1
|
Moawad F, Ruel Y, Rezaei N, Alsarraf J, Pichette A, Legault J, Pouliot R, Brambilla D. Microneedles with Implantable Tip-Accumulated Therapeutics for the Long-Term Management of Psoriasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405927. [PMID: 39375985 DOI: 10.1002/smll.202405927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 625617, Egypt
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nastaran Rezaei
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jérôme Alsarraf
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
2
|
Gómez-Lázaro L, Martín-Sabroso C, Aparicio-Blanco J, Torres-Suárez AI. Assessment of In Vitro Release Testing Methods for Colloidal Drug Carriers: The Lack of Standardized Protocols. Pharmaceutics 2024; 16:103. [PMID: 38258113 PMCID: PMC10819705 DOI: 10.3390/pharmaceutics16010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Although colloidal carriers have been in the pipeline for nearly four decades, standardized methods for testing their drug-release properties remain to be established in pharmacopeias. The in vitro assessment of drug release from these colloidal carriers is one of the most important parameters in the development and quality control of drug-loaded nano- and microcarriers. This lack of standardized protocols occurs due to the difficulties encountered in separating the released drug from the encapsulated one. This review aims to compare the most frequent types of release testing methods (i.e., membrane diffusion techniques, sample and separate methods and in situ detection techniques) in terms of the advantages and disadvantages of each one and of the key parameters that influence drug release in each case.
Collapse
Affiliation(s)
- Laura Gómez-Lázaro
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (L.G.-L.); (C.M.-S.); (A.I.T.-S.)
- Institute of Industrial Pharmacy, Complutense University Madrid, 28040 Madrid, Spain
| |
Collapse
|
3
|
Abdou R, Mojally M, Attia HG, Dawoud M. Cubic nanoparticles as potential carriers for a natural anticancer drug: development, in vitro and in vivo characterization. Drug Deliv Transl Res 2023; 13:2463-2474. [PMID: 37010791 DOI: 10.1007/s13346-023-01325-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Natural compounds that elicit anticancer properties are of great interest for cancer therapy. However, the low solubility and bioavailability of these compounds limit their use as efficient anticancer drugs. To avoid these drawbacks, incorporation of these compounds into cubic nanoparticles (cubosomes) was carried out. Cubosomes containing bergapten which is a natural anticancer compound isolated from Ficus carica were prepared by the homogenization technique using monoolein and poloxamer. These cubosomes were characterized for size, zeta potential, entrapment efficiency, small angle X-ray diffraction, in vitro release, in vitro cytotoxicity, cellular uptake, and antitumor activity. Particle size of cubosomes was 220 ± 3.6 nm with almost neutral zeta potential - 5 ± 1.2 mV and X-ray measurements confirmed the existence of the cubic structure. Additionally, more than 90% of the natural anticancer drug was entrapped within the cubosomes. A sustained release over 30 h was obtained for these cubosomes. Finally, these cubosomes illustrated higher in vitro cytotoxicity and in vivo tumor inhibition compared with the free natural anticancer compound. Thus, cubosomes could be promising carriers for enhancement of antitumor efficiency of this natural compound.
Collapse
Affiliation(s)
- Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al Qura University, Holy Makkah, Kingdom of Saudi Arabia
| | - Mariam Mojally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al Qura University, Holy Makkah, Kingdom of Saudi Arabia
| | - Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, 1988, Najran, Saudi Arabia
| | - Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Holy Makkah, Kingdom of Saudi Arabia.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan-University, Cairo, Egypt.
| |
Collapse
|
4
|
Asha B, Goudanavar P, Koteswara Rao G, Gandla K, Raghavendra Naveen N, Majeed S, Muthukumarasamy R. QbD driven targeted pulmonary delivery of dexamethasone-loaded chitosan microspheres: Biodistribution and pharmacokinetic study. Saudi Pharm J 2023; 31:101711. [PMID: 37564747 PMCID: PMC10410579 DOI: 10.1016/j.jsps.2023.101711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023] Open
Abstract
Inhaling drugs, on the other hand, is limited mainly by the natural mechanisms of the respiratory system, which push drug particles out of the lungs or make them inefficient once they are there. Because of this, many ways have been found to work around the problems with drug transport through the lungs. Researchers have made polymeric microparticles (MP) and nanoparticles as a possible way to get drugs into the lungs. They showed that the drug could be trapped in large amounts and retained in the lungs for a long time, with as little contact as possible with the bloodstream. MP were formulated in this study to get dexamethasone (DMC) into the pulmonary area. The Box-Behnken design optimized microspheres preparation to meet the pulmonary delivery prerequisites. Optimized formulation was figured out based on the desirability approach. The mass median aerodynamic diameter (MMAD) of the optimized formula (O-DMC-MP) was 8.46 ± 1.45 µm, and the fine particle fraction (FPF) was 77.69 ± 1.26%. This showed that it made suitable drug delivery system, which could make it possible for MP to settle deeply in the lung space after being breathed in. With the first burst of drug release, it was seen that drug release could last up to 16 h. Also, there was no clear sign that the optimized formulation was toxic to the alveoli basal epithelial cells in the lungs, as supported by cytotoxic studies in HUVEC, A549, and H1299 cell lines. Most importantly, loading DMC inside MP cuts the amount of drug into the bloodstream compared to plain DMC, as evident from biodistribution studies. Stability tests have shown that the product can stay the same over time at both the storage conditions. Using chitosan DMC-MP can be a better therapeutic formulation to treat acute respiratory distress syndrome (ARDS).
Collapse
Affiliation(s)
- B.R. Asha
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | - Prakash Goudanavar
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | - G.S.N. Koteswara Rao
- Department of Pharmaceutics, Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Kumaraswamy Gandla
- Department of Pharmaceutical Analysis, Chaitanya (Deemed to be University), Hanamkonda 506001, Telangana, India
| | - N. Raghavendra Naveen
- Department of Pharmaceutics, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagar, Karnataka 571448, India
| | - Shahnaz Majeed
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal college of Medicine Perak, No 3, Jalan Green town, Ipoh 30450, Perak, Malaysia
| | - Ravindran Muthukumarasamy
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal college of Medicine Perak, No 3, Jalan Green town, Ipoh 30450, Perak, Malaysia
| |
Collapse
|
5
|
Rahmani F, Naderpour S, Nejad BG, Rahimzadegan M, Ebrahimi ZN, Kamali H, Nosrati R. The recent insight in the release of anticancer drug loaded into PLGA microspheres. Med Oncol 2023; 40:229. [PMID: 37410278 DOI: 10.1007/s12032-023-02103-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/21/2023] [Indexed: 07/07/2023]
Abstract
Cancer is a series of diseases leading to a high rate of death worldwide. Microspheres display specific characteristics that make them appropriate for a variety of biomedical purposes such as cancer therapy. Newly, microspheres have the potentials to be used as controlled drug release carriers. Recently, PLGA-based microspheres have attracted exceptional attention relating to effective drug delivery systems (DDS) because of their distinctive properties for a simple preparation, biodegradability, and high capability of drug loading which might be increased drug delivery. In this line, the mechanisms of controlled drug release and parameters that influence the release features of loaded agents from PLGA-based microspheres should be mentioned. The current review is focused on the new development of the release features of anticancer drugs, which are loaded into PLGA-based microspheres. Consequently, future perspective and challenges of anticancer drug release from PLGA-based microspheres are mentioned concisely.
Collapse
Affiliation(s)
- Farzad Rahmani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saghi Naderpour
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, Cyprus
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Ghorbani Nejad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Milad Rahimzadegan
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zivar Nejad Ebrahimi
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Rahim Nosrati
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
6
|
Dawoud M, Mojally M, Abdou R, Attia HG. Comparative study on the performance of monoolein cubic nanoparticles and trimyristin solid lipid nanoparticles as carriers for docetaxel. Pharm Dev Technol 2023; 28:277-287. [PMID: 36919494 DOI: 10.1080/10837450.2023.2191274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Nowadays the application of lipid nanoparticles as carriers for the delivery of anticancer drugs gained great attention in cancer therapy. Solid lipid nanoparticles (SLNs) and cubic nanoparticles (cubosomes) are considered as promising carriers in cancer therapy. The comparison of these two lipid nanoparticles as efficient carriers for the anticancer drug docetaxel was our main goal in this study. Both nanoparticles were prepared by the hot melt homogenization technique followed by measurement of particle size, zeta potential, entrapment efficiency and in vitro release of docetaxel. An advanced technique has been applied to measure the release of docetaxel from these nanoparticles using small unilamellar vesicles (SUVs) as acceptor particles which resemble many compartments in our body. All prepared nanoparticles revealed a neutral zeta potential with particle sizes of about 200 nm. While SUVs showed a negative surface charge with a zeta potential of -55 mV, cubosomes showed higher entrapment efficiency and a slower docetaxel release compared to SLNs. Additionally, cubosomes improved in vitro cytotoxicity as well as the in vivo antitumor inhibition of docetaxel compared to SLNs and docetaxel solution. Overall, our results showed that incorporation of docetaxel into cubosomes could enhance its in vitro and in vivo performance compared to docetaxel incorporated into SLNs.
Collapse
Affiliation(s)
- Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan-University, Cairo, Egypt
| | - Mariam Mojally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
| | - Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al Qura, University, Holy Makkah, KSA
| | - Hany G Attia
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran, Saudi Arabia
| |
Collapse
|
7
|
Shevade SS, Rustomjee MT, Devarajan PV. Facile Technology for Extemporaneous Preparation of Long-Acting Injectable Microparticulate Suspensions at the Patient Side. AAPS PharmSciTech 2023; 24:61. [PMID: 36759383 DOI: 10.1208/s12249-023-02519-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, we present an innovative and facile in situ approach for extemporaneous preparation of sterile microparticles. An amazingly simple approach, in situ technology circumvents the stability, and scale up challenges as well as sterilization issues associated with long-acting particulate systems. Monophasic preconcentrates of donepezil base (DPZ), a model drug with a biodegradable polymer poly (DL-lactide-co-glycolide) (PLGA), with stabilizer were prepared by simple solution and sterilized by filtration (0.22 micron). The sterile preconcentrates when added to aqueous dextrose solution (total volume < 3 mL) generated ready-to-inject DPZ PLGA microparticles (DPZ-PLGA-MP) with high reproducibility, entrapment efficiency (> 80%), and size ~ 80 micron. DPZ micro suspension (DPZ-MS) with high precipitation efficiency (> 90%) and size ~ 80 micron was obtained in a similar manner omitting PLGA. XRD and DSC study confirmed decreased crystallinity in the presence of PLGA. No interaction between PLGA and DPZ was evident in the FTIR study. The microparticulate dispersions exhibited good in vitro injectability when tested using the texture analyzer (force < 5 N). When evaluated using the dialysis bag method (Himedia 12-14 kDa molecular weight cutoff), both microparticulate formulations exhibited controlled release up to 1 week in vitro. Further, low burst release of ~ 10% at the end of 6 h in the ex vivo chicken muscle study proposes great promise. Our data propose the facile extemporaneous generation of microparticles as a practical and promising approach for development of long-acting injectables. This facile approach could serve as platform technology for other drug candidates.
Collapse
Affiliation(s)
- Sukhada S Shevade
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Elite Status and Centre of Excellence (Maharashtra), Deemed University, N.P. Marg, Matunga East, Mumbai, Maharashtra, 400019, India
| | - Maharukh T Rustomjee
- Amaterasu Lifesciences LLP. Office No. H4 & H5, 9th Floor, Tardeo Everest CHS, Tardeo, Mumbai, 400034, India
| | - Padma V Devarajan
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Elite Status and Centre of Excellence (Maharashtra), Deemed University, N.P. Marg, Matunga East, Mumbai, Maharashtra, 400019, India.
| |
Collapse
|
8
|
Mikheev IV, Byvsheva SM, Sozarukova MM, Kottsov SY, Proskurnina EV, Proskurnin MA. High-Throughput Preparation of Uncontaminated Graphene-Oxide Aqueous Dispersions with Antioxidant Properties by Semi-Automated Diffusion Dialysis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4159. [PMID: 36500782 PMCID: PMC9739863 DOI: 10.3390/nano12234159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A semi-automated diffusion-dialysis purification procedure is proposed for the preparation of uncontaminated graphene oxide (GO) aqueous dispersions. The purification process is integrated with analytical-signal processing to control the purification degree online by several channels: oxidation-reduction potential, conductivity, and absorbance. This approach reduces the amounts of reagents for chemical treatment during dialysis. The total transition metal (Mn and Ti) content was reduced to a sub-ppb level (assessed by slurry nebulization in inductively coupled plasma optical atomic emission spectroscopy). Purified aqueous GO samples possess good stability for about a year with a zeta-potential of ca. -40 mV and a lateral size of ca. sub-µm. Purified GO samples showed increased antioxidant properties (up to five times compared to initial samples according to chemiluminometry by superoxide-radical (O2-) generated in situ from xanthine and xanthine oxidase with the lucigenin probe) and significantly decreased peroxidase-like activity (assessed by the H2O2-L-012 system).
Collapse
Affiliation(s)
- Ivan V. Mikheev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofiya M. Byvsheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Madina M. Sozarukova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | - Sergey Yu. Kottsov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow 117901, Russia
| | | | | |
Collapse
|
9
|
Polyhydroxyalkanoate Decelerates the Release of Paclitaxel from Poly(lactic-co-glycolic acid) Nanoparticles. Pharmaceutics 2022; 14:pharmaceutics14081618. [PMID: 36015244 PMCID: PMC9416746 DOI: 10.3390/pharmaceutics14081618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
Biodegradable nanoparticles (NPs) are preferred as drug carriers because of their effectiveness in encapsulating drugs, ability to control drug release, and low cytotoxicity. Although poly(lactide co-glycolide) (PLGA)-based NPs have been used for controlled release strategies, they have some disadvantages. This study describes an approach using biodegradable polyhydroxyalkanoate (PHA) to overcome these challenges. By varying the amount of PHA, NPs were successfully fabricated by a solvent evaporation method. The size range of the NPS ranged from 137.60 to 186.93 nm, and showed zero-order release kinetics of paclitaxel (PTX) for 7 h, and more sustained release profiles compared with NPs composed of PLGA alone. Increasing the amount of PHA improved the PTX loading efficiency of NPs. Overall, these findings suggest that PHA can be used for designing polymeric nanocarriers, which offer a potential strategy for the development of improved drug delivery systems for sustained and controlled release.
Collapse
|
10
|
Synthesis of an ursolic acid organic salt based low-molecular-weight supramolecular hydrogel with unique thermo-responsiveness behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Otte A, Park K. Transitioning from a lab-scale PLGA microparticle formulation to pilot-scale manufacturing. J Control Release 2022; 348:841-848. [PMID: 35752252 PMCID: PMC9450845 DOI: 10.1016/j.jconrel.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/25/2022]
Abstract
The complexity of scale-up manufacturing of PLGA microparticles creates a significant challenge when transitioning from benchtop-scale formulation development into larger clinical scale batches. Minor changes in the initial formulation composition (e.g., PLGA molecular weight, solvent type, and drug concentration) and processing parameters (e.g., extraction kinetics and drying condition) during scale-up production can result in significantly different performance of the prepared microparticles. The objectives of the present study were to highlight the in vitro and in vivo performance of a candidate benchtop-scale batch created with a rotor-stator mixer, transitioned into an in-line manufacturing process at ~15× scale of a long-acting naltrexone formulation. Physicochemical properties (such as drug loading, residual benzyl alcohol content, and morphology) as well as the in vitro release characteristics of the prepared naltrexone microparticles between the benchtop-scale and in-line process pilot-scale were determined. The pharmacokinetics of the naltrexone microspheres were investigated using the rat model. The results demonstrate that while the morphologies of the particles were different from a visual assessment and slight differences were observed in the in vitro release profiles, the in vivo pharmacokinetics illustrate similar kinetics. Our study shows that scale-up production having the same drug release kinetics can be made by controlling the formulation and processing parameters.
Collapse
Affiliation(s)
- Andrew Otte
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, USA
| | - Kinam Park
- Purdue University, Departments of Biomedical Engineering and Pharmaceutics, West Lafayette, IN 47907, USA.
| |
Collapse
|
12
|
Malaquias DP, Dourado LFN, Lana ÂMQ, Souza F, Vilela J, Andrade M, Roa JPB, Carvalho-Junior ÁDD, Leite EA. Development and optimization by factorial design of polymeric nanoparticles for simvastatin delivery. POLIMEROS 2022. [DOI: 10.1590/0104-1428.20220016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Dawoud M, Abdou R. Ion exchange column technique as a novel method for evaluating the release of docetaxel from different lipid nanoparticles. Drug Deliv Transl Res 2022; 12:282-293. [PMID: 33768474 DOI: 10.1007/s13346-021-00937-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 10/21/2022]
Abstract
Lipid nanoparticles with their unique characters showed many advantages as carriers for anticancer drugs. To compare between these nanoparticles as carriers for anticancer drugs, it was important to evaluate and characterize their drug retention and release properties. In this study, ion exchange column is used as a new evaluation technique. Solid lipid nanoparticles (SLN), nanostructured lipid carrier (NLC), and cubic nanoparticles were prepared using the homogenization technique. Characterization of these nanoparticles was carried out by measuring particle size, zeta potential, and entrapment efficiency. The ion exchange column was used to evaluate docetaxel release from the different nanoparticles as donors to acceptor liposomes that mimic the cell membranes. Both populations were mixed and at different time points, separated using the columns. The amounts of docetaxel in the eluted nanoparticles and retained liposomes were calculated. The particle size of all donors was in the nanometer range with almost neutral zeta potential. The particle size of the acceptor liposomes was 135 nm with a high negative zeta potential -55 mV. Ion exchange columns showed excellent retention of the negative acceptor liposomes while less than 1% of the different donors were retained on the columns. Cubic nanoparticles showed the highest entrapment efficiency (95%) and the slowest drug transfer in comparison with SLN and NLC. In conclusion, the ion exchange column technique can be applied successfully to evaluate the release of docetaxel from the different lipid nanoparticles to acceptor liposomes. Cubic nanoparticles showed advantageous docetaxel incorporation and transfer over SLN and NLC.
Collapse
Affiliation(s)
- Mohamed Dawoud
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al Qura University, Mecca, Saudi Arabia.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan-University, Cairo, Egypt.
| | - Randa Abdou
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al Qura University, Mecca, Saudi Arabia
| |
Collapse
|
14
|
Varela-Fernández R, Lema-Gesto MI, González-Barcia M, Otero-Espinar FJ. Design, development, and characterization of an idebenone-loaded poly-ε-caprolactone intravitreal implant as a new therapeutic approach for LHON treatment. Eur J Pharm Biopharm 2021; 168:195-207. [PMID: 34500025 DOI: 10.1016/j.ejpb.2021.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
Leber's Hereditary Optic Neuropathy (LHON) is a hereditary mitochondrial neurodegenerative disease of unclear etiology and lack of available therapeutic alternatives. The main goal of the current pilot study was based on the evaluation of the feasibility and characteristics of prolonged and controlled idebenone release from a PCL intravitreal implant. The design, development, and characterization of idebenone-loaded PCL implants prepared by an homogenization/extrusion/solvent evaporation method allowed the obtention of high PY, EE and LC values. In vitro characterization was completed by the assessment of mechanical and instrumental properties. The in vitro release of idebenone from the PCL implants was assessed and the implant erosion was monitored by the mass loss and surface morphology changes. DSC was used to estimate stability and interaction among implant's components. The present work demonstrated the controlled and prolonged idebenone delivery from the PCL implants in an in vitro model. A consistent preclinical base was established, supporting the idea of idebenone-loaded PCL implants as a new strategy of long-term sustained intraocular delivery for the LHON treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain; Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain
| | - María Isabel Lema-Gesto
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Miguel González-Barcia
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, Santiago de Compostela 15706, Spain.
| | - Francisco Javier Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, Santiago de Compostela 15782, Spain.
| |
Collapse
|
15
|
Kotta S, Aldawsari HM, Badr-Eldin SM, Binmahfouz LS, Bakhaidar RB, Sreeharsha N, Nair AB, Ramnarayanan C. Lung Targeted Lipopolymeric Microspheres of Dexamethasone for the Treatment of ARDS. Pharmaceutics 2021; 13:1347. [PMID: 34575422 PMCID: PMC8471313 DOI: 10.3390/pharmaceutics13091347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 μm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1β, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity.
Collapse
Affiliation(s)
- Sabna Kotta
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hibah Mubarak Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shaimaa M. Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Lenah S. Binmahfouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Rana Bakur Bakhaidar
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.M.A.); (S.M.B.-E.); (R.B.B.)
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Chandramouli Ramnarayanan
- Department of Pharmaceutical Chemistry, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India;
| |
Collapse
|
16
|
Kim Y, Park EJ, Kim TW, Na DH. Recent Progress in Drug Release Testing Methods of Biopolymeric Particulate System. Pharmaceutics 2021; 13:1313. [PMID: 34452274 PMCID: PMC8399039 DOI: 10.3390/pharmaceutics13081313] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/16/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Biopolymeric microparticles have been widely used for long-term release formulations of short half-life chemicals or synthetic peptides. Characterization of the drug release from microparticles is important to ensure product quality and desired pharmacological effect. However, there is no official method for long-term release parenteral dosage forms. Much work has been done to develop methods for in vitro drug release testing, generally grouped into three major categories: sample and separate, dialysis membrane, and continuous flow (flow-through cell) methods. In vitro drug release testing also plays an important role in providing insight into the in vivo performance of a product. In vitro release test with in vivo relevance can reduce the cost of conducting in vivo studies and accelerate drug product development. Therefore, investigation of the in vitro-in vivo correlation (IVIVC) is increasingly becoming an essential part of particulate formulation development. This review summarizes the principles of the in vitro release testing methods of biopolymeric particulate system with the recent research articles and discusses their characteristics including IVIVC, accelerated release testing methods, and stability of encapsulated drugs.
Collapse
Affiliation(s)
- Yejin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
- G2GBIO, Inc., Daejeon 34054, Korea
| | | | - Tae Wan Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| | - Dong Hee Na
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea; (Y.K.); (T.W.K.)
| |
Collapse
|
17
|
Wu B, Wu L, He Y, Yin Z, Deng L. Engineered PLGA microspheres for extended release of brexpiprazole: in vitro and in vivo studies. Drug Dev Ind Pharm 2021; 47:1001-1010. [PMID: 34032181 DOI: 10.1080/03639045.2021.1934859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To develop poly(d,l-lactide-co-glycolide) (PLGA) microspheres to achieve controlled and sustained release of brexpiprazole in vivo. METHODS Brexpiprazole microspheres were prepared by oil-in-water emulsion-solvent evaporation method and evaluated for morphology, particle size, encapsulation efficiency, drug loading, conformation and compatibility of drug and polymer, in vitro release, and in vivo pharmacokinetics. By establishing the relationship between in vitro and in vivo release, it helps identify the appropriate in vitro release conditions to explore release profiles of brexpiprazole microspheres. RESULTS Porous PLGA microspheres with near spherical morphology were obtained displaying an average diameter of 20.43 ± 0.06 μm, a drug loading capacity of 27.24 ± 0.33% and an encapsulation efficiency of 81.87 ± 1.07%. Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD), and differential scanning calorimetry (DSC) analysis showed that some drugs encapsulated in the microspheres remained in the amorphous state and some were in the crystalline state. Different release setups resulted in different release kinetics. The dialysis release setup displayed a cumulative release of about 65% within 60 days, while the sample-and-separate setup showed a cumulative release of about 77% within 35 days. Per pharmacokinetic studies in rats, a burst phase in the plasma concentration-time curve was observed after intramuscular injection in the first 2 h followed by a clear zero-order release phase. Overall, brexpiprazole achieved in vivo sustained release from PLGA microspheres for up to 40 days. CONCLUSION A PLGA microsphere loaded with brexpiprazole was successfully developed and demonstrated potential for extended-release of therapeutics for schizophrenia treatment.
Collapse
Affiliation(s)
- Bangqing Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lijun Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yingju He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zongning Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Li Deng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Fan JP, Zhong H, Zhang XH, Yuan TT, Chen HP, Peng HL. Preparation and Characterization of Oleanolic Acid-Based Low-Molecular-Weight Supramolecular Hydrogels Induced by Heating. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29130-29136. [PMID: 34126739 DOI: 10.1021/acsami.1c05800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The natural-product-based low-molecular-weight supramolecular hydrogels (LMWSHs) induced by heating are rarely reported. In this work, a simple salt of oleanolic acid (OA) and choline ([choline][OA]) was used as the natural product hydrogelator (NPHG) to form LMWSHs. Unlike common sol-gel transitions, the OA-based LMWSH displayed a unique property with which the system could undergo a phase transition from the sol state to the gel state upon heating. Moreover, the phase separation was observed in sol and gel states when the temperature was elevated with nonreversible transparent-turbid transitions. LMWSHs showed good stability and injectability and the potential to be a drug delivery vehicle for sustained release of drugs. In this regard, this work provided a facile approach to designing an OA-based NPHG for preparing heat-induced LMWSHs.
Collapse
Affiliation(s)
- Jie-Ping Fan
- Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Nanchang University, Nanchang 330031, China
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hui Zhong
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xue-Hong Zhang
- School of Foreign Language, Nanchang University, Nanchang 330031, China
| | - Tian-Tao Yuan
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hui-Ping Chen
- Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Nanchang University, Nanchang 330031, China
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hai-Long Peng
- Key Laboratory of Poyang Lake Ecology and Bio-Resource Utilization of Ministry of Education, Nanchang University, Nanchang 330031, China
- School of Resource, Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| |
Collapse
|
19
|
Siavashy S, Soltani M, Ghorbani-Bidkorbeh F, Fallah N, Farnam G, Mortazavi SA, Shirazi FH, Tehrani MHH, Hamedi MH. Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr Polym 2021; 265:118027. [PMID: 33966822 DOI: 10.1016/j.carbpol.2021.118027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/03/2023]
Abstract
In this study, magnetic core/chitosan shell Nanoparticles (NPs) containing cisplatin were synthesized via cisplatin complexation with tripolyphosphate as the chitosan crosslinker using two different procedures: a conventional batch flow method and a microfluidic approach. An integrated microfluidic device composed of three stages was developed to provide precise and highly controllable mixing. The comparison of the results revealed that NPs synthesized in microchannels were monodisperse 104 ± 14.59 nm (n = 3) in size with optimal morphological characteristics, whereas polydisperse 423 ± 53.33 nm (n = 3) nanoparticles were obtained by the conventional method. Furthermore, cisplatin was loaded in NPs without becoming inactivated, and the microfluidic technique demonstrated higher encapsulation efficiency, controlled release, and consequently lower IC50 values during exposure to the A2780 cell line proving that microfluidic synthesized NPs were able to enter the cells and release the drug more efficiently. The developed microfluidic platform presents valuable features that could potentially provide the clinical translation of NPs in drug delivery.
Collapse
Affiliation(s)
- Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada.
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Newsha Fallah
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Golrokh Farnam
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshad H Shirazi
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
20
|
|
21
|
Bao S, Zheng H, Ye J, Huang H, Zhou B, Yao Q, Lin G, Zhang H, Kou L, Chen R. Dual Targeting EGFR and STAT3 With Erlotinib and Alantolactone Co-Loaded PLGA Nanoparticles for Pancreatic Cancer Treatment. Front Pharmacol 2021; 12:625084. [PMID: 33815107 PMCID: PMC8017486 DOI: 10.3389/fphar.2021.625084] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most common malignancies and also a leading cause of cancer-related mortality worldwide. Many studies have shown that epidermal growth factor receptor (EGFR) is highly expressed in PC, which provides a potential target for PC treatment. However, EGFR inhibitors use alone was proven ineffective in clinical trials, due to the persistence of cellular feedback mechanisms which foster therapeutic resistance to single targeting of EGFR. Specifically, the signal transducer and activator of transcription 3 (STAT3) is over-activated when receiving an EGFR inhibitor and is believed to be highly involved in the failure and resistance of EGFR inhibitor treatment. Therein, we hypothesized that dual inhibition of EGFR and STAT3 strategy could address the STAT3 induced resistance during EGFR inhibitor treatment. To this end, we tried to develop poly (lactic-co-glycolic acid) (PLGA) nanoparticles to co-load Alantolactone (ALA, a novel STAT3 inhibitor) and Erlotinib (ERL, an EGFR inhibitor) for pancreatic cancer to test our guess. The loading ratio of ALA and ERL was firstly optimized in vitro to achieve a combined cancer-killing effect. Then, the ALA- and ERL-co-loaded nanoparticles (AE@NPs) were successfully prepared and characterized, and the related anticancer effects and cellular uptake of AE@NPs were studied. We also further detailly explored the underlying mechanisms. The results suggested that AE@NPs with uniform particle size and high drug load could induce significant pancreatic cancer cell apoptosis and display an ideal anticancer effect. Mechanism studies showed that AE@NPs inhibited the phosphorylation of both EGFR and STAT3, indicating the dual suppression of these two signaling pathways. Additionally, AE@NPs could also activate the ROS-p38 axis, which is not observed in the single drug treatments. Collectively, the AE@NPs prepared in this study possess great potential for pancreatic cancer treatment by dual suppressing of EGFR and STAT3 pathways and activating ROS-responsive p38 MAPK pathway.
Collapse
Affiliation(s)
- Shihui Bao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Hailun Zheng
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Jinyao Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Huirong Huang
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Bin Zhou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Qing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Hailin Zhang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
- Department of Children’s Respiration Disease, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Longfa Kou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| | - Ruijie Chen
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Wenzhou, China
| |
Collapse
|
22
|
Wu J, Xu S, Han CC, Yuan G. Controlled drug release: On the evolution of physically entrapped drug inside the electrospun poly(lactic-co-glycolic acid) matrix. J Control Release 2021; 331:472-479. [PMID: 33549717 DOI: 10.1016/j.jconrel.2021.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
The drug loading and releasing properties of poly(lactic-co-glycolic acid) (PLGA) were approached with the application of neutron techniques. The neutron reflection (NR) study on the response of PLGA material to vapor and to bulk water revealed that the hydration of PLGA origins from the molecular compatibility between water and PLGA. Hydration is reversible with regard to the change in humidity and temperature. Capecitabine as drug was embedded in the electrospun PLGA fibers. Small angle neutron scattering (SANS) was able to disclose the domain of entrapped drug inside the fibers and trace its evolution over time when the electrospun membrane was incubated in D2O buffer solution. The evolution of drug domains is discussed in terms of the concentration dependence, the temperature dependence, and the relevance between the drug diffusion inside the polymer matrix and the drug release out to the medium. It was observed that, at 20 °C the drug-related domains are relatively small (~ 100 Å) and relax extremely slow while at 37 °C the drug-related domains are relatively larger (~ 200 Å) and relax faster. These behaviors can be related to the glassy property of structural material. The transportation of drug through the polymer matrix relies on the global relaxation of PLGA chains. The variation of fiber diameter vs. incubation time was followed by ultra-small angle neutron scattering (USANS). The bi-phasic or tri-phasic release kinetics from a series of fibers with different drug loading (2%, 5%, 10%, 20%, 30%, 40%, 50%) were discussed based on the SANS and USANS discovery.
Collapse
Affiliation(s)
- Jiaen Wu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA; Department of Physics, Georgetown University, Washington, D. C., 20057, USA.
| |
Collapse
|
23
|
Mutlu-Agardan NB, Han S. In vitro and in vivo evaluations on nanoparticle and phospholipid hybrid nanoparticles with absorption enhancers for oral insulin delivery. Pharm Dev Technol 2020; 26:157-166. [PMID: 33183103 DOI: 10.1080/10837450.2020.1849282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oral delivery of peptide and proteins is challenging due to their poor physical and chemical stability which usually results in inadequate therapeutic efficacy. Nanoparticles encapsulating insulin was developed by the ionic gelation technique using sulfobutyl ether-β-cyclodextrin as an anionic linker. Phospholipid hybrid nanoparticles were formulated by utilizing ionic gelation and thin-film hydration methods using D-α-Tocopheryl polyethylene glycol 1000 succinate, sodium deoxycholate separately and in combination to take the advantage of liposomes and nanoparticles also various absorption enhancement mechanisms. All formulations were characterized and tested for in vitro gastrointestinal stability, in vitro drug release, and cytotoxicity. On the other hand, in vivo effects of developed formulations on reducing blood glucose levels were monitored for 8 hours. Phospholipid hybrid nanoparticles including D-α-Tocopheryl polyethylene glycol 1000 succinate and sodium deoxycholate in combination with 548.7 nm particle size, 0.332 polydispersity index, 22.0 mV zeta potential, and 61.9% encapsulation efficiency, exhibited desired gastrointestinal stability and insulin release in vitro. In addition, the formulation proved its safety with cytotoxicity studies on L929 cells. The subjected phospholipid hybrid nanoparticle formulation was found to be the most effective formulation by reducing and maintaining blood glucose levels with avoiding fluctuations.
Collapse
Affiliation(s)
- N Basaran Mutlu-Agardan
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Gazi University, Ankara, Turkey
| | - S Han
- Faculty of Pharmacy, Department of Pharmacology, Gazi University, Ankara, Turkey
| |
Collapse
|
24
|
Chen Q, Liang H, Sun Y, Chen Y, He W, Fang X, Sha X, Li J. A carbohydrate mimetic peptide modified size-shrinkable micelle nanocluster for anti-tumor targeting and penetrating drug delivery. Int J Nanomedicine 2019; 14:7339-7352. [PMID: 31686810 PMCID: PMC6751550 DOI: 10.2147/ijn.s213455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Purpose To deliver the chemotherapeutics through the nanoparticles, the delivery system should accumulate at the tumor site first and then penetrate through the interstitium into the interior. The specific tumor-targeting pathway mediated via the receptor-ligand binding could achieve the desirable accumulation of nanoparticles, and the nanoparticles with smaller sizes were required for penetration. Methods and materials We constructed a size-shrinkable nanocluster modified with a tumor-targeting motif IF-7 (IF-7-MNC) based on a pH-sensitive framework which could be disintegrated in an acid environment to release the micelles aggregated inside. The micelles were constructed by amphiphilic block copolymers PEG−PLA to encapsulate paclitaxel (PTX), while the cross-linked framework consisting of TPGS-PEI was used as a net to gather and release micelles. This nanoplatform could specifically bind with the tumor receptor Annexin A1 through the ligand IF-7 and then shrunk into small micelles with a desirable size for penetration. Conclusion IF-7-MNC of 112.27±6.81 nm could shrink into micelles in PBS (0.01 M, pH 5.0) with sizes of 14.89±0.32 nm. The cellular-uptake results showed that IF-7-MNC could be significantly internalized by A549 cells and HUVEC cells, while the penetration of IF-7-MNC could be more prominent into the 3D-tumor spheroids compared with that of MNC. The biodistribution results displayed that the fluorescence of IF-7-MNC in the tumor site at 24 hrs was 4.5-fold stronger than that of MNC. The results of anti-tumor growth demonstrated that IF-7-MNC was more favorable for the tumor therapy than MNC, where the inhibitory rate of tumor growth was 88.29% in the PTX-loaded IF-7-MNC (IF-7-PMNC) treated group, significantly greater than PMNC treatment group (p<0.05).
Collapse
Affiliation(s)
- Qinyue Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Huihui Liang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Yali Sun
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Yiting Chen
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Wenxiu He
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Xiaoling Fang
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Xianyi Sha
- Department of Pharmaceutics, Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, People's Republic of China
| | - Jinming Li
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, People's Republic of China
| |
Collapse
|
25
|
Solanki A, Smalling R, Parola AH, Nathan I, Kasher R, Pathak Y, Sutariya V. Humanin Nanoparticles for Reducing Pathological Factors Characteristic of Age-Related Macular Degeneration. Curr Drug Deliv 2019; 16:226-232. [PMID: 30381074 DOI: 10.2174/1567201815666181031163111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/30/2023]
Abstract
BACKGROUND Humanin is a novel neuronal peptide that has displayed potential in the treatment of Alzheimer's Disease through the suppression of inflammatory IL-6 cytokine receptors. Such receptors are found throughout the body, including the eye, suggesting its other potential applications. Age-related Macular Degeneration (AMD) is the leading cause of blindness in the developing world. There is no cure for this disease, and current treatments have several negative side effects associated with them, making finding other treatment options desirable. OBJECTIVE In this study, the potential applications in treating AMD for a more potent humanin derivative, AGA-HNG, were studied. METHODS AGA-HNG was synthesized and encapsulated in chitosan Nanoparticles (NPs), which were then characterized for their size, Encapsulation Efficiency (EE), and drug release. Their ability to suppress VEGF secretion and protect against oxidative apoptosis was studied in vitro using ARPE-19 cells. The chitosan NPs exhibited similar anti-VEGF properties and oxidative protection as the free protein while exhibiting superior pharmaceutical characteristics including biocompatibility and drug release. RESULTS Drug-loaded NPs exhibited a radius of 346nm with desirable pharmacokinetic properties including a stable surface charge (19.5 ± 3.7 mV) and steady drug release capacity. AGA-HNG showed great promise in mediating apoptosis in hypoxic cells. They were also able to significantly reduce VEGF expression in vitro with reduced cellular toxicity compared to the free drug. CONCLUSION The ability of this drug delivery system to reduce retinal apoptosis with desirable pharmacokinetic and biocompatible properties makes this a promising therapeutic option for AMD.
Collapse
Affiliation(s)
- Aum Solanki
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,USF Morsani College of Medicine, University of South Florida, Tampa, FL 33647, United States
| | - Rudy Smalling
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| | - Abraham H Parola
- Department of Chemistry, The Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Roni Kasher
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boquer Campus, Beersheba, 8499000, Israel
| | - Yashwant Pathak
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States.,Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Vijaykumar Sutariya
- Department of Pharmaceutical Sciences, USF College of Pharmacy, University of South Florida, Tampa, FL 33647, United States
| |
Collapse
|
26
|
Sutariya V, Kelly SJ, Weigel RG, Tur J, Halasz K, Sharma NS, Tipparaju SM. Nanoparticle drug delivery characterization for fluticasone propionate and in vitro testing 1. Can J Physiol Pharmacol 2019; 97:675-684. [PMID: 31100204 DOI: 10.1139/cjpp-2018-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoids, such as fluticasone propionate (FP), are used for the treatment of inflammation and alleviation of nasal symptoms and allergies, and as an antipruritic. However, both short- and long-term therapeutic use of glucocorticoids can lead to muscle weakness and atrophy. In the present study, we evaluated the feasibility of the nanodelivery of FP with poly(dl-lactide-co-glycolide) (PLGA) and tested in vitro function. FP-loaded PLGA nanoparticles were prepared via nanoprecipitation and morphological characteristics were studied via scanning electron microscopy. FP-loaded nanoparticles demonstrated an encapsulation efficiency of 68.6% ± 0.5% with a drug loading capacity of 4.6% ± 0.04%, were 128.8 ± 0.6 nm in diameter with a polydispersity index of 0.07 ± 0.008, and displayed a zeta potential of -19.4 ± 0.7. A sustained in vitro drug release pattern was observed for up to 7 days. The use of fluticasone nanoparticle decreased lipopolysaccharide (LPS)-induced lactate dehydrogenase release compared with LPS alone in C2C12 treated cells. FP also decreased expression of LPS-induced inflammatory genes in C2C12 treated cells as compared with LPS alone. Taken together, the present study demonstrates in vitro feasibility of PLGA-FP nanoparticle delivery to the skeletal muscle cells, which may be beneficial for treating inflammation.
Collapse
Affiliation(s)
- Vijaykumar Sutariya
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Shannon J Kelly
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Robert G Weigel
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Jared Tur
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Kathleen Halasz
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| | - Nirmal S Sharma
- b Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Srinivas M Tipparaju
- a Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
27
|
Kaihara M, Hojo K, Tajiri T, Kambayashi A, Yoshida T, Katakawa Y, Motonaga K, Kimura SI, Iwao Y, Kondo H. Novel Dissolution Approach for Tacrolimus-Loaded Microspheres Using a Dialysis Membrane for in Vitro-in Vivo Correlation. Chem Pharm Bull (Tokyo) 2019; 67:467-475. [PMID: 31061372 DOI: 10.1248/cpb.c18-01018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to establish a novel approach to in vitro dissolution evaluation using a combination of the paddle method and a dialysis membrane, both to predict the overall in vivo performance of tacrolimus microspheres and also to identify a suitable dissolution test method to describe the in vivo initial burst phenomenon. This new dissolution method for evaluating the release of tacrolimus from microspheres consisted of rotating a customized paddle inside a dialysis membrane using a conventional paddle apparatus. Findings were compared with a method in which the paddle was rotated outside the dialysis membrane, the conventional paddle method, and the flow-through cell method. We concluded that the paddle method with a dialysis membrane and internal agitation, which was designed to mimic in vivo conditions, predicted the overall pharmacokinetic (PK) profile of tacrolimus microspheres whereas the conventional paddle method described the initial burst. These findings suggest that it may not be possible to predict both the PK profile and initial burst using a single analysis method. We therefore recommend that evaluation of the initial burst be performed separately. In conclusion, we propose that combination of the paddle method with a dialysis membrane and internal agitation to evaluate the overall PK profile, together with the paddle method to describe the in vivo initial burst, represents a novel approach to in vitro dissolution evaluation for microsphere formulations.
Collapse
Affiliation(s)
- Masanori Kaihara
- Analytical Research Labs., Astellas Pharma Inc.,School of Pharmaceutical Sciences, University of Shizuoka
| | - Kazuhiro Hojo
- Analytical Research Labs., Astellas Pharma Europe B.V
| | | | | | | | | | | | | | - Yasunori Iwao
- School of Pharmaceutical Sciences, University of Shizuoka
| | - Hiromu Kondo
- School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
28
|
Ma Z, Zhang H, Wang Y, Tang X. Development and evaluation of intramuscularly administered nano/microcrystal suspension. Expert Opin Drug Deliv 2019; 16:347-361. [PMID: 30827123 DOI: 10.1080/17425247.2019.1588248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Formulation of nanocrystals is one of the most important drug delivery systems for poorly soluble drug molecules. Nanocrystals are produced by techniques like precipitation, media milling, high-pressure homogenization, and so on. In order to achieve sustained release and higher absorption of nanosuspensions, intramuscularly administered nanosuspensions have been developed. As well, intramuscularly administered nanosuspensions have been implemented in order to improve the bioavailability of drug nanocrystals which have both a low oral bioavailability and cannot be administered by intravenous injection routes. AREAS COVERED This review summarizes studies that have focused on the production, classification, in vitro release and in vivo pharmacokinetics of intramuscularly administered nanosuspensions. In order to avoid common drawbacks of intramuscularly administered nanosuspensions, such as tissue residues and some local tissue damage, nanosuspensions with a reduced administration volume of high drug loading and extended therapeutic effects are developed. EXPERT OPINION Intramuscularly administered nano/micro crystal suspensions have been developed for the treatment of various diseases such as schizophrenia, hormone disordered diseases, HIV and more. Additionally, intramuscularly administered nanosuspensions are also a good route for the development of traditional chinese medicines which have lower oral bioavailability and are not suitable for intravenous injection.
Collapse
Affiliation(s)
- Ziwei Ma
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Hongjuan Zhang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Yanjiao Wang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| | - Xing Tang
- a Department of Pharmaceutics , Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
29
|
Aflibercept Nanoformulation Inhibits VEGF Expression in Ocular In Vitro Model: A Preliminary Report. Biomedicines 2018; 6:biomedicines6030092. [PMID: 30208574 PMCID: PMC6165497 DOI: 10.3390/biomedicines6030092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/28/2018] [Accepted: 09/06/2018] [Indexed: 11/16/2022] Open
Abstract
Age-related macular degeneration (AMD) is one of the leading causes of blindness in the United States, affecting approximately 11 million patients. AMD is caused primarily by an upregulation of vascular endothelial growth factor (VEGF). In recent years, aflibercept injections have been used to combat VEGF. However, this treatment requires frequent intravitreal injections, leading to low patient compliance and several adverse side effects including scarring, increased intraocular pressure, and retinal detachment. Polymeric nanoparticles have demonstrated the ability to deliver a sustained release of drug, thereby reducing the necessary injection frequency. Aflibercept (AFL) was encapsulated in poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) via double emulsion diffusion. Scanning electron microscopy showed the NPs were spherical and dynamic light scattering demonstrated that they were uniformly distributed (PDI < 1). The encapsulation efficiency and drug loading were 75.76% and 7.76% respectively. In vitro release studies showed a sustained release of drug; 75% of drug was released by the NPs in seven days compared to the full payload released in 24 h by the AFL solution. Future ocular in vivo studies are needed to confirm the biological effects of the NPs. Preliminary studies of the proposed aflibercept NPs demonstrated high encapsulation efficiency, a sustained drug release profile, and ideal physical characteristics for AMD treatment. This drug delivery system is an excellent candidate for further characterization using an ocular neovascularization in vivo model.
Collapse
|
30
|
A comparison of two biorelevant in vitro drug release methods for nanotherapeutics based on advanced physiologically-based pharmacokinetic modelling. Eur J Pharm Biopharm 2018; 127:462-470. [DOI: 10.1016/j.ejpb.2018.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/02/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022]
|
31
|
Liu K, Zheng D, Lei H, Liu J, Lei J, Wang L, Ma X. Development of Novel Lignin-Based Targeted Polymeric Nanoparticle Platform for Efficient Delivery of Anticancer Drugs. ACS Biomater Sci Eng 2018; 4:1730-1737. [PMID: 33445330 DOI: 10.1021/acsbiomaterials.8b00260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The clinical applications of natural anticancer drugs are being restricted by poor water solubility, fast clearance in the circulation, lack of targeting to tumor cells, and poor tissue penetration. To address these problems, in this study, we developed a novel lignin-based targeted polymeric nanoparticles (NPs) platform, folic acid-polyethylene glycol-alkaline lignin conjugates (FA-PEG-AL), via self-assembly for delivery of anticancer drug (hydroxyl camptothecin, HCPT). These lignin-based nanoparticles had moderate particle size (∼150 nm) with a narrow size distribution (PDI < 0.1), exhibited excellent biocompatibility, high drug loading efficiency (∼24.2 wt % of HCPT), prolonged blood circulation time (∼7-fold of free HCPT), and enhanced cellular uptake (∼5-fold of free HCPT). Besides, the drug biodistribution study confirmed preferred accumulation of FA-PEG-AL/HCPT NPs in tumor tissue. Subsequent tumor xenograft test revealed superior tumor suppression efficacy and reduced side effects of FA-PEG-AL/HCPT NPs compared with free HCPT. Therefore, the prepared lignin-based FA-PEG-AL/HCPT NPs would be a promising candidate for anticancer drugs delivery.
Collapse
Affiliation(s)
- Kefeng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Dan Zheng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Hantian Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
32
|
Bai M, He J, Kang L, Nie J, Yin R. Regulated basal and bolus insulin release from glucose-responsive core-shell microspheres based on concanavalin A-sugar affinity. Int J Biol Macromol 2018. [PMID: 29524488 DOI: 10.1016/j.ijbiomac.2018.03.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Individual insulin therapy considering the heterogeneity of insulin resistance between patients may bring more benefits than conventional therapy. Therefore, in glucose-responsive insulin delivery systems, more attention should be paid on further regulation of insulin release to meet individual requirements. Our study shows the feasibility of using a photo-crosslinkable shell layer to regulate basal and bolus insulin release from glucose-responsive Con A-polysaccharides network. Core-shell microspheres were fabricated through a two-step high-speed shear-emulsification method. The morphology was observed by SEM and TEM, and the core-shell structure was confirmed by the differences in chemical composition between core-shell and single-layer microspheres obtained from XPS and IR analysis. In vitro insulin release test revealed that the core-shell microspheres with or without light-irradiation could maintain corresponding bolus and basal insulin release in response to different glucose concentration but enable much lower burst release compared with single-layer microspheres without shell. Meanwhile, insulin release rate and amount could be further decreased upon light-irradiation owing to the photo-induced cycloaddition of cinnamate pendant groups of the shell material. The released insulin was proved to remain active according to fluorescence and circular dichroism analysis. The HDF cell viability assessment suggested that the core-shell microspheres possessed no in vitro cytotoxicity.
Collapse
Affiliation(s)
- Meirong Bai
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China
| | - Jing He
- Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, PR China
| | - Liangfa Kang
- Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu, PR China
| | - Jun Nie
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, PR China; Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou, Jiangsu, PR China
| | - Ruixue Yin
- Complex and Intelligent Systems Research Center, East China University of Science and Technology, Shanghai, PR China; Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
33
|
Liu KF, Liu YX, Dai L, Li CX, Wang L, Liu J, Lei JD. A novel self-assembled pH-sensitive targeted nanoparticle platform based on antibody-4arm-polyethylene glycol-pterostilbene conjugates for co-delivery of anticancer drugs. J Mater Chem B 2018; 6:656-665. [PMID: 32254494 DOI: 10.1039/c7tb02485a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recently, antibody-drug conjugates (ADC) have shown potential for cancer immunotherapy by tumor-targeted delivery of anticancer drugs. However, the development of ADC is subject to many restrictions, such as the payloads, stabilities and intracellular uptake of the drugs, which has greatly restricted their clinical application. To overcome these hurdles, in this study, a novel pH-sensitive targeted nanoparticle platform based on a newly synthesized amphipathic antibody-drug conjugate (antibody-4arm-polyethylene glycol-pterostilbene, mAb-4arm-PEG-PS) was fabricated for co-delivery of another anticancer drug (10-hydroxy camptothecin, HCPT). The prepared mAb-4arm-PEG-PS/HCPT nanoparticles (NPs) had a moderate particle size (∼120 nm), a high drug to antibody ratio (∼22.4) and relatively high binary drug loading capacity (∼24.2 wt% HCPT, ∼2.9 wt% PS). Moreover, the mAb-4arm-PEG-PS/HCPT NPs exhibited enhanced intracellular uptake (∼5 fold that of mAb-4arm-PEG-PS conjugates) and excellent cytotoxicity in vitro. In subsequent Daudi lymphoma xenograft assays, compared with free drugs and mAb-4arm-PEG-PS conjugates, the mAb-4arm-PEG-PS/HCPT NPs inhibited tumor growth more efficiently. Our results indicated the great potential of mAb-4arm-PEG-PS/HCPT NPs for targeted co-delivery of anticancer drugs to solid tumors.
Collapse
Affiliation(s)
- Ke-Feng Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
34
|
In vitro dissolution testing of parenteral aqueous solutions and oily suspensions of paracetamol and prednisolone. Int J Pharm 2017; 532:519-527. [DOI: 10.1016/j.ijpharm.2017.09.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/24/2017] [Accepted: 09/18/2017] [Indexed: 12/31/2022]
|
35
|
Borke T, Najberg M, Ilina P, Bhattacharya M, Urtti A, Tenhu H, Hietala S. Hyaluronic Acid Graft Copolymers with Cleavable Arms as Potential Intravitreal Drug Delivery Vehicles. Macromol Biosci 2017; 18. [DOI: 10.1002/mabi.201700200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/23/2017] [Indexed: 11/07/2022]
Affiliation(s)
- Tina Borke
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Mathie Najberg
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Polina Ilina
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
| | - Madhushree Bhattacharya
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
| | - Arto Urtti
- Centre for Drug Research; Division of Pharmaceutical Biosciences; Faculty of Pharmacy; University of Helsinki; P.O. Box 56 FI-00014 Finland
- School of Pharmacy; University of Eastern Finland; P.O. Box 1627 70211 Kuopio Finland
| | - Heikki Tenhu
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| | - Sami Hietala
- Department of Chemistry; University of Helsinki; P.O. Box 55 FI-00014 Finland
| |
Collapse
|
36
|
Meng J, Agrahari V, Ezoulin MJ, Purohit SS, Zhang T, Molteni A, Dim D, Oyler NA, Youan BBC. Spray-Dried Thiolated Chitosan-Coated Sodium Alginate Multilayer Microparticles for Vaginal HIV Microbicide Delivery. AAPS J 2017; 19:692-702. [PMID: 28138910 DOI: 10.1208/s12248-016-0007-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
It is hypothesized that novel thiolated chitosan-coated multilayer microparticles (MPs) with enhanced drug loading are more mucoadhesive than uncoated MPs and safe in vivo for vaginal delivery of topical anti-HIV microbicide. Formulation optimization is achieved through a custom experimental design and the alginate (AG) MPs cores are prepared using the spray drying method. The optimal MPs are then coated with the thiolated chitosan (TCS) using a layer-by-layer method. The morphological analysis, in situ drug payload, in vitro drug release profile, and mucoadhesion potential of the MPs are carried out using scanning electron microscopy, solid-state 31P NMR spectroscopy, UV spectroscopy, fluorescence imaging and periodic acid Schiff method, respectively. The cytotoxicity and preclinical safety of MPs are assessed on human vaginal (VK2/E6E7) and endocervical (End1/E6E7) epithelial cell lines and in female C57BL/6 mice, respectively. The results show that the MPs are successfully formulated with an average diameter ranging from 2 to 3 μm with a drug loading of 7-12% w/w. The drug release profile of these MPs primarily follows the Baker-Lonsdale and Korsmeyer-Peppas models. The MPs exhibit high mucoadhesion (20-50 folds) compared to native AGMPs. The multilayer MPs are noncytotoxic. Histological and immunochemical analysis of the mice genital tract shows neither signs of damage nor inflammatory cell infiltrate. These data highlight the potential use of TCS-coated AG-based multilayer MPs templates for the topical vaginal delivery of anti-HIV/AIDS microbicides.
Collapse
Affiliation(s)
- Jianing Meng
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Vivek Agrahari
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Miezan J Ezoulin
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Sudhaunshu S Purohit
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri, 64110, USA
| | - Tao Zhang
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Agostino Molteni
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Daniel Dim
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
| | - Nathan A Oyler
- Department of Chemistry, University of Missouri-Kansas City, Kansas City, Missouri, 64110, USA
| | - Bi-Botti C Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
37
|
Liang J, Susan Sun X, Yang Z, Cao S. Anticancer Drug Camptothecin Test in 3D Hydrogel Networks with HeLa cells. Sci Rep 2017; 7:37626. [PMID: 28145436 PMCID: PMC5286418 DOI: 10.1038/srep37626] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/20/2016] [Indexed: 11/09/2022] Open
Abstract
Development of a biomimetic 3D culture system for drug screening is necessary to fully understand the in vivo environment. Previously, a self-assembling peptide hydrogel has been reported; the hydrogel exhibited physiological properties superior to a 3D cell culture matrix. In this work, further research using H9e hydrogel with HeLa cells was carried out considering H9e hydrogel's interaction with camptothecin, a hydrophobic drug. According to AFM images, a PGworks solution triggered H9e hydrogel fiber aggregation and forms a 3D matrix suitable for cell culture. Dynamic rheological studies showed that camptothecin was encapsulated within the hydrogel network concurrently with peptide self-assembly without permanently destroying the hydrogel's architecture and remodeling ability. Fluorescence measurement indicated negligible interaction between the fluorophore part of camptothecin and the hydrogel, especially at concentration 0.25 and 0.5 wt%. Using a dialysis method, we found that H9e hydrogel could not significantly inhibit the diffusion of camptothecin encapsulated inside the hydrogel matrix. In the cell culture experiment, HeLa cells were simultaneously embedded in the H9e hydrogel with the initialization of hydrogelation. Most importantly, cell viability data after camptothecin treatment showed responses that were drug-dose dependent but unaffected by the H9e hydrogel concentration, indicating that the hydrogel did not inhibit the drug.
Collapse
Affiliation(s)
- Jun Liang
- College of Packaging and Printing Engineering, Tianjin University of Science and Technology, Tianjin, China
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
| | - Xiuzhi Susan Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, Kansas, United States of America
| | - Zhilong Yang
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| | - Shuai Cao
- Division of Biology, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
38
|
Hirota K, Doty AC, Ackermann R, Zhou J, Olsen KF, Feng MR, Wang Y, Choi S, Qu W, Schwendeman AS, Schwendeman SP. Characterizing release mechanisms of leuprolide acetate-loaded PLGA microspheres for IVIVC development I: In vitro evaluation. J Control Release 2016; 244:302-313. [DOI: 10.1016/j.jconrel.2016.08.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/07/2016] [Accepted: 08/21/2016] [Indexed: 11/28/2022]
|
39
|
Lockhart JN, Beezer DB, Stevens DM, Spears BR, Harth E. One-pot polyglycidol nanogels via liposome master templates for dual drug delivery. J Control Release 2016; 244:366-374. [PMID: 27411978 DOI: 10.1016/j.jconrel.2016.07.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/23/2016] [Accepted: 07/07/2016] [Indexed: 12/25/2022]
Abstract
Polyglycidol-based nanohydrogels (nHGs) have been prepared by optimizing the use of liposome master templates resulting in a high-yielding and more practical one-pot process to provide materials capable of carrying drugs of adverse chemical nature. The nanogels prepared with the one-pot method showed favorable kinetics for the release of either Nile Red (NR) or lysozyme (LYS), loaded with gel precursors such as semi-branched poly(glycidol allylglycidyl ether), PEG dithiol (1KDa), a free radical initiator and liposomal lipids at the liposome formation step. This process is superior to a comparable step-wise traditional approach and circumvents loading of the gel precursors with the hydrophilic drug into preformed liposome templates. A thiol-ene crosslinking reaction accomplishes the formation of the nanonetwork resulting in nHGs prepared in the traditional step-wise (nHG-SW) approach and the one-pot (nHG-OP) process. Both nanogel networks were characterized in terms of particle size and zeta (ζ) potential with average values of 148nm±39nm and -25.9mV±9.2 for the nHG-SW and 132nm±32 and -23.1mV±9.7 for the nHG-OPs. Loading efficiency for both of the nanogels with NR was determined by spectrophotometry to be 28% (nHP-SW) and 31% (nHP-OP). The LYS loading was based on the target loading of 10μg/mg for both nanogels found to be 84% and 86% for the nHG-SW and nHP-OP, respectively. As proof of concept for combination drug delivery, the in vitro release of both drug mimics, NR and LYS, were monitored under physiologically relevant conditions by an optimized dialysis method. The implementation of the multi-functional and semi-branched polyglycidol is recognized as the main contributor for the observed highly controlled release of proteins that are otherwise rapidly released from common PEG-based nanogel networks. Furthermore, the one-pot process led to be the most favorable drug delivery system based on the release kinetics pointing to a denser polymer network.
Collapse
Affiliation(s)
- Jacob N Lockhart
- Department of Chemistry, Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, United States
| | - Dain B Beezer
- Department of Chemistry, Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, United States
| | - David M Stevens
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, United States
| | - Benjamin R Spears
- Department of Chemistry, Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, United States
| | - Eva Harth
- Department of Chemistry, Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt Institute of Chemical Biology, Vanderbilt University, 7665 Stevenson Center, Nashville, TN 37235, United States; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37212, United States.
| |
Collapse
|
40
|
Zhang T, Dong D, Lu D, Wang S, Wu B. Cremophor EL-based nanoemulsion enhances transcellular permeation of emodin through glucuronidation reduction in UGT1A1-overexpressing MDCKII cells. Int J Pharm 2016; 501:190-8. [PMID: 26850314 DOI: 10.1016/j.ijpharm.2016.01.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/18/2016] [Accepted: 01/27/2016] [Indexed: 12/18/2022]
Abstract
Oral emodin, a natural anthraquinone and active component of many herbal medicines, is poorly bioavailable because of extensive first-pass glucuronidation. Here we aimed to prepare emodin nanoemulsion (EMO-NE) containing cremophor EL, and to assess its potential for enhancing transcellular absorption of emodin using UGT1A1-overexpressing MDCKII cells (or MDCK1A1 cells). EMO-NE was prepared using a modified emulsification technique and subsequently characterized by particle size, morphology, stability, and drug release. MDCKII cells were stably transfected with UGT1A1 using the lentiviral transfection approach. Emodin transport and metabolism were evaluated in Transwell-cultured MDCK1A1 cells after apical dosing of EMO-NE or control solution. The obtained EMO-NE (116 ± 6.5 nm) was spherical and stable for at least 2 months. Emodin release in vitro was a passive diffusion-driven process. EMO-NE administration increased the apparent permeability of emodin by a 2.3-fold (p<0.001) compared to the pure emodin solution (1.2 × 10(-5) cm/s vs 5.3 × 10(-6) cm/s). Further, both apical and basolateral excretion of emodin glucuronide (EMO-G) were significantly decreased (≥56.5%, p<0.001) in EMO-NE group. This was accompanied by a marked reduction (57.4%, p<0.001) in total emodin glucuronidation. It was found that the reduced glucuronidation was due to inhibition of cellular metabolism by cremophor EL. Cremophor EL inhibited UGT1A1-mediated glucuronidation of emodin using the mixed-type inhibition mechanism. In conclusion, cremophor EL-based nanoemulsion greatly enhanced transcellular permeation of emodin through inhibition of UGT metabolism. This cremophor EL-based nanoformulation may be a promising strategy to improve the oral bioavailability of emodin.
Collapse
Affiliation(s)
- Tianpeng Zhang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Dong Dong
- Ocular Surface Research Center and Institute of Ophthalmology, Jinan University School of Medicine, Guangzhou, China
| | - Danyi Lu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shuai Wang
- Division of Pharmaceutics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| |
Collapse
|
41
|
Fernández-Colino A, Bermudez JM, Arias FJ, Quinteros D, Gonzo E. Development of a mechanism and an accurate and simple mathematical model for the description of drug release: Application to a relevant example of acetazolamide-controlled release from a bio-inspired elastin-based hydrogel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 61:286-92. [PMID: 26838852 DOI: 10.1016/j.msec.2015.12.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/04/2015] [Accepted: 12/22/2015] [Indexed: 11/29/2022]
Abstract
Transversality between mathematical modeling, pharmacology, and materials science is essential in order to achieve controlled-release systems with advanced properties. In this regard, the area of biomaterials provides a platform for the development of depots that are able to achieve controlled release of a drug, whereas pharmacology strives to find new therapeutic molecules and mathematical models have a connecting function, providing a rational understanding by modeling the parameters that influence the release observed. Herein we present a mechanism which, based on reasonable assumptions, explains the experimental data obtained very well. In addition, we have developed a simple and accurate “lumped” kinetics model to correctly fit the experimentally observed drug-release behavior. This lumped model allows us to have simple analytic solutions for the mass and rate of drug release as a function of time without limitations of time or mass of drug released, which represents an important step-forward in the area of in vitro drug delivery when compared to the current state of the art in mathematical modeling. As an example, we applied the mechanism and model to the release data for acetazolamide from a recombinant polymer. Both materials were selected because of a need to develop a suitable ophthalmic formulation for the treatment of glaucoma. The in vitro release model proposed herein provides a valuable predictive tool for ensuring product performance and batch-to-batch reproducibility, thus paving the way for the development of further pharmaceutical devices.
Collapse
Affiliation(s)
- A Fernández-Colino
- Bioforge Research Group, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - J M Bermudez
- Facultad de Ingeniería, Instituto de Investigaciones para la Industria Química (INIQUI-CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, A4408FVY Salta Capital, Argentina.
| | - F J Arias
- Bioforge Research Group, Universidad de Valladolid, CIBER-BBN, Paseo de Belén 19, 47011 Valladolid, Spain
| | - D Quinteros
- UNITEFA - CONICET, Departamento de Farmacia, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - E Gonzo
- Facultad de Ingeniería, Instituto de Investigaciones para la Industria Química (INIQUI-CONICET), Universidad Nacional de Salta, Av. Bolivia 5150, A4408FVY Salta Capital, Argentina
| |
Collapse
|
42
|
Kasten G, Silva LFC, Lemos-Senna E. Development of low density azithromycin-loaded polycaprolactone microparticles for pulmonary delivery. Drug Dev Ind Pharm 2015; 42:776-87. [PMID: 26289002 DOI: 10.3109/03639045.2015.1075032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT The development of low-density polymeric microparticles may be a useful approach to deliver antibiotics such as azithromycin into the lung. OBJECTIVE The aim of this study was to develop azithromycin-loaded low density polycaprolactone microparticles by the double emulsion/solvent evaporation method. MATERIALS AND METHODS Microparticles were prepared and characterized according to their physicochemical properties, drug loading, and drug release profiles. A full 2(3) factorial design was used to evaluate the effect of some independent variables on the drug loading and aerodynamic diameter of the particles. An in silico pulmonary deposition model was used to predict the lung deposition profiles for the formulations. RESULTS AND DISCUSSION The resulting particles presented drug loading up to 23.1% (wt%) and mean geometric diameters varying from 4.0 µm to 15.4 µm. Bulk and tapped densities were low, resulting in good or excellent flow properties. SEM images showed spherical particles with a smooth surface. However, hollow inner structures were observed, which may explain the low values of bulk density. The estimated aerodynamic diameters ranged from 2.3 µm to 8.9 µm. The in silico pulmonary deposition profiles indicated, for some formulations, that a significant fraction of the particles would be deposited in the deeper lung regions. CONCLUSIONS Statistical analysis demonstrated that not only drug loading but also the aerodynamic diameter of the microparticles is greatly affected by the preparation conditions. Overall, the results indicated that the low-density azithromycin-loaded microparticles with a relatively high respirable fraction may be obtained for the local treatment of lung infections.
Collapse
Affiliation(s)
- Georgia Kasten
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Luis Felipe Costa Silva
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| | - Elenara Lemos-Senna
- a Departamento de Ciências Farmacêuticas , Centro de Ciências da Saúde, Universidade Federal de Santa Catarina , Florianópolis , SC , Brazil
| |
Collapse
|
43
|
Ramyadevi D, Rajan K. Interaction and release kinetics study of hybrid polymer blend nanoparticles for pH independent controlled release of an anti-viral drug. J Taiwan Inst Chem Eng 2015. [DOI: 10.1016/j.jtice.2014.12.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Dawoud M, Hashem FM. Comparative study on the suitability of two techniques for measuring the transfer of lipophilic drug models from lipid nanoparticles to lipophilic acceptors. AAPS PharmSciTech 2014; 15:1551-61. [PMID: 25128298 DOI: 10.1208/s12249-014-0179-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/30/2022] Open
Abstract
Due to their particle size in the submicrometer range, lipid nanoparticles are suitable for parenteral administration. In order to obtain information on their potential in vivo performance, a simple and effective in vitro assay to evaluate the drug release behavior of such particles is required. This study compares the use of different experimental setups for this purpose. Lipid nanoparticles from trimyristin which were loaded with fluorescent lipophilic drug models (a temoporfin and Nile red) were used as donor particles. The transfer of the two drug models to multilamellar vesicles (MLV) and emulsion droplets as lipophilic acceptor compartments was examined. The determination of the transferred substance was performed either after separation by centrifugation or by an in situ flow cytometric technique. The transfer of temoporfin was slow to the acceptor MLV and very rapid to the acceptor emulsion. With both acceptors, the transfer of temoporfin stopped at a concentration much lower than the theoretical equilibrium values. The transfer of the less lipophilic drug Nile red was very rapid to both acceptors with equilibrium concentrations close to the expected values. The transfer results of temoporfin especially to the acceptor MLV obtained with the two detection techniques were comparable while the centrifugation technique indicated an apparently higher Nile red transfer rate than the flow cytometric technique. Both techniques are equally suitable to study the transfer of temoporfin, while the flow cytometric technique is advantageous to measure the very rapid transfer of Nile red.
Collapse
|
45
|
Abstract
This review summarizes the methods used to study real-time (37°C) drug release from nanoparticulate drug delivery systems and establish an IVIVC. Since no compendial standards exist, drug release is currently assessed using a variety of methods including sample and separate (SS), continuous flow (CF), dialysis membrane (DM) methods, and a combination thereof, as well as novel techniques like voltametry and turbidimetry. This review describes the principle of each method along with their advantages and disadvantages, including challenges with set-up and sampling. The SS method allows direct measurement of drug release with simple set-up requirements, but sampling is cumbersome. With the CF method, sampling is straightforward but the set-up is time consuming. Set-up as well as sampling is easier with the DM, but it may not be suitable for drugs that bind to the membrane. Novel methods offer the possibility of real-time drug release measurement but may be restricted to certain types of drugs. Of these methods, Level A IVIVCs have been obtained with dialysis, alone or in combination with the sample and separate technique. Future efforts should focus on developing mathematical models that describe drug release mechanisms as well as facilitate formulation development of nano-sized dosage forms.
Collapse
|
46
|
D’Souza S, Faraj JA, Dorati R, DeLuca PP. A short term quality control tool for biodegradable microspheres. AAPS PharmSciTech 2014; 15:530-41. [PMID: 24519488 DOI: 10.1208/s12249-013-0052-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/22/2013] [Indexed: 02/04/2023] Open
Abstract
Accelerated in vitro release testing methodology has been developed as an indicator of product performance to be used as a discriminatory quality control (QC) technique for the release of clinical and commercial batches of biodegradable microspheres. While product performance of biodegradable microspheres can be verified by in vivo and/or in vitro experiments, such evaluation can be particularly challenging because of slow polymer degradation, resulting in extended study times, labor, and expense. Three batches of Leuprolide poly(lactic-co-glycolic acid) (PLGA) microspheres having varying morphology (process variants having different particle size and specific surface area) were manufactured by the solvent extraction/evaporation technique. Tests involving in vitro release, polymer degradation and hydration of the microspheres were performed on the three batches at 55°C. In vitro peptide release at 55°C was analyzed using a previously derived modification of the Weibull function termed the modified Weibull equation (MWE). Experimental observations and data analysis confirm excellent reproducibility studies within and between batches of the microsphere formulations demonstrating the predictability of the accelerated experiments at 55°C. The accelerated test method was also successfully able to distinguish the in vitro product performance between the three batches having varying morphology (process variants), indicating that it is a suitable QC tool to discriminate product or process variants in clinical or commercial batches of microspheres. Additionally, data analysis utilized the MWE to further quantify the differences obtained from the accelerated in vitro product performance test between process variants, thereby enhancing the discriminatory power of the accelerated methodology at 55°C.
Collapse
|
47
|
Ravi PR, Vats R, Dalal V, Murthy AN. A hybrid design to optimize preparation of lopinavir loaded solid lipid nanoparticles and comparative pharmacokinetic evaluation with marketed lopinavir/ritonavir coformulation. J Pharm Pharmacol 2014; 66:912-26. [DOI: 10.1111/jphp.12217] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 12/15/2013] [Indexed: 11/26/2022]
Abstract
Abstract
Objectives
To prepare stearic acid-based lopinavir (LPV) loaded solid lipid nanoparticles (SLNs) using a hybrid design and compare in-vivo performance of optimized formulation with marketed LPV/ritonavir (RTV) coformulation.
Methods
LPV SLNs were prepared by hot melt emulsion technique and optimized using Plackett–Burman design and Box–Behnken design. Physical characterization studies were conducted for the optimized SLNs. Comparative oral pharmacokinetic studies and tissue distribution studies of optimized SLNs and LPV/RTV coformulation were done in Wistar rats. In-vitro metabolic stability and intestinal permeability studies for LPV SLNs were undertaken to elucidate the mechanism involved in the pharmacokinetic improvement of LPV.
Key findings
Optimized SLNs exhibited nanometeric size (223 nm) with high entrapment efficiency (83%). In-vitro drug release study of SLNs showed biphasic sustained release behaviour. Significant increase in oral bioavailability of LPV from LPV SLNs (5 folds) and LPV/RTV coformulation (3.7 folds) was observed as compared with free LPV. LPV SLNs showed better tissue distribution of LPV in HIV reservoirs than LPV/RTV coformulation. In-vitro studies demonstrated that SLNs provided metabolic protection of LPV and were endocytosized during absorption.
Conclusions
SLNs enhanced oral bioavailability and improved distribution profile of LPV to HIV reservoirs and hence could be better alternative to LPV/RTV coformulation.
Collapse
Affiliation(s)
- Punna Rao Ravi
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Rahul Vats
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | - Vikas Dalal
- Pharmacy Department, BITS-Pilani Hyderabad Campus, Hyderabad, Andhra Pradesh, India
| | | |
Collapse
|
48
|
IVIVC from Long Acting Olanzapine Microspheres. Int J Biomater 2014; 2014:407065. [PMID: 24578707 PMCID: PMC3918854 DOI: 10.1155/2014/407065] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/20/2013] [Indexed: 12/03/2022] Open
Abstract
In this study, four PLGA microsphere formulations of Olanzapine were characterized on the basis of their in vitro behavior at 37°C, using a dialysis based method, with the goal of obtaining an IVIVC. In vivo profiles were determined by deconvolution (Nelson-Wagner method) and using fractional AUC. The in vitro and in vivo release profiles exhibited the same rank order of drug release. Further, in vivo profiles obtained with both approaches were nearly superimposable, suggesting that fractional AUC could be used as an alternative to the Nelson-Wagner method. A comparison of drug release profiles for the four formulations revealed that the in vitro profile lagged slightly behind in vivo release, but the results were not statistically significant (P < 0.0001). Using the four formulations that exhibited different release rates, a Level A IVIVC was established using the deconvolution and fractional AUC approaches. A nearly 1 : 1 correlation (R2 > 0.96) between in vitro release and in vivo measurements confirmed the excellent relationship between in vitro drug release and the amount of drug absorbed in vivo. The results of this study suggest that proper selection of an in vitro method will greatly aid in establishing a Level A IVIVC for long acting injectables.
Collapse
|
49
|
Szlęk J, Pacławski A, Lau R, Jachowicz R, Mendyk A. Heuristic modeling of macromolecule release from PLGA microspheres. Int J Nanomedicine 2013; 8:4601-11. [PMID: 24348037 PMCID: PMC3857266 DOI: 10.2147/ijn.s53364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Dissolution of protein macromolecules from poly(lactic-co-glycolic acid) (PLGA) particles is a complex process and still not fully understood. As such, there are difficulties in obtaining a predictive model that could be of fundamental significance in design, development, and optimization for medical applications and toxicity evaluation of PLGA-based multiparticulate dosage form. In the present study, two models with comparable goodness of fit were proposed for the prediction of the macromolecule dissolution profile from PLGA micro- and nanoparticles. In both cases, heuristic techniques, such as artificial neural networks (ANNs), feature selection, and genetic programming were employed. Feature selection provided by fscaret package and sensitivity analysis performed by ANNs reduced the original input vector from a total of 300 input variables to 21, 17, 16, and eleven; to achieve a better insight into generalization error, two cut-off points for every method was proposed. The best ANNs model results were obtained by monotone multi-layer perceptron neural network (MON-MLP) networks with a root-mean-square error (RMSE) of 15.4, and the input vector consisted of eleven inputs. The complicated classical equation derived from a database consisting of 17 inputs was able to yield a better generalization error (RMSE) of 14.3. The equation was characterized by four parameters, thus feasible (applicable) to standard nonlinear regression techniques. Heuristic modeling led to the ANN model describing macromolecules release profiles from PLGA microspheres with good predictive efficiency. Moreover genetic programming technique resulted in classical equation with comparable predictability to the ANN model.
Collapse
Affiliation(s)
- Jakub Szlęk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| | - Adam Pacławski
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| | - Raymond Lau
- School of Chemical and Biomedical Engineering, Nanyang Technological University (NTU), Singapore
| | - Renata Jachowicz
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
50
|
Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride. Eur J Pharm Sci 2013; 52:165-72. [PMID: 24262075 DOI: 10.1016/j.ejps.2013.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/16/2013] [Accepted: 11/07/2013] [Indexed: 11/22/2022]
Abstract
In view of the fact that the oral administration of finasteride (FIN) has resulted in various undesirable systemic side effects, the topical application of polystyrene and poly(acrylic acid)-based polymersomes (underexplored system) was investigated. Undecorated PS139-b-PAA17 and PS404-b-PAA63 vesicles (C3 and C7, respectively) or vesicles decorated with chitosan samples of different molecular weight (C3/CS-oligo, C7/CS-oligo, C3/CS-37 and C7/CS-37) were prepared by the co-solvent self-assembly method and characterized by small-angle X-ray scattering,transmission electron microscopy and dynamic light scattering techniques. In vitro release experiments and ex vivo permeation using Franz diffusion cells were carried out (through comparison with hydroethanolic finasteride solution). The ideal system should provide high finasteride retention in the dermis and epidermis while allowing some control of the drug release. The particle size and in vitro release were negatively correlated with the permeation coefficient and skin retention in both the epidermis and dermis. The findings that the longest lag time was obtained for the hydroethanolic drug solution and lowest permeation for the systems able to release the drug faster support the hypothesis that nanostructured systems may be required to enhance the penetration and permeation of the drug. Chitosan-decorated polymersomes interacted more strongly with the skin components than non-decorated samples, probably due to the positive surface charge, which increased the FIN retention and reduced the lag time. C7 polymersomes decorated with chitosan were more appropriate for topical applications (high retention in the dermis and epidermis and controlled drug delivery).
Collapse
|