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Ulrike Peters
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, WA,To whom correspondence should be addressed. E-mail:
| |
Collapse
|