1
|
Kumar V, Poonia N, Kumar P, Kumar Verma P, Alshammari A, Albekairi NA, Kabra A, Yadav N. Amphiphilic, lauric acid-coupled pluronic-based nano-micellar system for efficient glipizide delivery. Saudi Pharm J 2024; 32:102046. [PMID: 38577487 PMCID: PMC10992704 DOI: 10.1016/j.jsps.2024.102046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Glipizide; an insulin secretagogue belonging to the sulfonylurea class, is a widely used antidiabetic drug for managing type 2 diabetes. However, the need for life-long administration and repeated doses poses challenges in maintaining optimal blood glucose levels. In this regard, orally active sustained-release nano-formulations can be a better alternative to traditional antidiabetic formulations. The present study explored an innovative approach by formulating orally active sustained-release nano-micelles using the amphiphilic lauric acid-conjugated-F127 (LAF127) block copolymer. LAF127 block copolymer was synthesized through esterification and thoroughly characterized before being employed to develop glipizide-loaded nano-micelles (GNM) via the thin-film hydration technique. The optimized formulation exhibited mean particle size of 341.40 ± 3.21 nm and depicted homogeneous particle size distribution with a polydispersity index (PDI) < 0.2. The formulation revealed a surface charge of -17.11 ± 6.23 mV. The in vitro release studies of glipizide from developed formulation depicted a sustained release profile. Drug loaded micelles exhibited a substantial reduction in blood glucose levels in diabetic rats for a duration of up to 24 h. Notably, neither the blank nano-micelles of LAF127 nor the drug loaded micelles manifested any indications of toxicity in healthy rats. This study provides an insight on suitability of synthesized LAF127 block copolymer for development of effective oral drug delivery systems for anti-diabetic activity without any significant adverse effects.
Collapse
Affiliation(s)
- Vipan Kumar
- Department of Pharmaceutical Chemistry, JCDM College of Pharmacy, Sirsa 125055, India
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Poonia
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Prabhakar Kumar Verma
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Norah A. Albekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Post Box 2455, Riyadh 11451, Saudi Arabia
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Neera Yadav
- School of Medicine, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Felimban RI, Tayeb HH, Chaudhary AG, Felemban MA, Alnadwi FH, Ali SA, Alblowi JA, ALfayez E, Bukhary D, Alissa M, Qahl SH. Utilization of a nanostructured lipid carrier encapsulating pitavastatin- Pinus densiflora oil for enhancing cytotoxicity against the gingival carcinoma HGF-1 cell line. Drug Deliv 2023; 30:83-96. [PMID: 36510636 DOI: 10.1080/10717544.2022.2155269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most common epithelial tumor of the oral cavity. Gingival tumors, a unique type of OSCC, account for 10% of these malignant tumors. The antineoplastic properties of statins, including pitavastatin (PV), and the essential oil of the Pinus densiflora leaf (Pd oil) have been adequately reported. The goal of this investigation was to develop nanostructured lipid carriers (NLCs) containing PV combined with Pd oil and to determine their cytotoxicity against the cell line of human gingival fibroblasts (HGF-1). A central composite quadratic design was adopted to optimize the nanocarriers. The particle size and stability index of the nano-formulations were measured to evaluate various characteristics. TEM analysis, the entrapment efficiency, dissolution efficiency, and the cytotoxic efficiency of the optimized PV-loaded nanostructured lipid carrier drug delivery system (PV-Pd-NLCs) were evaluated. Then, the optimal PV-Pd-NLCs was incorporated into a Carbopol 940® gel base and tested for its rheological features and its properties of release and cell viability. The optimized NLCs had a particle size of 98 nm and a stability index of 89%. The gel containing optimum PV-Pd-NLCs had reasonable dissolution efficiency and acceptable rheological behavior and acquired the best cytotoxic activity against HGF-1 cell line among all the formulations developed for the study. The in vitro cell viability studies revealed a synergistic effect between PV and Pd oil in the treatment of gingival cancer. These findings illustrated that the gel containing PV-Pd-NLCs could be beneficial in the local treatment of gingival cancer.
Collapse
Affiliation(s)
- Raed I Felimban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), Nanomedicine Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adeel G Chaudhary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed A Felemban
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Center of Innovation in Personalized Medicine (CIPM), 3D Bioprinting Unit, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre for Artificial Intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fuad H Alnadwi
- Department of Nuclear Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sarah A Ali
- Department of Oral Diagnostic Sciences, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jazia A Alblowi
- Department of Periodontology Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eman ALfayez
- Department of Oral Biology, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deena Bukhary
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed Alissa
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Safa H Qahl
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Development and optimization of ofloxacin as solid lipid nanoparticles for enhancement of its ocular activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Nawaz T, Iqbal M, Khan BA, Nawaz A, Hussain T, Hosny KM, Abualsunun WA, Rizg WY. Development and Optimization of Acriflavine-Loaded Polycaprolactone Nanoparticles Using Box-Behnken Design for Burn Wound Healing Applications. Polymers (Basel) 2021; 14:polym14010101. [PMID: 35012125 PMCID: PMC8747314 DOI: 10.3390/polym14010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nanoparticles are used increasingly for the treatment of different disorders, including burn wounds of the skin, due to their important role in wound healing. In this study, acriflavine-loaded poly (ε-caprolactone) nanoparticles (ACR-PCL-NPs) were prepared using a double-emulsion solvent evaporation method. All the formulations were prepared and optimized by using a Box-Behnken design. Formulations were evaluated for the effect of independent variables, i.e., poly (ε-caprolactone) (PCL) amount (X1), stirring speed of external phase (X2), and polyvinyl alcohol (PVA) concentration (X3), on the formulation-dependent variables (particle size, polydispersity index (PDI), and encapsulation efficiency) of ACR-PCL-NPs. The zeta potential, PDI, particle size, and encapsulation efficiency of optimized ACR-PCL-NPs were found to be -3.98 ± 1.58 mV, 0.270 ± 0.19, 469.2 ± 5.6 nm, and 71.9 ± 5.32%, respectively. The independent variables were found to be in excellent correlation with the dependent variables. The release of acriflavine from optimized ACR-PCL-NPs was in biphasic style with the initial burst release, followed by a slow release for up to 24 h of the in vitro study. Morphological studies of optimized ACR-PCL-NPs revealed the smooth surfaces and spherical shapes of the particles. Thermal and FTIR analyses revealed the drug-polymer compatibility of ACR-PCL-NPs. The drug-treated group showed significant re-epithelialization, as compared to the controlled group.
Collapse
Affiliation(s)
- Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Muhammad Iqbal
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
- Correspondence: or
| | - Barkat Ali Khan
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Asif Nawaz
- Faculty of Pharmacy, Gomal University, D. I. Khan 29050, Pakistan; (T.N.); (B.A.K.); (A.N.)
| | - Talib Hussain
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan;
| | - Khaled M. Hosny
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Walaa A. Abualsunun
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21577, Saudi Arabia; (K.M.H.); (W.A.A.); (W.Y.R.)
| |
Collapse
|
5
|
Abadi SSH, Gangadharappa HV, Balamuralidhara V. Development of colon-specific mucoadhesive meloxicam microspheres for the treatment of CFA-induced arthritis in rats. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1765359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - H. V. Gangadharappa
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| | - V. Balamuralidhara
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, India
| |
Collapse
|
6
|
Practical quality attributes of polymeric microparticles with current understanding and future perspectives. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
7
|
Physically Optimized Nano-Lipid Carriers Augment Raloxifene and Vitamin D Oral Bioavailability in Healthy Humans for Management of Osteoporosis. J Pharm Sci 2020; 109:2145-2155. [DOI: 10.1016/j.xphs.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
|
8
|
|
9
|
Chen XY, Butt AM, Mohd Amin MCI. Molecular Evaluation of Oral Immunogenicity of Hepatitis B Antigen Delivered by Hydrogel Microparticles. Mol Pharm 2019; 16:3853-3872. [PMID: 31398038 DOI: 10.1021/acs.molpharmaceut.9b00483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of oral vaccine formulation is crucial to facilitate an effective mass immunization program for various vaccine-preventable diseases. In this work, the efficacy of hepatitis B antigen delivered by bacterial nanocellulose/poly(acrylic acid) composite hydrogel microparticles (MPs) as oral vaccine carriers was assessed to induce both local and systemic immunity. Optimal pH-responsive swelling, mucoadhesiveness, protein drug loading, and drug permeability were characterized by MPs formulated with minimal irradiation doses and acrylic acid concentration. The composite hydrogel materials of bacterial nanocellulose and poly(acrylic acid) showed significantly greater antigen release in simulated intestinal fluid while ensuring the integrity of antigen. In in vivo study, mice orally vaccinated with antigen-loaded hydrogel MPs showed enhanced vaccine immunogenicity with significantly higher secretion of mucosal immunoglobulin A, compared to intramuscular vaccinated control. The splenocytes from the same group demonstrated lymphoproliferation and significant increased secretion of interleukin-2 cytokines upon stimulation with hepatitis B antigen. Expression of CD69 in CD4+ T lymphocytes and CD19+ B lymphocytes in splenocytes from mice orally vaccinated with antigen-loaded hydrogel MPs was comparable to that of the intramuscular vaccinated control, indicating early activation of lymphocytes elicited by our oral vaccine formulation in just two doses. These results demonstrated the potential of antigen-loaded hydrogel MPs as an oral vaccination method for hepatitis B.
Collapse
Affiliation(s)
- Xiang Yi Chen
- Centre for Drug Delivery Research, Faculty of Pharmacy , Universiti Kebangsaan Malaysia , Jalan Raja Muda Abdul Aziz , 50300 Kuala Lumpur , Malaysia
| | - Adeel Masood Butt
- Department of Pharmacy , The University of Lahore , Gujrat Campus, Adjacent Chenab Bridge, Main GT Road , 50700 Gujrat , Pakistan
| | - Mohd Cairul Iqbal Mohd Amin
- Centre for Drug Delivery Research, Faculty of Pharmacy , Universiti Kebangsaan Malaysia , Jalan Raja Muda Abdul Aziz , 50300 Kuala Lumpur , Malaysia
| |
Collapse
|
10
|
Saharan P, Bahmani K, Saharan S. Preparation, Optimization and In vitro Evaluation of Glipizide Nanoparticles Integrated with Eudragit RS-100. Pharm Nanotechnol 2019; 7:72-85. [PMID: 30892168 PMCID: PMC6691851 DOI: 10.2174/2211738507666190319124513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/08/2018] [Accepted: 03/11/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Solubility is an important criterion for drug efficacy, independent of the route of administration. It also poses a major challenge for pharmaceutical industries, which are developing new pharmaceutical products, since 40% of the active substances being identified are either insoluble or poorly soluble in aqueous media. OBJECTIVE The objective of this study was to develop nanoformulation of glipizide drugloaded nanoparticles providing controlled release formulation. METHOD Nanoparticles were prepared by the solvent evaporation method. Eudragit RS100, a nonbiodegradable polymer with varying ratios was used for making the formulation. The effect of key formulation variables on the particle size and entrapment efficiency and drug loading of nanoparticles were studied by using factorial design. RESULTS DSC thermograms indicate that glipizide was dispersed in an amorphous state in the polymer. TEM study indicates that the nanoparticles were in spherical shape. The mean diameter was dependent on the presence of the amount of Eudragit RS100 and viscosity of the organic phase. The in vitro study showed that the cumulative drug release was from 69.52-81.44 % in 10 hrs at pH 6.8 in phosphate buffer respectively. CONCLUSION The developed NPs could reduce dose frequency, decrease side effects, and improve patient compliance. Using factorial design, maximum entrapment efficiency with minimum particle size could be achieved with a few experiments.
Collapse
Affiliation(s)
| | - K. Bahmani
- Address correspondence to this author at the Department of Pharmaceutical Sciences, Faculty of Pharmacy, Ch. Bansi Lal University, Bhiwani, Haryana, India;, Tel: +919729042239; E-mail:
| | | |
Collapse
|
11
|
Sibiya N, Ngubane P, Mabandla M. Cardioprotective effects of pectin-insulin patch in streptozotocin-induced diabetic rats. J Diabetes 2017; 9:1073-1081. [PMID: 28220624 DOI: 10.1111/1753-0407.12538] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/16/2017] [Accepted: 02/14/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cardiovascular complications are among the leading causes of morbidity and mortality in diabetes mellitus. Despite the beneficial effects of subcutaneous insulin, reports suggest that the therapy itself precipitates cardiovascular risks due to the high insulin concentration administered. It is therefore necessary to seek alternative routes of insulin administration that may bypass the undesirable effects associated with high plasma insulin concentrations. Accordingly, the present study investigated the effects of a novel transdermal pectin-insulin patch on selected markers of cardiovascular function in diabetes. METHODS Pectin-insulin matrix patches (20.0, 40.8, and 82.9 μg/kg) were prepared as described previously. The three formulations were applied to streptozotocin-induced diabetic rats thrice daily. Blood glucose concentrations and mean arterial pressure (MAP) were monitored weekly for 5 weeks. Rats were then killed and blood collected for analysis of the lipid profile, cardiotropin-1, tumor necrosis factor (TNF)-α, and high-sensitivity C-reactive protein (hsCRP). RESULTS The patches decreased blood glucose concentrations and diabetes-induced disturbances in lipid profile were attenuated by patch application (82.9 μg/kg). The diabetes-induced increase in MAP was also attenuated in patch (82.9 μg/kg)-treated rats. Patch treatment resulted in a decreased heart weight: body weight ratio, as well as reductions in cardiotropin-1, TNF-α, and hsCRP concentrations. CONCLUSIONS Application of the pectin-insulin patch protects against the debilitating cardiovascular effects associated with conventional diabetes treatment. This suggests that the pectin-insulin patch may provide an effective alternative therapeutic approach to the commonly used subcutaneous insulin injections in the management of diabetes.
Collapse
Affiliation(s)
- Ntethelelo Sibiya
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Phikelelani Ngubane
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Musa Mabandla
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
12
|
Khajuria DK, Zahra SF, Razdan R. Effect of locally administered novel biodegradable chitosan based risedronate/zinc-hydroxyapatite intra-pocket dental film on alveolar bone density in rat model of periodontitis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:74-91. [PMID: 29088987 DOI: 10.1080/09205063.2017.1400145] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of this study was to develop a chitosan-based risedronate/zinc-hydroxyapatite intrapocket dental film (CRZHDF) for applications in the treatment of alveolar bone loss in an animal model of periodontitis. The physical characteristics (folding endurance, pH, mucoadhesive strength, risedronate content and release) of CRZHDF, exhibited results within the limit. X-ray diffraction analysis indicates reduced or disappeared crystallinity of risedronate and zinc-hydroxyapatite in presence of chitosan. Further, FTIR studies revealed stability of CRZHDF and compatibility between risedronate, zinc-hydroxyapatite and chitosan. Periodontitis was induced by Porphyromonas gingivalis-lipopolysaccharide injections around the mandibular first molar. We divided rats into 5 groups (12 rats/group): healthy, untreated periodontitis; periodontitis plus CRZHDF-A, periodontitis plus CRZHDF-B, and periodontitis plus chitosan film. After four weeks, blood samples and mandibles were obtained for biochemical, radiographic and histological analysis. Bone specific alkaline phosphatise activity and tartrate resistant acid phosphatase 5b was statistically lower in CRZHDF-A and CRZHDF-B groups as compared to the untreated periodontitis group (p < 0.0001). The expression of osteocalcin was statistically higher in CRZHDF-A and CRZHDF-B groups as compared to the untreated periodontitis group (p < 0.0001). Alveolar bone was intact in the healthy group. Local administration of CRZHDF resulted in significant improvements in the mesial and distal periodontal bone support (MPBS and DPBS, respectively) proportions (%), bone mineral density, and also reversed alveolar bone resorption when compared to the untreated periodontitis group (p < 0.001). The study reported here reveals that novel CRZHDF treatment effectively reduced alveolar bone destruction and contributes to periodontal healing in a rat model of experimental periodontitis.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- a Department of Pharmacology , Al-Ameen College of Pharmacy , Bangalore , India.,b The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee , Bar-Ilan University , Safed , Israel
| | | | - Rema Razdan
- a Department of Pharmacology , Al-Ameen College of Pharmacy , Bangalore , India
| |
Collapse
|
13
|
Khajuria DK, Patil ON, Karasik D, Razdan R. Development and evaluation of novel biodegradable chitosan based metformin intrapocket dental film for the management of periodontitis and alveolar bone loss in a rat model. Arch Oral Biol 2017; 85:120-129. [PMID: 29055230 DOI: 10.1016/j.archoralbio.2017.10.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The aim of this study was to develop a chitosan-metformin based intrapocket dental film (CMIDF) for applications in the treatment of periodontitis and alveolar bone loss in an rat model of periodontitis. DESIGN CMIDF inserts were fabricated by the solvent casting technique. The fabricated inserts were evaluated for physical characteristics such as folding endurance, surface pH, mucoadhesive strength, metformin content uniformity, and release. X-ray diffraction analysis indicates no crystallinity of metformin in presence of chitosan which confirmed successful entrapment of metformin into the CMIDF. Fourier-transform infrared spectroscopy revealed stability of CMIDF and compatibility between metformin and chitosan. Periodontitis was induced by a combination of Porphyromonas gingivalis- lipopolysaccharide injections in combinations with ligatures around the mandibular first molar. We divided rats into 5 groups (8 rats/group): healthy, untreated periodontitis; periodontitis plus CMIDF-A (1.99±0.09mg metformin; total mass-4.01±0.05mg), periodontitis plus CMIDF-B (2.07±0.06mg metformin; total mass-7.56±0.09mg), and periodontitis plus chitosan film (7.61±0.08mg). After four weeks, mandibles were extracted to evaluate alveolar bone loss by micro-computerized tomography and histological techniques. RESULTS Alveolar bone was intact in the healthy group. Local administration of CMIDF resulted in significant improvements in the alveolar bone properties when compared to the untreated periodontitis group. The study reported here demonstrates that novel CMIDF showed good antibacterial activity and effectively reduced alveolar bone destruction in a rat model of experimental periodontitis. CONCLUSIONS Novel CMIDF showed good antibacterial activity and improved alveolar bone properties in a rat model.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel; Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India.
| | | | - David Karasik
- The Musculoskeletal Genetics Laboratory, Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, Israel
| | - Rema Razdan
- Department of Pharmacology, Al-Ameen College of Pharmacy, Bangalore, India
| |
Collapse
|
14
|
|
15
|
Li X, Ye Z, Wang J, Fan C, Pan A, Li C, Zhang R. Filmes bucais mucoadesivos de tramadol para o controle eficaz da dor. Braz J Anesthesiol 2017; 67:231-237. [DOI: 10.1016/j.bjan.2016.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/17/2015] [Indexed: 10/20/2022] Open
|
16
|
Subedi G, Shrestha AK, Shakya S. Study of Effect of Different Factors in Formulation of Micro and Nanospheres with Solvent Evaporation Technique. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874844901603010182] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background:
There are various methods of formulation of micro and nanospheres such as solvent evaporation, solvent removal, polymerization, hot-melt encapsulation, coacervation, phase/wet inversion, spray drying, spray congealing etc. Amongst these all, solvent evaporation is one of the most widely used, researched, easy, accessible methods and for which many patents have been applied. It is thus imperative to understand the basics of effect of formulation variables and design of solvent evaporation method which will be covered in this review article.
Objective:
To discuss the various formulation factors while designing the robust micro and nanospherical systems with better morphology, entrapment and release of the drugs.
Method:
Systematic analysis of the relevant literature, bibliographies, and interactions with investigators.
Results:
From the investigation of different literatures, it was found that various factors of solvent evaporation technique may be controlled in order to design the micro and nanospheres of suitable morphology, entrapment and release characters.
Conclusion:
Various factors like type of polymer used, weight, viscosity, hydrophilicity, concentration, polymer ratio, stirring speed, emulsifier concentration, concentration of cross-linking agents, type of solvent used, rate of addition of solvent etc. Affect the yield, morphology, release and entrapment of the drug inside the system. Hence, these factors play crucial role in the design of a robust micro and nanospherical system.
Collapse
|
17
|
Bera K, Mazumder B, Khanam J. Study of the Mucoadhesive Potential of Carbopol Polymer in the Preparation of Microbeads Containing the Antidiabetic Drug Glipizide. AAPS PharmSciTech 2016; 17:743-56. [PMID: 26335417 DOI: 10.1208/s12249-015-0396-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/12/2015] [Indexed: 11/30/2022] Open
Abstract
The present investigation was aimed at exploitation of the mucoadhesive potential of carbopol 934P polymer in developing microbeads of glipizide (GLP) for its effectivity in controlling blood sugar in diabetic patients. Various batches of GLP beads were prepared by an emulsion-solvent evaporation technique using the release-retarding polymer carbopol and subjected to a systematic evaluation such as physical characterization, ex vivo mucoadhesion, hydration and erosion test, and in vitro drug release; and instrumental and in vivo studies were performed with the best formulation. The highest yield and loading efficiency were observed as 94 and ∼90%, respectively. The mean particle size of the microbeads ranged from 832 to 742 μm. The oval shape of the microbeads with slight roughness was apparent in the SEM micrograph. The release period was extended till 18 h. In vitro release of the drug from the beads followed the diffusion and erosion mechanism. In the oral glucose tolerance test (OGTT), there is a significant (p < 0.01) reduction in fasting blood glucose levels in Wistar rat and guinea pig in comparison with that using the marketed product. Results indicated that process parameters-drug-polymer ratio, concentration of the surfactant, and stirring speed-controlled the various characteristics of the microparticles. The mucoadhesivity test ensured strong adherence of the beads to the mucosal membrane in pH 1.2 for a prolonged period. Owing to the mucoadhesivity of carbopol 934P, prolonged release of GLP and reduction of fasting sugar in the animal model were observed to a satisfactory level, and thus, management of diabetes in a better manner is expected with this new formulation.
Collapse
|
18
|
Kulkarni N, Wakte P, Naik J. Development of floating chitosan-xanthan beads for oral controlled release of glipizide. Int J Pharm Investig 2015; 5:73-80. [PMID: 25838991 PMCID: PMC4381389 DOI: 10.4103/2230-973x.153381] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction: The aim of the present work was to develop controlled release, floating and mucoadhesive beads of glipizide by using the polyionic complexation technique. Plasma half-life of glipizide being 2–4 h was selected for development of controlled release dosage form. Methods: Formulation batches were designed by employing chitosan as cationic and xanthan gum as anionic polymers. In vitro drug release was evaluated for the period of 24 h in phosphate buffer pH 7.4. Results: Sustained release of drug was observed in all formulation batches with % drug release ranging from 87.50% to 100.67%, no significant effect on the drug release was observed after varying chitosan to xanthan gum ratio. Encapsulation efficiency was found to be in the range of 79.48 ± 1.10–94.48 ± 1.52. In vitro bioadhesion studies showed that beads had satisfactory bioadhesive strength ranging from 67.11% ± 1.73% to 93.12% ± 1.56%. Buoyancy studies revealed that beads possess comparable floating capacity in the gastric fluids. Swelling kinetics was carried in pH 1.2 and 7.4 buffers. Significant difference (P < 0.05) in swelling kinetics was observed. Drug to polymer interaction was analyzed by Fourier transform infrared spectroscopy and differential scanning calorimetry studies. Scanning electron microscopy studies revealed that formed beads were discrete with rough and wrinkled surfaces. Conclusions: In conclusion, beads were successfully formed by employing chitosan and xanthan gum and showed to possess sustained release effect. Beads also showed pH dependent swelling kinetics, this property can also be applied for the drugs which are susceptible to the acidic environment in the stomach, and comparable bioadhesive and floating properties were also observed.
Collapse
Affiliation(s)
- Nilesh Kulkarni
- Department of Pharmacutics, Smt. Kashibai Navale College of Pharmacy, Kondhwa-Saswad Road, Yeolewadi, Kondhwa (Bk.), Pune, Maharashtra, India
| | - Pravin Wakte
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Nagsenvan, Aurangabad, Maharashtra, India
| | - Jitendra Naik
- Department of Chemical Technology, North Maharashtra University, Jalgaon, Maharashtra, India
| |
Collapse
|
19
|
Pedro HSDS, Francinalva DDM, Martina GDOP, Julio CQ, Rayanne IMDS, Patricia MB, Daniela PDM, Pollianna MA, Ana CDDM. Antimicrobial potential of chitosan. ACTA ACUST UNITED AC 2015. [DOI: 10.5897/ajmr2014.7235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Development and optimization of novel controlled-release pioglitazone provesicular powders using 32 factorial design. Drug Deliv Transl Res 2015; 5:51-62. [DOI: 10.1007/s13346-014-0215-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Emami J, Mohiti H, Hamishehkar H, Varshosaz J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res Pharm Sci 2015; 10:17-33. [PMID: 26430454 PMCID: PMC4578209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Budesonide is a potent non-halogenated corticosteroid with high anti-inflammatory effects. The lungs are an attractive route for non-invasive drug delivery with advantages for both systemic and local applications. The aim of the present study was to develop, characterize and optimize a solid lipid nanoparticle system to deliver budesonide to the lungs. Budesonide-loaded solid lipid nanoparticles were prepared by the emulsification-solvent diffusion method. The impact of various processing variables including surfactant type and concentration, lipid content organic and aqueous volume, and sonication time were assessed on the particle size, zeta potential, entrapment efficiency, loading percent and mean dissolution time. Taguchi design with 12 formulations along with Box-Behnken design with 17 formulations was developed. The impact of each factor upon the eventual responses was evaluated, and the optimized formulation was finally selected. The size and morphology of the prepared nanoparticles were studied using scanning electron microscope. Based on the optimization made by Design Expert 7(®) software, a formulation made of glycerol monostearate, 1.2 % polyvinyl alcohol (PVA), weight ratio of lipid/drug of 10 and sonication time of 90 s was selected. Particle size, zeta potential, entrapment efficiency, loading percent, and mean dissolution time of adopted formulation were predicted and confirmed to be 218.2 ± 6.6 nm, -26.7 ± 1.9 mV, 92.5 ± 0.52 %, 5.8 ± 0.3 %, and 10.4 ± 0.29 h, respectively. Since the preparation and evaluation of the selected formulation within the laboratory yielded acceptable results with low error percent, the modeling and optimization was justified. The optimized formulation co-spray dried with lactose (hybrid microparticles) displayed desirable fine particle fraction, mass median aerodynamic diameter (MMAD), and geometric standard deviation of 49.5%, 2.06 μm, and 2.98 μm; respectively. Our results provide fundamental data for the application of SLNs in pulmonary delivery system of budesonide.
Collapse
Affiliation(s)
- J. Emami
- Department of Pharmaceutics and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - H. Mohiti
- Department of Pharmaceutics and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - H. Hamishehkar
- Pharmaceutical Technology Laboratory, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, I.R. Iran
| | - J. Varshosaz
- Department of Pharmaceutics and Novel Drug Delivery Systems Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
22
|
Formulation and evaluation of controlled-release of telmisartan microspheres: In vitro/in vivo study. J Food Drug Anal 2014; 22:542-548. [PMID: 28911472 PMCID: PMC9354994 DOI: 10.1016/j.jfda.2014.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/23/2022] Open
Abstract
The aim of this work was to design a controlled-release drug-delivery system for the angiotensin-II receptor antagonist drug telmisartan. Telmisartan was encapsulated with different EUDRAGIT polymers by an emulsion solvent evaporation technique and the physicochemical properties of the formulations were characterized. Using a solvent evaporation method, white spherical microspheres with particle sizes of 629.9–792.1 μm were produced. The in vitro drug release was studied in three different pH media (pH 1.2 for 2 hours, pH 6.8 for 4 hours, and pH 7.4 for 18 hours). The formulations were then evaluated for their pharmacokinetic parameters. The entrapment efficiency of these microspheres was between 58.6% and 90.56%. The obtained microspheres showed good flow properties, which were evaluated in terms of angle of repose (15.29–26.32), bulk and tapped densities (0.37–0.53 and 0.43–0.64, respectively), Carr indices and Hausner ratio (12.94–19.14% and 1.14–1.23, respectively). No drug release was observed in the simulated gastric medium up to 2 hours; however, a change in pH from 1.2 to 6.8 increased the drug release. At pH 7.4, formulations with EUDRAGIT RS 100 showed a steady drug release. The microsphere formulation TMRS-3 (i.e., microspheres containing 2-mg telmisartan) gave the highest Cmax value (6.8641 μg/mL) at 6 hours, which was three times higher than Cmax for telmisartan oral suspension (TOS). Correspondingly, the area under the curve for TMRS-3 was 8.5 times higher than TOS. Particle size and drug release depended on the nature and content of polymer used. The drug release mechanism of the TMRS-3 formulation can be explained using the Higuchi model. The controlled release of drug from TMRS-3 also provides for higher plasma drug content and improved bioavailability.
Collapse
|
23
|
Preparation and evaluation of microspheres of xyloglucan and its thiolated xyloglucan derivative. Int J Biol Macromol 2014; 69:499-505. [DOI: 10.1016/j.ijbiomac.2014.05.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 11/24/2022]
|
24
|
Preparation, characterization and optimization of glipizide controlled release nanoparticles. Res Pharm Sci 2014; 9:301-14. [PMID: 25657802 PMCID: PMC4317998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The purpose of the present study was to develop glipizide controlled release nanoparticles using alginate and chitosan thorough ionotropic controlled gelation method. Glipizide is a frequently prescribed second generation sulfonylurea which lowers the blood glucose in type-two diabetics. Quick absorption of the drug from the gastrointestinal tract along with short half- life of elimination makes it a good candidate for controlled release formulations. Alginate-chitosan nanoparticles (ACNP) are convenient controlled delivery systems for glipizide, due to both the release limiting properties of the system, and the bioadhesive nature of the polymers. In the present study, glipizide loaded alginate-chitosan nanoparticles (GlACNP) were prepared, and the particle characteristics including particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), loading percent (LP), and mean release time (MRT), as well as the morphology of the nanoparticles, the drug-excipient compatibility, and the release kinetics along with the drug diffusion mechanism were evaluated. The results suggested that ionotropic controlled gelation method offers the possibility of preparing the nanoparticles in mild conditions in an aqueous environment, and can lead to the preparation of particles with favorable size, controlled release characteristics, and high entrapment efficiency, serving as a convenient delivery system for glipizide. The particle and release characteristics can be efficiently optimized using the Box-Behnken design. Based on the findings of the present study, it is expected that this novel formulation be a superior therapeutic alternative to the currently available glipizide delivery systems.
Collapse
|
25
|
Setia A, Kansal S, Goyal N. Development and optimization of enteric coated mucoadhesive microspheres of duloxetine hydrochloride using 3(2) full factorial design. Int J Pharm Investig 2013; 3:141-50. [PMID: 24167786 PMCID: PMC3807981 DOI: 10.4103/2230-973x.119217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Microspheres constitute an important part of oral drug delivery system by virtue of their small size and efficient carrier capacity. However, the success of these microspheres is limited due to their short residence time at the site of absorption. OBJECTIVE The objective of the present study was to formulate and systematically evaluate in vitro performance of enteric coated mucoadhesive microspheres of duloxetine hydrochloride (DLX), an acid labile drug. MATERIALS AND METHODS DLX microspheres were prepared by simple emulsification phase separation technique using chitosan as carrier and glutaraldehyde as a cross-linking agent. Microspheres prepared were coated with eudragit L-100 using an oil-in-oil solvent evaporation method. Eudragit L-100was used as enteric coating polymer with the aim to release the drug in small intestine The microspheres prepared were characterized by particle size, entrapment efficiency, swelling index (SI), mucoadhesion time, in vitro drug release and surface morphology. A 3(2) full factorial design was employed to study the effect of independent variables polymer-to-drug ratio (X1) and stirring speed (X2) on dependent variables, particle size, entrapment efficiency, SI, in vitro mucoadhesion and drug release up to 24 h (t24). RESULTS Microspheres formed were discrete, spherical and free flowing. The microspheres exhibited good mucoadhesive property and also showed high percentage entrapment efficiency. The microspheres were able to sustain the drug release up to 24 h. CONCLUSION Thus, the prepared enteric coated mucoadhesive microspheres may prove to be a potential controlled release formulation of DLX for oral administration.
Collapse
Affiliation(s)
- Anupama Setia
- Department of Pharmaceutics, Rajendra Institute of Technology and Sciences, Sirsa, India
| | | | | |
Collapse
|
26
|
Bera K, Khanam J, Mohanraj KP, Mazumder B. Design and evaluation of mucoadhesive beads of glipizide as a controlled release drug delivery system. J Microencapsul 2013; 31:220-9. [DOI: 10.3109/02652048.2013.834989] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Abdelbary A, El-Gendy NA, Hosny A. Microencapsulation Approach for Orally Extended Delivery of Glipizide: In vitro and in vivo Evaluation. Indian J Pharm Sci 2013; 74:319-30. [PMID: 23626387 PMCID: PMC3630727 DOI: 10.4103/0250-474x.107063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 08/14/2012] [Accepted: 08/24/2012] [Indexed: 11/25/2022] Open
Abstract
Glipizide is an effective antidiabetic agent, however, it suffers from relatively short biological half-life. To solve this encumbrance, it is a prospective candidate for fabricating glipizide extended release microcapsules. Microencapsulation of glipizde with a coat of alginate alone or in combination with chitosan or carbomer 934P was prepared employing ionotropic gelation process. The prepared microcapsules were evaluated in vitro by microscopical examination, determination of the particle size, yield and microencapsulation efficiency. The filled capsules were assessed for content uniformity and drug release characteristics. Stability study of the optimised formulas was carried out at three different temperatures over 12 weeks. In vivo bioavailability study and hypoglycemic activity of C9 microcapsules were done on albino rabbits. All formulas achieved high yield, microencapsulation efficiency and extended t1/2. C9 and C19 microcapsules attained the most optimised results in all tests and complied with the dissolution requirements for extended release dosage forms. These two formulas were selected for stability studies. C9 exhibited longer shelf-life and hence was chosen for in vivo studies. C9 microcapsules showed an improvement in the drug bioavailability and significant hypoglycemic activity compared to immediate release tablets (Minidiab® 5 mg). The optimised microcapsule formulation developed was found to produce extended antidiabetic activity.
Collapse
Affiliation(s)
- A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo-11562, Egypt
| | | | | |
Collapse
|
28
|
Nappinnai M, Sivaneswari S. Formulation optimization and characterization of gastroretentive cefpodoxime proxetil mucoadhesive microspheres using 32 factorial design. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.jopr.2013.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
29
|
Nguyen C, Christensen JM, Ayres JW. Compression of coated drug beads for sustained release tablet of glipizide: formulation, and dissolution. Pharm Dev Technol 2012; 19:10-20. [DOI: 10.3109/10837450.2012.751402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Singh B, Bhatowa R, Tripathi CB, Kapil R. Developing micro-/nanoparticulate drug delivery systems using "design of experiments". Int J Pharm Investig 2012; 1:75-87. [PMID: 23071925 PMCID: PMC3465123 DOI: 10.4103/2230-973x.82395] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/09/2011] [Accepted: 02/09/2011] [Indexed: 12/15/2022] Open
Abstract
Of late, micro and nanoparticluate drug delivery systems have been gaining immense importance primarily attributed to their improved drug release controlling and targeting efficiencies. Also, the small particle size and desirable surface charge associated with these delivery systems render them suitable for specific applications like lymphatic uptake, pulmonary uptake, tumor targeting, brain targeting, etc. For decades, micro and nanoparticulate systems have been prepared by the conventional "trial and error" approach of changing One Variable at a Time (OVAT). Using this methodology, the solution of a specific problematic formulation characteristic can certainly be achieved, but attainment of the true optimal composition is never guaranteed. Thus, the present manuscript provides an updated account of the systematic approach "Design of Experiments (DoE)" as applicable to formulation development of microparticles and nanostructured systems. Besides providing a bird's eye view of the various experimental designs and optimization techniques employed for DoE optimization of such systems, the present manuscript also presents a copilation of the major micro/nano-structuctred systems optimized through DoE till date. In a nutshell, the article will act both as a ready reckoner of DoE optimization of micro/nano drug delivery systems and a catalyst in providing an impetus to young pharmaceutical "nano & micro" researchers to venture into the rewarding field of systematic DoE optimization.
Collapse
Affiliation(s)
- Bhupinder Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | | | | | |
Collapse
|
31
|
Al-Ghananeem AM, Malkawi AH, Crooks PA. Bioavailability of Δ⁹-tetrahydrocannabinol following intranasal administration of a mucoadhesive gel spray delivery system in conscious rabbits. Drug Dev Ind Pharm 2011; 37:329-34. [PMID: 21244195 DOI: 10.3109/03639045.2010.513009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The purpose of this study was to investigate the potential of the intranasal route for systemic delivery of solubilized Δ⁹-tetrahydrocannabinol (THC). A further aim was to investigate the effect of nasally administered chitosan-based nasal bioadhesive gel on THC bioavailability as a formulation strategy to decrease normal mucociliary drug clearance. METHOD The THC formulations were administered intranasally and compared to intravenous administration utilizing conscious rabbits. RESULTS After nasal administration, the THC nasal solution afforded a C(max) value of 20 ± 3 ng/mL at 20 minutes. Interestingly, the THC loaded in chitosan gel formulation followed almost the same profile at early time points and subsequently afforded a higher C(max) value of 31 ± 4 ng/mL (T(max) = 45 minutes). The absolute bioavailability of THC after nasal delivery was studied to compare plasma THC concentrations after nasal administration with those after intravenous injection. Absolute bioavailability values were 13.3 ± 7.8% and 15.4 ± 6.5% for the THC nasal solution and gel formulations, respectively. CONCLUSION The results of the present study suggest that intranasal administration of THC in solution or in a chitosan-based nasal gel formulation could be an attractive modality for delivery of THC systemically.
Collapse
Affiliation(s)
- Abeer M Al-Ghananeem
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, 40536-0082, USA.
| | | | | |
Collapse
|
32
|
Pandya N, Pandya M, Bhaskar VH. Preparation and in vitro Characterization of Porous Carrier-Based Glipizide Floating Microspheres for Gastric Delivery. J Young Pharm 2011; 3:97-104. [PMID: 21731353 PMCID: PMC3122053 DOI: 10.4103/0975-1483.80292] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Floating microspheres have been utilized to obtain prolonged and uniform release of drug in the stomach for development of once-daily formulations. A controlled-release system designed to increase residence time in the stomach without contact with the mucosa was achieved through the preparation of floating microspheres by the emulsion solvent diffusion technique, using (i) calcium silicate (CS) as porous carrier; (ii) glipizide, an oral hypoglycemic agent; and (iii) Eudragit® S as polymer. The effects of various formulations and process variables on the internal and external particle morphology, micromeritic properties, in vitro floating behavior, drug loading, and in vitro drug release were studied. The microspheres were found to be regular in shape and highly porous. The prepared microspheres exhibited prolonged drug release (~8 h) and remained buoyant for >10 h. The mean particle size increased and the drug release rate decreased at higher polymer concentrations. No significant effect of the stirring rate during preparation on drug release was observed. In vitro studies demonstrated diffusion-controlled drug release from the microspheres. Microsphere formulation CS4, containing 200 mg calcium silicate, showed the best floating ability (88% buoyancy) in simulated gastric fluid. The release pattern of glipizide in simulated gastric fluid from all floating microspheres followed the Higuchi matrix model and the Peppas-Korsmeyer model.
Collapse
Affiliation(s)
- N Pandya
- Department of Pharmaceutics, M.P. Patel College of Pharmacy, Jeevanshilp Campus, Kapadwanj, Gujarat - 387 620, India
| | | | | |
Collapse
|
33
|
Abstract
Glipizide is mainly absorbed in the proximal areas of the gastrointestinal tract. The purpose of this study was formulation and evaluation of mucoadhesive films to prolong the stay of drug in its absorption area. Glipizide was formulated in a mucoadhesive film that could be retained in the stomach for prolonged intervals. Polymeric films were designed with various compositions of hydroxypropyl cellulose and polyethylene glycol 400 (PEG 400). Properties of the mucoadhesive film such as tensile strength, percentage elongation, swelling index, moisture content, pH and viscosity of polymeric dispersion, film thickness, content uniformity and mucoadhesion in a simulated gastric environment were characterized. In addition, percentage drug retained in stomach mucosa was estimated using a simulated dynamic stomach system as a function of time. Increase in hydroxypropyl cellulose concentration resulted in a higher tensile strength and elongation at break, while increase in concentration of PEG 400 was reflected in a decrease in tensile strength and increase of elongation at break. Glipizide/hydroxypropyl cellulose/PEG 400 (2.5:1:0.5) (GF5) was found to be the optimal composition for a novel mucoadhesive stomach formulation that showed good peelability, relatively high swelling index, moderate tensile strength, and stayed on rat stomach mucosa up to 8 h. In vivo testing of the mucoadhesive films with glipizide demonstrated a potential hypoglycemic effect.
Collapse
|
34
|
Patel JK, Chavda JR. Formulation and evaluation of stomach-specific amoxicillin-loaded carbopol-934P mucoadhesive microspheres for anti-Helicobacter pylori therapy. J Microencapsul 2011; 26:365-76. [PMID: 18720199 DOI: 10.1080/02652040802373012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The purpose of this research was to formulate and systemically evaluate in vitro and in vivo performances of mucoadhesive amoxicillin microspheres for the potential use in the treatment of gastric and duodenal ulcers, which were associated with Helicobacter pylori. Amoxicillin mucoadhesive microspheres containing carbopol-934P as mucoadhesive polymer and ethyl cellulose as carrier polymer were prepared by an emulsion-solvent evaporation technique. Results of preliminary trials indicate that quantity of emulsifying agent, time for stirring, drug-to-polymers ratio and speed of rotation affected the characteristics of microspheres. Microspheres were discrete, spherical, free flowing and showed a good percentage of drug entrapment efficiency. An in vitro mucoadhesive test showed that amoxicillin mucoadhesive microspheres adhered more strongly to the gastric mucous layer and could retain in the gastrointestinal tract for an extended period of time. A 3(2) full factorial design was employed to study the effect of independent variables, drug-to-polymer-to-polymer ratio (amoxicillin-ethyl cellulose-carbopol-934P) (X(1)) and stirring speed (X(2)) on dependent variables, i.e. percentage mucoadhesion, drug entrapment efficiency, particle size and t(80). The best batch exhibited a high drug entrapment efficiency of 56%; mucoadhesion percentage after 1 h was 80% and the particle size was 109 µm. A sustained drug release was obtained for more than 12 h. The drug-to-polymer-to-polymer ratio had a more significant effect on the dependent variables. The morphological characteristics of the mucoadhesive microspheres were studied under a scanning electron microscope. In vitro release test showed that amoxicillin released slightly faster in pH 1.2 hydrochloric acid than in pH 7.8 phosphate buffer. In vivo H. pylori clearance tests were also carried out by administering amoxicillin powder and mucoadhesive microspheres to H. pylori infectious Wistar rats under fed conditions at single dose or multiple dose(s) in oral administration. The results showed that amoxicillin mucoadhesive microspheres had a better clearance effect than amoxicillin powder. In conclusion, the prolonged gastrointestinal residence time and enhanced amoxicillin stability resulting from the mucoadhesive microspheres of amoxicillin might make a contribution to H. pylori complete eradication.
Collapse
Affiliation(s)
- Jayvadan K Patel
- S K Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, Gujarat, India.
| | | |
Collapse
|
35
|
Maurya DP, Sultana Y, Aqil M, Panda BP, Ali A. Formulation and Optimization of Alkaline Extracted Ispaghula Husk Microscopic Reservoirs of Isoniazid by Box-Behnken Statistical Design. J DISPER SCI TECHNOL 2011. [DOI: 10.1080/01932691003662456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
36
|
Kumar S, Nagpal K, Singh SK, Mishra DN. Improved bioavailability through floating microspheres of lovastatin. Daru 2011; 19:57-64. [PMID: 22615640 PMCID: PMC3232078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND THE PURPOSE OF THE STUDY Lovastatin is an antihyperlipidemic agent which has low bioavailability due to the extensive first pass metabolism. It was sought to increase gastric retention of lovastatin by development of a sustained release gastroretentive drug delivery system leading to reduced fluctuation in the plasma concentration and improved bioavailability. MEHODS: Floating microspheres were prepared by emulsion solvent diffusion technique, using various polymers and their blends. The in vitro performance was evaluated for drug-polymer compatibility, percent yield, particle size, drug entrapment efficiency, in vitro onset and duration of floatation, in vitro drug release as well as in vivo determination of serum cholesterol level. RESULTS The mean particle size of microspheres was observed to be between 6.9 to 9.5 µm and the maximum particle size was around 50 µm. In vivo studies of the selected batches indicated lower level of serum cholesterol compared to the marketed tablet at the same dose but was not significant. MAJOR CONCLUSION The data obtained in this study suggested that a microparticulate floating dosage form of lovastatin can be successfully designed to yield controlled delivery with improved therapeutic efficacy.
Collapse
Affiliation(s)
- S. Kumar
- Department of Pharmaceutics, Hindu college of Pharmacy, Sonepat Haryana
| | - K Nagpal
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar Haryana, India
| | - SK. Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar Haryana, India
| | - DN. Mishra
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science & Technology, Hisar Haryana, India
| |
Collapse
|
37
|
Kumaresapillai N, Ameer Basha R, Sathish R. Production and Evaluation of Chitosan from Aspergillus Niger MTCC Strains. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2011; 10:553-8. [PMID: 24250388 PMCID: PMC3813029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
Three different Aspergillus Niger MTCC strains (872, 1785 and 2208) were used for the production of chitosan. Multivariate growth mediums in varying incubation periods were analyzed for the production. The produced chitosan was characterized by its physical appearance, moisture content (by means of gravimetric method), percentage of ash and solubility (through the Association of Official Agricultural Chemists (AOAC) methods) and also the degree of deacetylation (with Infrared spectroscopy). The infrared (IR) spectrum of produced fungal chitosan shows strong similarity with the IR spectrum of commercial chitosan. Our experimental results concluded that the maximum yield of chitosan (26.1%) was obtained from Aspergillus niger MTCC 2208 grown in supplemented Potato Dextrose Broth (PDB) medium, incubated at 30°C for 120 h in 180 rpm. The antimicrobial activity of produced chitosan was tested against five bacteria by Disc diffusion technique, which confirmed that chitosan have minimal antimicrobial activity.
Collapse
Affiliation(s)
- Natarajan Kumaresapillai
- Department of Pharmaceutical Biotechnology, Ultra College of Pharmacy, Madurai, Tamil Nadu, India.,Corresponding author: E-mail:
| | - Riyaz Ameer Basha
- Department of Pharmacology, Ultra College of Pharmacy, Madurai, Tamil Nadu, India
| | - Rengarajan Sathish
- Department of Pharmaceutical Biotechnology, Ultra College of Pharmacy, Madurai, Tamil Nadu, India
| |
Collapse
|
38
|
Shadab, Ahuja A, Khar RK, Baboota S, Chuttani K, Mishra AK, Ali J. Gastroretentive drug delivery system of acyclovir-loaded alginate mucoadhesive microspheres: formulation and evaluation. Drug Deliv 2010; 18:255-64. [PMID: 21110695 DOI: 10.3109/10717544.2010.536270] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the present study, mucoadhesive alginate microspheres of acyclovir were prepared to prolong the gastric residence time using a simple emulsification phase separation technique. The particle size of drug-loaded formulations was measured by SEM and the particle size distribution was determined using an optical microscope and mastersizer. The release profile of acyclovir from microspheres was examined in simulated gastric fluid (SGF pH 1.2). The particles were found to be discreet and spherical with the maximum particles of an average size (70.60 ± 2.44 µm). The results indicated that the mean particle size of the microspheres increased with an increase in the concentration of polymer and decreased with increase in stirring speed. The entrapment efficiency was found to be in the range of 51.42-80.46%. The concentration of the calcium chloride (% w/v) of 10% and drug-polymer ratio of 1:4 resulted in an increase in the entrapment efficiency and the extent of drug release. The optimized alginate microspheres were found to possess good mucoadhesion (66.42 ± 1.01%). The best fit model with the highest regression coefficient values (R²) was predicted by Peppas model (0.9813). In Gamma scintigraphy analysis, the section of GIT was critically analyzed and much differentiation was present at each time point after oral administration, which revealed that the optimized formulation demonstrated gastroretention in vivo for more than 4 h, which revealed that optimized formulation could be a good choice for gastroretentive systems.
Collapse
Affiliation(s)
- Shadab
- Department of Pharmaceutics, Faculty of Pharmacy, Jamia Hamdard, Hamdard Nagar, New Delhi-110062, India
| | | | | | | | | | | | | |
Collapse
|
39
|
Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S. Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv 2010; 17:288-300. [DOI: 10.3109/10717541003706265] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Khare P, Jain SK. Influence of rheology of dispersion media in the preparation of polymeric microspheres through emulsification method. AAPS PharmSciTech 2009; 10:1295-300. [PMID: 19882250 DOI: 10.1208/s12249-009-9315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2009] [Accepted: 09/18/2009] [Indexed: 11/30/2022] Open
Abstract
Chitosan microspheres as drug delivery system have attained importance and attracted the attention of researchers in last few years. This study was aimed toward the elucidation of the effect of viscosity of external oil phase on the properties of microspheres prepared by emulsification method. Chitosan microspheres were prepared utilizing oil phase of different viscosity viz. castor oil, heavy liquid paraffin, light liquid paraffin and mixture of light paraffin, and petroleum ether (1:1 v/v ratio). Microspheres prepared in highly viscous castor oil exhibited an average size of 11.52+/-0.57 microm with a percentage drug entrapment of 43.12+/-2.14. On the other hand, very small microspheres of 3.15+/-0.04 microm and 68.87+/-1.03% drug entrapment were obtained when mixture of liquid paraffin and petroleum ether was utilized as oil phase. Effect of viscosity on percent mucoadhesion, percent drug entrapment, zeta potential, percent process yield, etc. of microspheres has been observed. In vitro drug release in phosphate buffer pH 7.4 was determined for different batch of microspheres. The results revealed a difference in the drug release pattern of the different microspheres prepared as a function of viscosity of different oil phase. Use of low viscose oil resulted in the formulation of spherical and small size microspheres. This work was a part of our ongoing thrust and project to develop microparticulate drug delivery system.
Collapse
|
41
|
Nagda C, Chotai N, Patel S, Nagda D, Patel U, Soni T. Chitosan microspheres of aceclofenac: In vitro and in vivo evaluation. Pharm Dev Technol 2009; 15:442-51. [DOI: 10.3109/10837450903286503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Sultana S, Bhavna, Iqbal Z, Panda BP, Talegaonkar S, Bhatnagar A, Ahmad FJ. Lacidipine encapsulated gastroretentive microspheres prepared by chemical denaturation for Pylorospasm. J Microencapsul 2009; 26:385-93. [DOI: 10.1080/02652040802376429] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Shivakumar HN, Patel PB, Desai BG, Ashok P, Arulmozhi S. Design and statistical optimization of glipizide loaded lipospheres using response surface methodology. ACTA PHARMACEUTICA 2007; 57:269-85. [PMID: 17878108 DOI: 10.2478/v10007-007-0022-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A 32 factorial design was employed to produce glipizide lipospheres by the emulsification phase separation technique using paraffin wax and stearic acid as retardants. The effect of critical formulation variables, namely levels of paraffin wax (X1) and proportion of stearic acid in the wax (X2) on geometric mean diameter (dg), percent encapsulation efficiency (% EE), release at the end of 12 h (rel12) and time taken for 50% of drug release (t50), were evaluated using the F-test. Mathematical models containing only the significant terms were generated for each response parameter using the multiple linear regression analysis (MLRA) and analysis of variance (ANOVA). Both formulation variables studied exerted a significant influence (p < 0.05) on the response parameters. Numerical optimization using the desirability approach was employed to develop an optimized formulation by setting constraints on the dependent and independent variables. The experimental values of dg, % EE, rel12 and t50 values for the optimized formulation were found to be 57.54 +/- 1.38 mum, 86.28 +/- 1.32%, 77.23 +/- 2.78% and 5.60 +/- 0.32 h, respectively, which were in close agreement with those predicted by the mathematical models. The drug release from lipospheres followed first-order kinetics and was characterized by the Higuchi diffusion model. The optimized liposphere formulation developed was found to produce sustained anti-diabetic activity following oral administration in rats.
Collapse
|