1
|
Zhong J, Zhao N, Song Q, Du Z, Shu P. Topical retinoids: Novel derivatives, nano lipid-based carriers, and combinations to improve chemical instability and skin irritation. J Cosmet Dermatol 2024; 23:3102-3115. [PMID: 38952060 DOI: 10.1111/jocd.16415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Retinoids, defined as synthetic or natural derivatives of vitamin A, have been extensively studied as anti-aging molecules that are widely applied in cosmetics. However, due to their physicochemical property, retinoids are highly unstable and extremely sensitive to light, oxygen, and temperature. Moreover, topical application of retinoids often leads to cutaneous irritation. These instabilities and irritant properties of retinoids limit their application in cosmetic and pharmaceutical products. AIM Our study aimed to provide a systematic review to summarize the mechanisms underlying the instability and irritant properties of retinoids, as well as recent developments in addressing these challenges. METHODS A comprehensive PubMed search was conducted using the following keywords: retinoids, chemical instability, skin irritation, retinoid derivatives, nano lipid-based carriers, liposomes, penetration-enhancer vesicles, ethosomes, niosomes, nanoemulsions, solid lipid nanoparticles, vitamins, soothing and hydrating agents, antioxidants and metal chelator and retinol combinations. Relevant researches published between 1968 and 2023 and studies related to these reports were reviewed. RESULTS The development of new retinoid derivatives, the utilization of new delivery systems like nano lipid-based carriers and the combination with other compounds like vitamins, soothing agents, antioxidants and metal chelator have been explored to improve the stability, bioavailability, and toxicity of the retinoid family. CONCLUSIONS Through advancements in formulation techniques, structure modification of retinoid derivatives and development of novel nano lipid-based carriers, the chemical instability and skin irritation of retinoids has been mitigated, ensuring their efficacy and potency over extended periods.
Collapse
Affiliation(s)
- Jiangming Zhong
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Nan Zhao
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Qingle Song
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong, China
| | - Peng Shu
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen, Guangdong, China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Narsa AC, Suhandi C, Afidika J, Ghaliya S, Elamin KM, Wathoni N. A Comprehensive Review of the Strategies to Reduce Retinoid-Induced Skin Irritation in Topical Formulation. Dermatol Res Pract 2024; 2024:5551774. [PMID: 39184919 PMCID: PMC11344648 DOI: 10.1155/2024/5551774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/21/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Currently, retinoids are known for their abundant benefits to skin health, ranging from reducing signs of aging and decreasing hyperpigmentation to treating acne. However, it cannot be denied that there are various side effects associated with the use of retinoids on the skin, one of which is irritation. Several approaches can be employed to minimize the irritation caused by retinoids. This review article discusses topical retinoid formulation technology strategies to reduce skin irritation effects. The methodology used in this study is a literature review of 21 reference journals. The sources used in compiling this review are from PubMed, Scopus, ScienceDirect, and MEDLINE. The findings obtained indicate that the following methods can be used to lessen retinoid-induced irritation in topical formulations: developing drug delivery systems in the formulation, such as encapsulating retinoids, transforming retinoids into nanoparticles, forming complexes (e.g., with cyclodextrin), and binding retinoids with carriers (e.g., polymers, NLC, SLN), adding ingredients with anti-irritation activity, skin barrier improvement, and increased skin hydration to retinoid formulations (e.g., combinations of glucosamine, trehalose, ectoine, sucralfate, omega-9, and 4-t-butylcyclohexanol, addition of ethanolic bark extract of Alstonia scholaris R. Br).
Collapse
Affiliation(s)
- Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
- Department of Pharmaceutics and Pharmaceutical TechnologyFaculty of PharmacyMulawarman University, Samarinda, Indonesia
| | - Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Janifa Afidika
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Salsabil Ghaliya
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| | - Khaled M. Elamin
- Graduate School of Pharmaceutical SciencesKumamoto University, Kumamoto 862-0973, Japan
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical TechnologyUniversitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
3
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
4
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
5
|
Alhelal HM, Mehta S, Kadian V, Kakkar V, Tanwar H, Rao R, Aldhubiab B, Sreeharsha N, Shinu P, Nair AB. Solid Lipid Nanoparticles Embedded Hydrogels as a Promising Carrier for Retarding Irritation of Leflunomide. Gels 2023; 9:576. [PMID: 37504455 PMCID: PMC10379097 DOI: 10.3390/gels9070576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/02/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Leflunomide (LEF), a disease-modifying anti-rheumatic drug, has been widely explored for its anti-inflammatory potential in skin disorders such as psoriasis and melanoma. However, its poor stability and skin irritation pose challenges for topical delivery. To surmount these issues, LEF-loaded solid lipid nanoparticles (SLNs) integrated with hydrogels have been developed in the present investigation. SLNs developed by microemulsion techniques were found ellipsoidal with 273.1 nm particle size and -0.15 mV zeta potential. Entrapment and total drug content of LEF-SLNs were obtained as 65.25 ± 0.95% and 93.12 ± 1.72%, respectively. FTIR and XRD validated the successful fabrication of LEF-SLNs. The higher stability of LEF-SLNs (p < 0.001) compared to pure drug solution was observed in photostability studies. Additionally, in vitro anti-inflammatory activity of LEF-SLNs showed good potential in comparison to pure drugs. Further, prepared LEF-SLNs loaded hydrogel showed ideal rheology, texture, occlusion, and spreadability for topical drug delivery. In vitro release from LEF-SLN hydrogel was found to follow the Korsmeyer-Peppas model. To assess the skin safety of fabricated lipidic formulation, irritation potential was performed employing the HET-CAM technique. In conclusion, the findings of this investigation demonstrated that LEF-SLN hydrogel is capable of enhancing the photostability of the entrapped drug while reducing its skin irritation with improved topical delivery characteristics.
Collapse
Affiliation(s)
- Hawra Mohammed Alhelal
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Sidharth Mehta
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Varsha Kadian
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Himanshi Tanwar
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Rekha Rao
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
6
|
Noor A, Jamil S, Sadeq TW, Mohammed Ameen MS, Kohli K. Development and Evaluation of Nanoformulations Containing Timur Oil and Rosemary Oil for Treatment of Topical Fungal Infections. Gels 2023; 9:516. [PMID: 37504395 PMCID: PMC10378787 DOI: 10.3390/gels9070516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023] Open
Abstract
The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of -19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.
Collapse
Affiliation(s)
- Afeefa Noor
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| | - Shahid Jamil
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
| | - Tariq Waece Sadeq
- Department of Pharmacy, College of Pharmacy, Knowledge University, Kirkuk Road, Erbil 44001, Iraq
- Pharmacy Department, Erbil Medical Technical Institute, Erbil Polytechnic University, Ebril 44001, Iraq
| | | | - Kanchan Kohli
- Lloyd Institute of Management and Technology, Greater Noida 201306, India
- Department of Pharmaceutics, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard University, New Delhi 110062, India
| |
Collapse
|
7
|
Phechkrajang C, Phiphitphibunsuk W, Sukthongchaikool R, Nuchtavorn N, Leanpolchareanchai J. Development of Miconazole-Loaded Microemulsions for Enhanced Topical Delivery and Non-Destructive Analysis by Near-Infrared Spectroscopy. Pharmaceutics 2023; 15:1637. [PMID: 37376085 DOI: 10.3390/pharmaceutics15061637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The antifungal drug miconazole nitrate has a low solubility in water, leading to reduced therapeutic efficacy. To address this limitation, miconazole-loaded microemulsions were developed and assessed for topical skin delivery, prepared through spontaneous emulsification with oleic acid and water. The surfactant phase included a mixture of polyoxyethylene sorbitan monooleate (PSM) and various cosurfactants (ethanol, 2-(2-ethoxyethoxy) ethanol, or 2-propanol). The optimal miconazole-loaded microemulsion containing PSM and ethanol at a ratio of 1:1 showed a mean cumulative drug permeation of 87.6 ± 5.8 μg/cm2 across pig skin. The formulation exhibited higher cumulative permeation, permeation flux, and drug deposition than conventional cream and significantly increased the in vitro inhibition of Candida albicans compared with cream (p < 0.05). Over the course of a 3-month study conducted at a temperature of 30 ± 2 °C, the microemulsion exhibited favorable physicochemical stability. This outcome signifies its potential suitability as a carrier for effectively administering miconazole through topical administration. Additionally, a non-destructive technique employing near-infrared spectroscopy coupled with a partial least-squares regression (PLSR) model was developed to quantitatively analyze microemulsions containing miconazole nitrate. This approach eliminates the need for sample preparation. The optimal PLSR model was derived by utilizing orthogonal signal correction pretreated data with one latent factor. This model exhibited a remarkable R2 value of 0.9919 and a root mean square error of calibration of 0.0488. Consequently, this methodology holds potential for effectively monitoring the quantity of miconazole nitrate in various formulations, including both conventional and innovative ones.
Collapse
Affiliation(s)
- Chutima Phechkrajang
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Rapee Sukthongchaikool
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nantana Nuchtavorn
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
8
|
Gaber DA, Alsubaiyel AM, Alabdulrahim AK, Alharbi HZ, Aldubaikhy RM, Alharbi RS, Albishr WK, Mohamed HA. Nano-Emulsion Based Gel for Topical Delivery of an Anti-Inflammatory Drug: In vitro and in vivo Evaluation. Drug Des Devel Ther 2023; 17:1435-1451. [PMID: 37216175 PMCID: PMC10198277 DOI: 10.2147/dddt.s407475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Arthritic disorder is a common disease in elderly patients and the most common cause of joint dysfunction. This study aims to design Piroxicam-loaded nanoemulsion (PXM-NE) formulations to enhance the analgesic and anti-inflammatory activity of the drug for topical use. Methods The nanoemulsion preparations were designed based on a high-pressure homogenization technique and were characterized for particle size (PS), poly dispersity index (Pi), zeta potential (ZP), drug content, and the selected formula was investigated for its topical analgesic activity and pharmacokinetic parameters. Results The characterizations showed that the PS was 310.20±19.84 nm, Pi was 0.15±0.02, and ZP was -15.74±1.6 mV for the selected formula. A morphology study showed that the PXM-NE droplets were spherical with a uniform size distribution. The in vitro release study showed a biphasic release pattern with a rapid release within the first 2 hours followed by a sustained release pattern. The analgesic activity for optimal formula was 1.66 times higher than the commercial gel with a double duration of analgesic activity. The Cmax was 45.73±9.95 and 28.48±6.44 ng/mL for the gel form of the selected formula and the commercial gel respectively. The relevant bioavailability of the selected formula was 2.41 higher than the commercial gel. Conclusion The results showed good physicochemical properties, higher bioavailability, and a longer analgesic effect of PXM from nanoemulsion gel, as compared to the commercial product.
Collapse
Affiliation(s)
- Dalia A Gaber
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | | | - Hanan Z Alharbi
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Rama M Aldubaikhy
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Rawan S Alharbi
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Wades K Albishr
- College of Pharmacy, Qassim University, Buraidah, 52571, Saudi Arabia
| | - Heba A Mohamed
- Department of Organic Chemistry, National Research Center, Giza, Egypt
| |
Collapse
|
9
|
Pawar SD, Gawali K, Kulhari H, Murty US, Kumar P. Amoxapine-Loaded Solid Lipid Nanoparticles with Superior Preclinical Pharmacokinetics for Better Brain Delivery: LC-MS/MS and GC-MS Analysis. ACS Chem Neurosci 2023. [PMID: 37027804 DOI: 10.1021/acschemneuro.2c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
The tricyclic antidepressant amoxapine (AMX) has been reported for a rapid onset of action compared to other cyclic antidepressants. It has very low solubility and bioavailability due to first-pass metabolism. Therefore, we planned to develop solid lipid nanoparticles (SLNs) of AMX using a single emulsification method to increase its solubility and bioavailability. HPLC and LC-MS/MS methods were developed further to quantify AMX in the formulation, plasma, and brain tissue samples. The formulation was studied for entrapment efficiency, loading, and in vitro drug release. Particle size and ζ potential analyses, AFM, SEM, TEM, DSC, and XRD were used for further characterization. In vivo oral pharmacokinetic and brain pharmacokinetic studies were performed using Wistar rats. The entrapment and loading efficiencies of AMX in SLNs were 85.8 ± 3.42 and 4.5 ± 0.45%, respectively. The developed formulation had a mean particle size of 151.5 ± 7.02 nm and a polydispersity index of 0.40 ± 0.11. DSC and XRD results indicated that AMX was incorporated into the nanocarrier system in an amorphous form. SEM, TEM, and AFM studies of AMX-SLNs confirmed the particles' spherical shape and nanoscale size. AMX solubility increased by approx. 2.67 times compared to the pure drug. The developed LC-MS/MS method was successfully applied to the oral and brain pharmacokinetic study of AMX-loaded SLNs in rats. Oral bioavailability was enhanced 1.6 times compared to the pure drug. The peak plasma concentrations of pure AMX and AMX-SLNs were 617.4 ± 137.4 and 1043.5 ± 150.2 (ng/mL), respectively. AMX-SLNs showed more than 5.8 times brain concentration compared to the pure drug. Based on the findings, it appears that utilizing a solid lipid nanoparticle carrier to transport AMX can be a highly effective delivery method with improved pharmacokinetic properties in the brain. This approach may prove valuable for future antidepressant treatment.
Collapse
Affiliation(s)
- Sachin Dattram Pawar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Komal Gawali
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Hitesh Kulhari
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
- School of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Upadhyayula Suryanarayana Murty
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| | - Pramod Kumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur (Halugurisuk), Post Office Changsari, Kamrup, Assam 781101, India
| |
Collapse
|
10
|
Solid Lipid Nanoparticles: Review of the Current Research on Encapsulation and Delivery Systems for Active and Antioxidant Compounds. Antioxidants (Basel) 2023; 12:antiox12030633. [PMID: 36978881 PMCID: PMC10045442 DOI: 10.3390/antiox12030633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Various active compounds are easily damaged, so they need protection and must be easily absorbed and targeted. This problem can be overcome by encapsulating in the form of solid lipid nanoparticles (SLNs). Initially, SLNs were widely used to encapsulate hydrophobic (non-polar) active compounds because of their matched affinity and interactions. Currently, SLNs are being widely used for the encapsulation of hydrophilic (polar) and semipolar active compounds, but there are challenges, including increasing their entrapment efficiency. This review provides information on current research on SLNs for encapsulation and delivery systems for active and antioxidant compounds, which includes various synthesis methods and applications of SLNs in various fields of utilization. SLNs can be developed starting from the selection of solid lipid matrices, emulsifiers/surfactants, types of active compounds or antioxidants, synthesis methods, and their applications or utilization. The type of lipid used determines crystal formation, control of active compound release, and encapsulation efficiency. Various methods can be used in the SLN fabrication of active compounds and hydrophilic/hydrophobic antioxidants, which have advantages and disadvantages. Fabrication design, which includes the selection of lipid matrices, surfactants, and fabrication methods, determines the characteristics of SLNs. High-shear homogenization combined with ultrasonication is the recommended method and has been widely used because of the ease of preparation and good results. Appropriate fabrication design can produce SLNs with stable active compounds and antioxidants that become suitable encapsulation systems for various applications or uses.
Collapse
|
11
|
Baghirova L, Kaya Tilki E, Öztürk AA. Evaluation of Cell Proliferation and Wound Healing Effects of Vitamin A Palmitate-Loaded PLGA/Chitosan-Coated PLGA Nanoparticles: Preparation, Characterization, Release, and Release Kinetics. ACS OMEGA 2023; 8:2658-2668. [PMID: 36687101 PMCID: PMC9851036 DOI: 10.1021/acsomega.2c07232] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
In this study, vitamin A palmitate (VAP)-loaded poly(lactic-co-glycolic acid) (PLGA)/chitosan-coated PLGA nanoparticle (NP) systems were prepared by the nanoprecipitation technique. The prepared systems were characterized by parameters such as particle size, polydispersity index (PDI), ζ-potential, encapsulation efficiency, in vitro dissolution, and release kinetic study. Then, the cytotoxicity and wound healing profiles of the designed NP formulations in HaCaT (human keratinocyte skin cell lines) were determined. The particle size of VAP-loaded NPs was obtained between 196.33 ± 0.65 and 669.23 ± 5.49 nm. PDI data proved that all NPs were prepared as high quality and monodisperse. While negative ζ-potential values of Blank-NP-1 and NP-1 encoded PLGA NP formulations were obtained, positive ζ-potential was obtained in chitosan-coated NPs. In vitro release studies of NPs observed rapid dissolution in the first 1-6 h, but prolonged dissolution of VAP after rapid dissolution. As a result of cell culture studies and wound healing activity studies, it was determined that NP-7 was the most effective. It was thought that the reason for this was that the NP-7 coded formulation was a chitosan-coated PLGA nanoparticle with the smallest particle size, and it was concluded that the efficiency of VAP was increased with its nanoparticle structure. This study demonstrated the similar wound healing effects of VAP-loaded nanoparticle systems, in particular NP-7, which increases keratinocyte cell proliferation at lower concentrations (10 μg·mL-1) than vitamin A alone (100 μg·mL-1). VAP-loaded nanocarriers that can be used in the pharmaceutical industry have been successfully produced and the results obtained have been evaluated as promising for this industry.
Collapse
Affiliation(s)
- Lala Baghirova
- Graduate
School of Health Sciences, Faculty of Pharmacy, Department of Cosmetology, Anadolu University, 26470Eskişehir, Turkey
| | - Elif Kaya Tilki
- Faculty
of Pharmacy, Department of Pharmacology, Anadolu University, 26470Eskişehir, Turkey
| | - A. Alper Öztürk
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, 26470Eskişehir, Turkey
| |
Collapse
|
12
|
Jain AK, Jain S, Abourehab MAS, Mehta P, Kesharwani P. An insight on topically applied formulations for management of various skin disorders. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2406-2432. [PMID: 35848901 DOI: 10.1080/09205063.2022.2103625] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various types of skin disorders across each age group and in each part of geographical world are very dreadful. Despite not being fatal each time they are always of social and mental concern for suffering individuals, causing complications in millions of patients every day and require comparatively longer duration of treatment. Off late, various topical/transdermal formulations have been widely explored for the treatment of various skin ailments. The efficiency of topical therapy depends on various physiochemical properties of drugs like particle size, particle size distribution, partition coefficient, viscosity of dosage form, skin permeability, skin condition and the site of application. Therefore, in plenty of examples, long-acting topical formulations have shown to be markedly excellent in comparison to conventional dosage forms. The major advantages of topical formulations accrue from their demonstrated ability: (i) Reduced serious side effects that may occur due to undesirably higher systemic absorption of drug. (ii) Enhancement of drug accumulation at the desired site. (iii) Easy incorporation of enormous range of hydrophilic and hydrophobic drugs and (iv) Reduced risk of dose dumping and comparatively easy termination of drug release. The prospective applications of topically applied formulations and the deposition of pharmaceuticals into the skin are examined.
Collapse
Affiliation(s)
- Amit K Jain
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Sakshi Jain
- Department of Pharmaceutical Sciences, , Bhagyoday Tirth Pharmacy College Sagar, M.P., India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Parul Mehta
- School of Pharmacy, LNCT University, Bhopal, M.P., India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.,University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| |
Collapse
|
13
|
Khan MI, Yaqoob S, Madni A, Akhtar MF, Sohail MF, Saleem A, Tahir N, Khan KUR, Qureshi OS. Development and In Vitro/ Ex Vivo Evaluation of Lecithin-Based Deformable Transfersomes and Transfersome-Based Gels for Combined Dermal Delivery of Meloxicam and Dexamethasone. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8170318. [PMID: 36483631 PMCID: PMC9726271 DOI: 10.1155/2022/8170318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Transfersomes (TFS) are the promising carriers for transdermal delivery of various low and high molecular weight drugs, owing to their self-regulating and self-optimizing nature. Herein, we report synthesis and characterization of TFS loaded with meloxicam (MLX), an NSAID, and dexamethasone (DEX), a steroid, for simultaneous transdermal delivery. The different formulations of TFS containing varying amounts of lecithin, Span 80, and Tween 80 (TFS-1 to TFS-6) were successfully prepared by thin-film hydration method. The size of ranged between 248 and 273 nm, zeta potential values covering from -62.6 to -69.5 mV, polydispersity index (PDI) values in between 0.329 and 0.526, and entrapment efficiency of MLX and DEX ranged between 63-96% and 48-81%, respectively. Release experiments at pH 7.4 demonstrated higher cumulative drug release attained with Tween 80 compared to Span 80-based TFS. The scanning electron microscopy (SEM) of selected formulations -1 and TFS-3 revealed spherical shape of vesicles. Furthermore, three optimized transfersomal formulations (based on entrapment efficiency, TFS-1, TFS-3, and TFS-5) were incorporated into carbopol-940 gels coded as TF-G1, TF-G3, and TF-G5. These transfersomal gels were subjected to pH, spreadability, viscosity, homogeneity, skin irritation, in vitro drug release, and ex vivo skin permeation studies, and the results were compared with plain (nontransfersomal) gel having MLX and DEX. TFS released 71.72% to 81.87% MLX in 12 h; whereas, DEX release was quantified as 74.72% to 83.72% in same time. Nevertheless, TF-based gels showed slower drug release; 51.54% to 59.60% for MLX and 48.98% to 61.23% for DEX. The TF-G systems showed 85.87% permeation of MLX (TF-G1), 68.15% (TF-G3), and 68.94% (TF-G5); whereas, 78.59%, 70.54%, and 75.97% of DEX was permeated by TF-G1, TF-G3, and TF-G5, respectively. Kinetic modeling of release and permeation data indicated to follow Korsmeyer-Peppas model showing diffusion diffusion-based drug moment. Conversely, plain gel influx was found mere 26.18% and 22.94% for MLX and DEX, respectively. These results suggest that TF-G loaded with MLX and DEX can be proposed as an alternate drug carriers for improved transdermal flux that will certainly increase therapeutic outcomes.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Samiya Yaqoob
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore Campus, 54000 Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Pakistan
| | - Nayab Tahir
- College of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | |
Collapse
|
14
|
Upadhyay P, Agarwal S, Upadhyay S. Hydrophobically Modified Abelmoschus esculentus Polysaccharide Based Nanoparticles and Applications: A Review. Curr Drug Discov Technol 2022; 19:e010822207168. [PMID: 35927911 DOI: 10.2174/1570163819666220801121857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023]
Abstract
Nanomaterials are indeed a nanoscale technology that deals with the creation, evaluation, fabrication, and utilization of systems at the nanometre scale by manipulating their size and shape. We consider natural polysaccharides such as promising polysaccharides, which are biodegradable, nontoxic, abundant, and inexpensive bio-polymeric precursors for preparing the materials of choice in various industries. The aim is to review different methods to produce hydrophobically modified Abelmoschus esculentus nanoparticles and study the evaluation processes of these nanoparticles as given in the literature. It proved the benefits of derivatives of gum by introducing different chemical groups. The chemical functionalization of gum mainly includes the esterification, etherification, and crosslinking reactions of the hydroxyl groups and contains a special fibre which takes sugar levels in the blood under control, providing a sugar quantity suitable for the bowels. Okra contains mucilage that helps remove poisonous chemicals and bad cholesterol, often overloads the liver. Recovering from psychological conditions, like depression, general weakness, and joint healthiness can be done with Okra. Someone additionally applied it for pulmonary inflammation, bowel irritation, and sore throat. Purgative properties okra possesses are beneficial for bowel purification. It is used to counteract the acids. Fibre okra contains a valuable nutrient for intestinal microorganisms and ensures proper intestine functionality. It also protects the mucosa of the digestive tract by covering them with an extra layer because of its alkaline nature. Nanotechnology has emerged as a critical component of pharmaceutics, with many applications in drug carriers of interest aimed at improving drug clinical outcomes such as cancer, diabetes mellitus, wound care management, atopic dermatitis, cosmeceutical, etc. Beneficial outcomes of this review are discussed briefly.
Collapse
Affiliation(s)
- Prashant Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Shivani Agarwal
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Sukirti Upadhyay
- Faculty of Pharmacy, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| |
Collapse
|
15
|
Kolimi P, Youssef AAA, Narala S, Nyavanandi D, Dudhipala N, Bandari S, Repka MA. Development and characterization of itraconazole non-aqueous creams for the treatment of topical fungal infections. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Rarokar NR, Menghani SS, Kerzare DR, Khedekar PB, Bharne AP, Alamri AS, Alsanie WF, Alhomrani M, Sreeharsha N, Asdaq SMB. Preparation of Terbinafin-Encapsulated Solid Lipid Nanoparticles Containing Antifungal Carbopol® Hydrogel with Improved Efficacy: In Vitro, Ex Vivo and In Vivo Study. Pharmaceutics 2022; 14:pharmaceutics14071393. [PMID: 35890289 PMCID: PMC9320640 DOI: 10.3390/pharmaceutics14071393] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/12/2022] Open
Abstract
The present research was aimed to develop a terbinafin hydrochloride (TH)-encapsulated solid lipid nanoparticles (SLNs) hydrogel for improved antifungal efficacy. TH-loaded SLNs were obtained from glyceryl monostearate (lipid) and Pluronic® F68 (surfactant) employing high-pressure homogenization. The ratio of drug with respect to lipid was optimized, considering factors such as desired particle size and highest percent encapsulation efficiency. Lyophilized SLNs were then incorporated in the hydrogel prepared from 0.2–1.0% w/v carbopol 934P and further evaluated for rheological parameters. The z-average, zeta potential and polydispersity index were found to be 241.3 nm, −15.2 mV and 0.415, respectively. The SLNs show a higher entrapment efficiency of about 98.36%, with 2.12 to 6.3602% drug loading. SEM images, XRD and the results of the DSC, FTIR show successful preparation of SLNs after freeze drying. The TH-loaded SLNs hydrogel showed sustained drug release (95.47 ± 1.45%) over a period of 24 h. The results reported in this study show a significant effect on the zone of inhibition than the marketed formulation and pure drug in Candida albicans cultures, with better physical stability at cooler temperatures. It helped to enhance skin deposition inthe ex vivostudy and improved, in vitro and in vivo, the antifungal activity.
Collapse
Affiliation(s)
- Nilesh R. Rarokar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Sunil S. Menghani
- Department of Pharmaceutical Chemistry, Krupanidhi College of Pharmacy, Bangalore 560035, India
- Correspondence: (S.S.M.); or (S.M.B.A.)
| | - Deweshri R. Kerzare
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur 440037, India;
| | - Pramod B. Khedekar
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Ashish P. Bharne
- Computer Aided Drug Design Laboratory, Department of Pharmaceutical Sciences, Mahatma Jyotiba Fuley Shaikshanik Parisar, Rashtrasant Tukadoji Maharaj Nagpur University, Amravati Road, Nagpur 440033, India; (N.R.R.); (P.B.K.); (A.P.B.)
| | - Abdulhakeem S. Alamri
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Walaa F. Alsanie
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Majid Alhomrani
- Department of Clinical Laboratory Sciences, The Faculty of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.S.A.); (W.F.A.); (M.A.)
- Centre of Biomedical Sciences Research (CBSR), Deanship of Scientific Research, Taif University, Taif 21944, Saudi Arabia
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Pharmaceutics, Vidya Siri College of Pharmacy, Off Sarjapura Road, Bangalore 560035, India
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (S.S.M.); or (S.M.B.A.)
| |
Collapse
|
17
|
Chutoprapat R, Kopongpanich P, Chan LW. A Mini-Review on Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Topical Delivery of Phytochemicals for the Treatment of Acne Vulgaris. Molecules 2022; 27:molecules27113460. [PMID: 35684396 PMCID: PMC9182464 DOI: 10.3390/molecules27113460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/15/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Acne vulgaris (acne) is one of the most common dermatological problems affecting adolescents and young adults. Although acne may not lead to serious medical complications, its psychosocial effects are tremendous and scientifically proven. The first-line treatment for acne is topical medications composed of synthetic compounds, which usually cause skin irritation, dryness and itch. Therefore, naturally occurring constituents from plants (phytochemicals), which are generally regarded as safe, have received much attention as an alternative source of treatment. However, the degradation of phytochemicals under high temperature, light and oxygen, and their poor penetration across the skin barrier limit their application in dermatology. Encapsulation in lipid nanoparticles is one of the strategies commonly used to deliver drugs and phytochemicals because it allows appropriate concentrations of these substances to be delivered to the site of action with minimal side effects. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are promising delivery systems developed from the combination of lipid and emulsifier. They have numerous advantages that include biocompatibility and biodegradability of lipid materials, enhancement of drug solubility and stability, ease of modulation of drug release, ease of scale-up, feasibility of incorporation of both hydrophilic and lipophilic drugs and occlusive moisturization, which make them very attractive carriers for delivery of bioactive compounds for treating skin ailments such as acne. In this review, the concepts of SLNs and NLCs, methods of preparation, characterization, and their application in the encapsulation of anti-acne phytochemicals will be discussed.
Collapse
Affiliation(s)
- Romchat Chutoprapat
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Correspondence:
| | - Peerawas Kopongpanich
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Lai Wah Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 117543, Singapore;
| |
Collapse
|
18
|
Malik MR, Al-Harbi FF, Nawaz A, Amin A, Farid A, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN. Formulation and Characterization of Chitosan-Decorated Multiple Nanoemulsion for Topical Delivery In Vitro and Ex Vivo. Molecules 2022; 27:molecules27103183. [PMID: 35630660 PMCID: PMC9144098 DOI: 10.3390/molecules27103183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, chitosan-decorated multiple nanoemulsion (MNE) was formulated using a two-step emulsification process. The formulated multiple nanoemuslion was evaluated physiochemically for its size and zeta potential, surface morphology, creaming and cracking, viscosity and pH. A Franz diffusion cell apparatus was used to carry out in vitro drug-release and permeation studies. The formulated nanoemulsion showed uniform droplet size and zeta potential. The pH and viscosity of the formulated emulsion were in the range of and suitable for topical delivery. The drug contents of the simple nanoemulsion (SNE), the chitosan-decorated nanoemulsion (CNE) and the MNE were 71 ± 2%, 82 ± 2% and 90 ± 2%, respectively. The formulated MNE showed controlled release of itraconazole as compared with that of the SNE and CNE. This was attributed to the chitosan decoration as well as to formulating multiple emulsions. The significant permeation and skin drug retention profile of the MNE were attributed to using the surfactants tween 80 and span 20 and the co-surfactant PEG 400. ATR-FTIR analysis confirmed that the MNE mainly affects the lipids and proteins of the skin, particularly the stratum corneum, which results in significantly higher permeation and retention of the drug. It was concluded that the proposed MNE formulation delivers drug to the target site of the skin and can be therapeutically used for various cutaneous fungal infections.
Collapse
Affiliation(s)
- Muhammad Rehan Malik
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.R.M.); (A.A.)
| | - Fatemah Farraj Al-Harbi
- College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 84428, Saudi Arabia;
| | - Asif Nawaz
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.R.M.); (A.A.)
- Correspondence: (A.N.); (A.F.)
| | - Adnan Amin
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (M.R.M.); (A.A.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (A.N.); (A.F.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Ahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Ahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| |
Collapse
|
19
|
Khan AS, Shah KU, Mohaini MA, Alsalman AJ, Hawaj MAA, Alhashem YN, Ghazanfar S, Khan KA, Niazi ZR, Farid A. Tacrolimus-Loaded Solid Lipid Nanoparticle Gel: Formulation Development and In Vitro Assessment for Topical Applications. Gels 2022; 8:gels8020129. [PMID: 35200510 PMCID: PMC8871527 DOI: 10.3390/gels8020129] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
The currently available topical formulations of tacrolimus have minimal and variable absorption, elevated mean disposition half-life, and skin irritation effects resulting in patient noncompliance. In our study, we fabricated tacrolimus-loaded solid lipid nanoparticles (SLNs) that were converted into a gel for improved topical applications. The SLNs were prepared using a solvent evaporation method and characterized for their physicochemical properties. The particle size of the SLNs was in the range of 439 nm to 669 nm with a PDI of ≤0.4, indicating a monodispersed system. The Zeta potential of uncoated SLNs (F1–F5) ranged from −25.80 to −15.40 mV. Those values reverted to positive values for chitosan-decorated formulation (F6). The drug content and entrapment efficiency ranged between 0.86 ± 0.03 and 0.91 ± 0.03 mg/mL and 68.95 ± 0.03 and 83.68 ± 0.04%, respectively. The pH values of 5.45 to 5.53 depict their compatibility for skin application. The surface tension of the SLNs decreased with increasing surfactant concentration that could increase the adherence of the SLNs to the skin. The release of drug from gel formulations was significantly retarded in comparison to their corresponding SLN counterparts (p ≤ 0.05). Both SLNs and their corresponding gel achieved the same level of drug permeation, but the retention of the drug was significantly improved with the conversion of SLNs into their corresponding gel formulation (p ≤ 0.05) due to its higher bioadhesive properties.
Collapse
Affiliation(s)
- Abdul Shakur Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.S.K.); (K.A.K.); (Z.R.N.)
| | - Kifayat Ullah Shah
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.S.K.); (K.A.K.); (Z.R.N.)
- Correspondence: (K.U.S.); (A.F.)
| | - Mohammed Al Mohaini
- Basic Sciences Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Alahsa 31982, Saudi Arabia;
- King Abdullah International Medical Research Center, Alahsa 31982, Saudi Arabia
| | - Abdulkhaliq J. Alsalman
- Department of Clinical Pharmacy, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Maitham A. Al Hawaj
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Ahsa 31982, Saudi Arabia;
| | - Yousef N. Alhashem
- Clinical Laboratory Sciences Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia;
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan;
| | - Kamran Ahmad Khan
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.S.K.); (K.A.K.); (Z.R.N.)
| | - Zahid Rasul Niazi
- Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Pakistan; (A.S.K.); (K.A.K.); (Z.R.N.)
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, Dera Ismail Khan 29050, Pakistan
- Correspondence: (K.U.S.); (A.F.)
| |
Collapse
|
20
|
Tetrahydrocurcumin Lipid Nanoparticle Based Gel Promotes Penetration into Deeper Skin Layers and Alleviates Atopic Dermatitis in 2,4-Dinitrochlorobenzene (DNCB) Mouse Model. NANOMATERIALS 2022; 12:nano12040636. [PMID: 35214966 PMCID: PMC8879523 DOI: 10.3390/nano12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Treatment of atopic dermatitis (AD) is challenging due to its complex pathophysiology. Tetrahydrocurcumin (THC) a polyphenolic, colorless compound that is more polar than curcumin. It possesses superior anti-inflammatory properties and has a clinical advantage over curcumin. The present study investigated the therapeutic effectiveness of THC solid lipid nanoparticle (THC-SLN)-based gels in AD. THC-SLNs prepared using microemulsification resulted in a particle size of 109.2 nm as determined by nanoparticle tracking, and FTIR confirmed the entrapment of drug within the lipid matrix. THC-SLNs greatly enhanced skin hydration when tested both ex vivo and in vivo in Lacca mice. Deeper skin penetration was clearly established using dermatokinetics and CLSM. The in vivo pharmacodynamics of THC-SLNs gel in 2,4-dinitrochlorobenzene (DNCB)-induced AD mice showed enhanced bioactivity; reduced levels of TNF-α and IL-6; and complete healing, as evident from histopathological studies. Thus, the novel topical THC-SLN gel has potential to emerge as a safe alternative to conventional corticosteroids for AD and other skin disorders with overbearing inflammation.
Collapse
|
21
|
Design, optimization and in-vivo characterization of mupirocin loaded nanostructured lipid carrier based gel for effective treatment of impetigo. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Dermal Delivery of Lipid Nanoparticles: Effects on Skin and Assessment of Absorption and Safety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:83-114. [DOI: 10.1007/978-3-030-88071-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Assali M, Zaid AN. Features, applications, and sustainability of lipid nanoparticles in cosmeceuticals. Saudi Pharm J 2022; 30:53-65. [PMID: 35241963 PMCID: PMC8864531 DOI: 10.1016/j.jsps.2021.12.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Cosmeceuticals are a branch of cosmetic products that forms a bridge between cosmetic and drug products. It is a fast-growing branch of the cosmetic industry, especially after the introduction of novel formulation and manufacturing techniques such as lipid nanoparticles (LNPs). These LNPs-based cosmeceutical products offer several advantages such as enhanced bioavailability of cosmeceutical active ingredients (CAIs), improved aesthetic appeal, and stability of the final products. However, the use of these LNPs may raise some concerns about possible side effects of these LNPs and potential hazards to the customer's health. Accordingly, an update that focuses on the use of this important branch of nanoparticles is necessary since most review papers are dealing with all types of nanocarriers in the same review with little focus on LNPs. Therefore, in the current review, a detailed analysis of the advantages and disadvantages of LNPs in this field was highlighted, to emphasize the LNPs-based cosmeceuticals on the market, as well as the potential risk posed by LNPs on exposure and recently introduced regulatory guidelines to address them. In addition, if these products can be a candidate as products that meet the sustainable development goals raised by the UN are discussed.
Collapse
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Abdel-Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
24
|
Development, Optimization, and Evaluation of Luliconazole Nanoemulgel for the Treatment of Fungal Infection. J CHEM-NY 2021. [DOI: 10.1155/2021/4942659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The present study aimed to optimize luliconazole nanoemulsion using Box–Behnken statistical design, which was further incorporated into the polymeric gel of Carbopol 934. The formulation was characterized for its size, entrapment efficiency, ex vivo permeation, and mechanism of release. The size of the dispersed globules of the optimized drug-loaded nanoemulsion was found to be 17 ± 3.67 nm with a polydispersity index (PDI) less than 0.5. Although the surface charge was recorded at –9.53 ± 0.251, the stability was maintained by the polymeric matrix that prevented aggregation and coalescence of the dispersed globules. The luliconazole-nanoemulgel (LUL-NEG) was characterized for drug content analysis, viscosity, pH, and refractive index, where the results were found to be 99.06 ± 0.59%, 9.26 ± 0.08 Pa.s, 5.65 ± 0.17, and 1.31 ± 0.08, respectively. The permeation across the rat skin was found to be significantly higher with LUL-NEG when compared with LUL gel. Furthermore, the skin irritation test performed in experimental animals revealed that the blank NEG, as well as the LUL-NEG, did not produce any signs of erythema following 48 h exposure. In addition, the histopathological findings of the experimental skins reported no abnormal signs at the formulation application site. Finally, the NEG formulation was found to create a statistically significant zone of inhibition (
< 0.05) when compared to all other test groups. Overall, it could be summarized that the nanoemulgel approach of delivering luliconazole across the skin to treat skin fungal infections could be a promising strategy.
Collapse
|
25
|
Salem HF, Kharshoum RM, Awad SM, Ahmed Mostafa M, Abou-Taleb HA. Tailoring of Retinyl Palmitate-Based Ethosomal Hydrogel as a Novel Nanoplatform for Acne Vulgaris Management: Fabrication, Optimization, and Clinical Evaluation Employing a Split-Face Comparative Study. Int J Nanomedicine 2021; 16:4251-4276. [PMID: 34211271 PMCID: PMC8239256 DOI: 10.2147/ijn.s301597] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
AIM Retinyl palmitate (RP), the most stable vitamin A derivative, is used to treat photoaging and other skin disorders. The need to minimize the adverse effects of topical drug administration has led to an enhanced interest in loading RP on ethosomes for topical drug delivery. The aim of the current study was to prepare and compare the performance of RP decorated ethosomal hydrogel with tretinoin cream in the treatment of acne vulgaris as an approach to improve drug efficacy and decrease its side effects. METHODS RP-loaded ethosomes were prepared using the injection sonication technique. A Box-Behnken design using Design Expert® software was used for the optimization of formulation variables. Particle size, zeta potential (ZP), entrapment efficiency percent (EE%), % drug release, and permeation over 24 h of different formulations were determined. The optimal formulation was incorporated into a hydrogel. Finally, the efficacy and tolerability of the optimized RP ethosomal hydrogel were clinically evaluated for acne treatment using a split-face comparative clinical study. RESULTS The optimized ethosomal RP showed particle size of 195.8±5.45 nm, ZP of -62.1±2.85 mV, EE% of 92.63±4.33%, drug release % of 96.63±6.81%, and drug permeation % of 85.98 ±4.79%. Both the optimized RP ethosomal hydrogel and tretinoin effectively reduced all types of acne lesions (inflammatory, non-inflammatory, and total lesions). However, RP resulted in significantly lower non-inflammatory and total acne lesion count than the marketed tretinoin formulation. Besides, RP-loaded ethosomes showed significantly improved tolerability compared to marketed tretinoin with no or minimal skin irritation symptoms. CONCLUSION RP ethosomal hydrogel is considerably effective in controlling acne vulgaris with excellent skin tolerability. Therefore, it represents an interesting alternative to conventional marketed tretinoin formulation for topical acne treatment.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Rasha M Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Sara M Awad
- Department of Dermatology, Venereology and Andrology, Assiut University Hospital, Assiut, Egypt
| | - Mai Ahmed Mostafa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Heba A Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| |
Collapse
|
26
|
Amer RI, Ezzat SM, Aborehab NM, Ragab MF, Mohamed D, Hashad A, Attia D, Salama MM, El Bishbishy MH. Downregulation of MMP1 expression mediates the anti-aging activity of Citrus sinensis peel extract nanoformulation in UV induced photoaging in mice. Biomed Pharmacother 2021; 138:111537. [PMID: 34311535 DOI: 10.1016/j.biopha.2021.111537] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023] Open
Abstract
Aging of the skin is a complicated bioprocess that is affected by constant exposure to ultraviolet irradiation. The application of herbal-based anti-aging creams is still the best choice for treatment. In the present study, Citrus sinensis L. fruit peels ethanolic extract (CSPE) was formulated into lipid nanoparticles (LNPs) anti-aging cream. Eight different formulations of CSEP-LNPs were prepared and optimized using 23 full factorial designs. In vivo antiaging effect of the best formula was tested in Swiss albino mice where photo-aging was induced by exposure to UV radiation. HPLC-QToF-MS/MS metabolic profiling of CSPE led to the identification of twenty-nine metabolites. CSPE was standardized to a hesperidin content of 15.53 ± 0.152 mg% using RP-HPLC. It was suggested that the optimized formulation (F7) had (245 nm) particle size, (91.065%) EE, and (91.385%) occlusive effect with a spherical and smooth surface. The visible appearance of UV-induced photoaging in mice was significantly improved after topical application on CSPE-NLC cream for 5 weeks, levels of collagen and SOD were significantly increased in CSPE- NLC group, while levels of PGE2, COX2, JNK, MDA, and elastin was reduced. Finally, The prepared anti-aging CSPE-NLC cream represents a safe, convenient, and promising skincare cosmetic product.
Collapse
Affiliation(s)
- Reham I Amer
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai F Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Mohamed
- Department of Analytical Chemistry, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt; Department of Analytical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Amira Hashad
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Dalia Attia
- Department of Pharmaceutics, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Maha M Salama
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
27
|
Nami S, Aghebati-Maleki A, Aghebati-Maleki L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI JOURNAL 2021; 20:562-584. [PMID: 33883983 PMCID: PMC8056051 DOI: 10.17179/excli2020-3068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
Currently, the significance of fungi as human pathogens is not medically concealed in the world. Consequently, suitable recognition and treatment of such infections are of great importance and necessitate the need for comprehensive information in this regard. The introduction of new antifungals and their use today, especially in the last two decades, have revolutionized the treatment of fungal infections. On the other hand, increasing drug resistance in the world has overshadowed such developments. The use of NPs results in the treatment of fungal infections and owing to their specific properties, these particles, unlike the pure antibiotics, can exert a greater inhibitory power although with less concentration compared with conventional drugs. Important reasons that have led to the use of antifungal drugs in delivery systems include reduced drug efficacy, limited penetration through tissue, poor aqueous solubility, decreased bioavailability, and poor drug pharmacokinetics. It is therefore hoped that unfavorable properties of antifungal drugs be mitigated via their incorporation into different types of NPs. This review summarizes the different types of NPs as delivery systems of antifungal as well as their advantages over pure drugs.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Aghebati-Maleki
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leili Aghebati-Maleki
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Al-Maghrabi PM, Khafagy ES, Ghorab MM, Gad S. Influence of formulation variables on miconazole nitrate-loaded lipid based nanocarrier for topical delivery. Colloids Surf B Biointerfaces 2020; 193:111046. [PMID: 32416518 DOI: 10.1016/j.colsurfb.2020.111046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to develop miconazole nitrate (MN) based solid lipid nano-carrier formulae for topical delivery to enhance its antifungal effectiveness. Miconazole nitrate loaded Solid lipid nanoparticles (MN-SLNs) were formulated using a high shear homogenization technique characterized by particle size, polydispersity index (PI), trapping efficiency (EE percent), drug loading (DL percent) and zeta potential (ZP) characteristics. Furthermore, the optimized formulae were investigated for in-vitro release, ex-vivo study, skin toxicity test, and antifungal activity. With a particle size range of 244.2 ± 27.2 nm to 493.6 ± 35.3 nm, the selected MN-SLNs were spherical shaped. A high EE product percentage ranging from 79.38 ± 2.35 percent to 95.92 ± 6.12 percent and Zeta potential ZP values ranging from-21.6 ± 7.05 mV to-31.4 ± 6.84 mV suggesting strong stability was achieved. A controlled release of MN from the SLNs up to 48 h was shown in-vitro release study. The ex-vivo study showed that the selected MN-SLN (F4) mixture exhibited higher MN flux in the skin than a 1% MN solution. Moreover, selected MN-SLN (F4) has demonstrated a higher zone of inhibition against Candida albicans than a simple drug solution. MN-SLN (F4) had the lowest toxicity value for the skin. Besides, the MN-SLNs (F4) substantially reported antifungal activity with the least histopathological improvements compared to MN-solution utilizing immune-suppressing albino rats with induced candidiasis fungal infection. It can be fulfilled that SLNs can be acquired as a promising carrier for topical delivery of poorly soluble MN.
Collapse
Affiliation(s)
- Passant M Al-Maghrabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mamdouh M Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
29
|
Wani TU, Mohi-Ud-Din R, Majeed A, Kawoosa S, Pottoo FH. Skin Permeation of Nanoparticles: Mechanisms Involved and Critical Factors Governing Topical Drug Delivery. Curr Pharm Des 2020; 26:4601-4614. [PMID: 32611291 DOI: 10.2174/1381612826666200701204010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022]
Abstract
Transdermal route has been an ever sought-after means of drug administration, regarded as being the most convenient and patient compliant. However, skin poses a great barrier to the entry of the external particles including bacteria, viruses, allergens, and drugs as well (mostly hydrophilic or high molecular weight drugs), consequent to its complex structure and composition. Among the various means of enhancing drug permeation through the skin, e.g. chemical permeation enhancers, electroporation, thermophoresis, etc. drug delivery through nanoparticles has been of great interest. Current literature reports a vast number of nanoparticles that have been implicated for drug delivery through the skin. However, a precise account of critical factors involved in drug delivery and mechanisms concerning the permeation of nanoparticles through the skin is necessary. The purpose of this review is to enumerate the factors crucial in governing the prospect of drug delivery through skin and classify the skin permeation mechanisms of nanoparticles. Among the various mechanisms discussed are the ones governed by principles of kinetics, osmotic gradient, adhesion, hydration, diffusion, occlusion, electrostatic interaction, thermodynamics, etc. Among the most common factors affecting skin permeation of nanoparticles that are discussed include size, shape, surface charge density, composition of nanoparticles, mechanical stress, pH, etc.
Collapse
Affiliation(s)
- Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-Ud-Din
- Pharmacogosy and Phytochemistry Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Asmat Majeed
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Shabnam Kawoosa
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman bin Faisal University, P.O. BOX 1982, Dammam, Saudi Arabia
| |
Collapse
|
30
|
Nanoemulgel for Improved Topical Delivery of Retinyl Palmitate: Formulation Design and Stability Evaluation. NANOMATERIALS 2020; 10:nano10050848. [PMID: 32353979 PMCID: PMC7711631 DOI: 10.3390/nano10050848] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/19/2022]
Abstract
Retinyl palmitate is a vitamin A ester belonging to the family of endogenous natural retinoid and used to treat various skin disorders like acne, skin aging, wrinkles, and dark spots, as well as to protect against psoriasis. Despite the known therapeutic benefits of retinyl palmitate, the conventional topical delivery of retinyl palmitate commonly associated with adverse reactions such as skin irritation, redness, excessive peeling, and dryness. Therefore, the current study aims to encapsulate the retinyl palmitate in nanoemulsion then incorporate it into a hydrogel system to improve the topical delivery and stability. Low-energy emulsification method was used for the nano-encapsulation of retinyl palmitate. The phase behavior study was used for the investigation and the optimization of the formulation. The droplet size of the optimized nanoemulsion was in nano dimension (16.71 nm) with low polydispersity index (PdI) (0.015), negative zeta potential (-20.6 mV). It demonstrated the influence of vortexing on droplet size and PdI during nanoemulsion preparation. The retinyl palmitate loaded nanoemulgel delivery system exhibited significant improvement (p < 0.05) in skin permeability after topical application. Employment of the nano-encapsulation approach afterward dispersion into hydrogel system for the development of a topical delivery system of retinyl palmitate resulted in improvement in its UV and storage stability as well.
Collapse
|
31
|
Sayed S, Abdelmoteleb M, Amin MM, Khowessah OM. Effect of Formulation Variables and Gamma Sterilization on Transcorneal Permeation and Stability of Proniosomal Gels as Ocular Platforms for Antiglaucomal Drug. AAPS PharmSciTech 2020; 21:87. [PMID: 32016607 DOI: 10.1208/s12249-020-1626-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/08/2020] [Indexed: 11/30/2022] Open
Abstract
This study aims to evaluate the effect of different formulation variables (surfactant type and HLB value) adopting full factorial design (51. 21) using coacervation phase technique on in vitro characterization of dorzolamide hydrochloride (DZ)-loaded proniosomal gels, namely, entrapment efficiency percentage (EE%), vesicle size distribution, polydispersion index (PDI), and in vitro DZ release. The optimum formula F2 with a desirability value of 0.937 composed of 40 mg DZ, 500 mg span 60, 500 mg of L-α-Lethicin, and 55.5 mg cholesterol showing EE% of 84.5 ± 1.5%, PS of 189.5 ± 35.76 nm with PDI 0.8 ± 0.28 and 58.51% ± 1.00 of DZ released after 8 h was further evaluated using differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The effect of gamma sterilization on transcorneal permeation and stability of DZ from the selected formulation (F2) revealed that F2 was significantly tolerable, stable, and competent to corneal permeation confirmed by histological examination, confocal laser microscopy, and intraocular pressure (IOP) measurement. Significant corneal bioavailability was attained from formula F2 (370.6 mg. h/m) compared to the market product Trusopt® eye drops (92.59 mg. h/ml) following IOP measurement, thereby proniosomal gels could be considered as tolerable and competent ocular platforms for improving the transcorneal permeation of DZ.
Collapse
|
32
|
Patel J, Maji B, Moorthy NSHN, Maiti S. Xanthan gum derivatives: review of synthesis, properties and diverse applications. RSC Adv 2020; 10:27103-27136. [PMID: 35515783 PMCID: PMC9055500 DOI: 10.1039/d0ra04366d] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Natural polysaccharides are well known for their biocompatibility, non-toxicity and biodegradability. These properties are also inherent to xanthan gum (XG), a microbial polysaccharide. This biomaterial has been extensively investigated as matrices for tablets, nanoparticles, microparticles, hydrogels, buccal/transdermal patches, tissue engineering scaffolds with different degrees of success. However, the native XG has its own limitations with regards to its susceptibility to microbial contamination, unusable viscosity, poor thermal and mechanical stability, and inadequate water solubility. Chemical modification can circumvent these limitations and tailor the properties of virgin XG to fulfill the unmet needs of drug delivery, tissue engineering, oil drilling and other applications. This review illustrates the process of chemical modification and/crosslinking of XG via etherification, esterification, acetalation, amidation, and oxidation. This review further describes the tailor-made properties of novel XG derivatives and their potential application in diverse fields. The physicomechanical modification and its impact on the properties of XG are also discussed. Overall, the recent developments on XG derivatives are very promising to progress further with polysaccharide research. Due to presence of hydroxy and carboxy functional groups, xanthan gum is amenable to various chemical modification for producing derivatives such as carboxymethyl xanthan and carboxymethyl hydroxypropyl xanthan with desirable properties for end use.![]()
Collapse
Affiliation(s)
- Jwala Patel
- Department of Pharmacy
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Biswajit Maji
- Department of Chemistry
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | | | - Sabyasachi Maiti
- Department of Pharmacy
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
33
|
A review of the clinical indications, general principles and techniques related to compounding. J Am Acad Dermatol 2019; 83:179-183. [PMID: 31669439 DOI: 10.1016/j.jaad.2019.10.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/11/2019] [Indexed: 11/20/2022]
Abstract
Extemporaneous compounding is a means to tailor a medication to an individual patient's needs and may be required when no commercial product exists to meet that need. Compounded products range from buffered lidocaine to topical creams and ointments. This article outlines the clinical indications and general principles related to the manufacture of topical and common formulations.
Collapse
|
34
|
Arriagada F, Nonell S, Morales J. Silica-based nanosystems for therapeutic applications in the skin. Nanomedicine (Lond) 2019; 14:2243-2267. [PMID: 31411537 DOI: 10.2217/nnm-2019-0052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aging, exposure to oxidants, infectious pathogens, inflammogens, ultraviolet radiation and other environmental and genetic factors can result in the development of various skin disorders. Despite immense progress being made in dermatological treatments, many skin-associated problems still remain difficult to treat and various therapies have limitations. Progress in silica-based nanomaterials research provides an opportunity to overcome these drawbacks and improve therapies and is a promising tool for inclusion in clinical practice to treat skin diseases. This review focuses on the use of various types of silica nanoparticles with therapeutic applications in various skin disorders. These nanosystems improve treatment efficacy by maintaining or enhancing the effect of several drugs and are useful tools for nanomedicine, pharmaceutical sciences and future clinical applications.
Collapse
Affiliation(s)
- Francisco Arriagada
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| | - Santi Nonell
- Institut Químic de Sarrià (IQS), University Ramon Llull, Via Augusta 390, 08017 Barcelona, Spain
| | - Javier Morales
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380494, Chile
| |
Collapse
|
35
|
Bagde A, Patel K, Kutlehria S, Chowdhury N, Singh M. Formulation of topical ibuprofen solid lipid nanoparticle (SLN) gel using hot melt extrusion technique (HME) and determining its anti-inflammatory strength. Drug Deliv Transl Res 2019; 9:816-827. [PMID: 30924025 DOI: 10.1007/s13346-019-00632-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Solid lipid nanoparticles (SLN) have been formulated using various batch processes, e.g., solvent diffusion evaporation, emulsification solvent evaporation followed by size reduction using high-pressure homogenization (HPH) or ultrasonication. However, for the manufacturing of formulations, continuous processes are always preferred over batch processes since they are more efficient and offer better quality of the end product. Hence, we developed topical SLN of ibuprofen (IBU) using hot melt extrusion (HME), prepared a gel formulation, and performed its in vitro and in vivo evaluation. Effect of different variables of HME equipment and materials used in SLN was optimized using design of experiment (DoE) approach. Stable 0.48% IBU SLN with particle size 60.2 ± 4.81 nm and entrapment efficiency 90.41 ± 3.46% were developed which further gelled using 1% carbopol 981A. Drug release study, skin deposition study, and in vivo anti-inflammatory activity studies showed 84.37 ± 4.65% drug release, 12.05 ± 0.81% drug deposition, and 40.17 ± 2.41% edema inhibition respectively in case of IBU SLN gel (IBU-SLN-G) which was significantly higher (p < 0.05) than control IBU gel (C-IBU-G) with 50.11 ± 0.57% drug release, 4.11 ± 1.10% deposition, and 20.08 ± 3.23% edema inhibition respectively. In conclusion, HME offers a single step process for manufacturing for SLN which avoids high stress particle size reduction techniques used for SLN preparation.
Collapse
Affiliation(s)
- Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Ketan Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Shallu Kutlehria
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Nusrat Chowdhury
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
36
|
Characteristics of Skin Deposition of Itraconazole Solubilized in Cream Formulation. Pharmaceutics 2019; 11:pharmaceutics11040195. [PMID: 31013633 PMCID: PMC6523664 DOI: 10.3390/pharmaceutics11040195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 01/26/2023] Open
Abstract
Itraconazole (ITZ) is an anti-fungal agent generally used to treat cutaneous mycoses. For efficient delivery of ITZ to the skin tissues, an oil-in-water (O/W) cream formulation was developed. The O/W cream base was designed based on the solubility measurement of ITZ in various excipients. A physical mixture of the O/W cream base and ITZ was also prepared as a control formulation to evaluate the effects of the solubilized state of ITZ in cream base on the in vitro skin deposition behavior of ITZ. Polarized light microscopy and differential scanning calorimetry demonstrated that ITZ was fully solubilized in the O/W cream formulation. The O/W cream formulation exhibited considerably enhanced deposition of ITZ in the stratum corneum, epidermis, and dermis compared with that of the physical mixture, largely owing to its high solubilization capacity for ITZ. Therefore, the O/W cream formulation of ITZ developed in this study is promising for the treatment of cutaneous mycoses caused by fungi such as dermatophytes and yeasts.
Collapse
|
37
|
Sheshala R, Anuar NK, Abu Samah NH, Wong TW. In Vitro Drug Dissolution/Permeation Testing of Nanocarriers for Skin Application: a Comprehensive Review. AAPS PharmSciTech 2019; 20:164. [PMID: 30993407 DOI: 10.1208/s12249-019-1362-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/07/2019] [Indexed: 12/29/2022] Open
Abstract
This review highlights in vitro drug dissolution/permeation methods available for topical and transdermal nanocarriers that have been designed to modulate the propensity of drug release, drug penetration into skin, and permeation into systemic circulation. Presently, a few of USFDA-approved in vitro dissolution/permeation methods are available for skin product testing with no specific application to nanocarriers. Researchers are largely utilizing the in-house dissolution/permeation testing methods of nanocarriers. These drug release and permeation methods are pending to be standardized. Their biorelevance with reference to in vivo plasma concentration-time profiles requires further exploration to enable translation of in vitro data for in vivo or clinical performance prediction.
Collapse
|
38
|
Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed Pharmacother 2019; 112:108622. [DOI: 10.1016/j.biopha.2019.108622] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 11/29/2022] Open
|
39
|
AlZahabi S, Sakr OS, Ramadan AA. Nanostructured lipid carriers incorporating prickly pear seed oil for the encapsulation of vitamin A. J Cosmet Dermatol 2019; 18:1875-1884. [DOI: 10.1111/jocd.12891] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 09/09/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Sham AlZahabi
- Department of Chemistry The American University in Cairo Cairo Egypt
- Research and Development EVA Cosmetics Corp Cairo Egypt
| | - Omar S. Sakr
- Pharmaceutical Research Department Nawah Scientific CairoEgypt
| | - Adham A. Ramadan
- Department of Chemistry The American University in Cairo Cairo Egypt
| |
Collapse
|
40
|
El-Housiny S, Shams Eldeen MA, El-Attar YA, Salem HA, Attia D, Bendas ER, El-Nabarawi MA. Fluconazole-loaded solid lipid nanoparticles topical gel for treatment of pityriasis versicolor: formulation and clinical study. Drug Deliv 2018; 25:78-90. [PMID: 29239242 PMCID: PMC6058711 DOI: 10.1080/10717544.2017.1413444] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/01/2017] [Indexed: 11/04/2022] Open
Abstract
Solid lipid nanoparticles (SLNs) are very potential formulations for topical delivery of antifungal drugs. Hence, the purpose of this research was to formulate the well-known antifungal agent Fluconazole (FLZ)-loaded SLNs topical gel to improve its efficiency for treatment of Pityriasis Versicolor (PV). FLZ-SLNs were prepared by modified high shear homogenization and ultrasonication method using different concentration of solid lipid (Compritol 888 ATO, Precirol ATO5) and surfactant (Cremophor RH40, Poloxamer 407). The physicochemical properties and the in vitro release study for all FLZ-SLNs were investigated. Furthermore, the optimized FLZ-SLN formula was incorporated into gel using Carpobol 934. A randomized controlled clinical trial (RCT) of potential batches was carried out on 30 well diagnosed PV patients comparing to market product Candistan® 1% cream. Follow up was done for 4 weeks by clinical and KOH examinations. The results showed that FlZ-SLNs were almost spherical shape having colloidal sizes with no aggregation. The drug entrapment efficiency ranged from 55.49% to 83.04%. The zeta potential values lie between -21 and -33 mV presenting good stability. FLZ showed prolonged in vitro release from SLNs dispersion and its Carbapol gel following Higuchi order equation. Clinical studies registered significant improvement (p < .05) in therapeutic response (1.4-fold; healing%, 4-fold; complete eradication) in terms of clinical cure and mycological cure rate from PV against marketed cream. Findings of the study suggest that the developed FLZ loaded SLNs topical gels have superior significant fast therapeutic index in treatment of PV over commercially available Candistan® cream.
Collapse
Affiliation(s)
- Shaimaa El-Housiny
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and InformationCairoEgypt
| | | | - Yasmina Ahmed El-Attar
- Department of Dermatology and venereology, Faculty of Medicine, Tanat UniversityTantaEgypt
| | - Hoda A. Salem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Azhar UniversityCairoEgypt
| | - Dalia Attia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, The British University in Egypt (BUE)CairoEgypt
| | - Ehab R. Bendas
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in EgyptCairoEgypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo UniversityCairoEgypt
| |
Collapse
|
41
|
Nanostructured gel for topical delivery of azelaic acid: Designing, characterization, and in-vitro evaluation. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15:771-785. [DOI: 10.1080/17425247.2018.1504018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Huiling Mu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - René Holm
- Drug Product Development, Janssen Research and Development, Beerse, Belgium
| |
Collapse
|
43
|
Ramezanli T, Michniak-Kohn BB. Development and Characterization of a Topical Gel Formulation of Adapalene-TyroSpheres and Assessment of Its Clinical Efficacy. Mol Pharm 2018; 15:3813-3822. [DOI: 10.1021/acs.molpharmaceut.8b00318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tannaz Ramezanli
- Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- Center for Dermal Research, Rutgers—The State University of New Jersey, 145 Bevier Roa, Piscataway, New Jersey 08854, United States
| | - Bozena B. Michniak-Kohn
- Ernest Mario School of Pharmacy, Rutgers—The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, New Jersey 08854, United States
- Center for Dermal Research, Rutgers—The State University of New Jersey, 145 Bevier Roa, Piscataway, New Jersey 08854, United States
| |
Collapse
|
44
|
Phaechamud T, Lertsuphotvanit N, Issarayungyuen P, Chantadee T. Design, fabrication and characterization of xanthan gum/liquid-loaded porous natural rubber film. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0396-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Scioli Montoto S, Sbaraglini ML, Talevi A, Couyoupetrou M, Di Ianni M, Pesce GO, Alvarez VA, Bruno-Blanch LE, Castro GR, Ruiz ME, Islan GA. Carbamazepine-loaded solid lipid nanoparticles and nanostructured lipid carriers: Physicochemical characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces 2018; 167:73-81. [PMID: 29627680 DOI: 10.1016/j.colsurfb.2018.03.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/21/2018] [Accepted: 03/30/2018] [Indexed: 01/16/2023]
Abstract
Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) represent promising alternatives for drug delivery to the central nervous system. In the present work, four different nanoformulations of the antiepileptic drug Carbamazepine (CBZ) were designed and prepared by the homogenization/ultrasonication method, with encapsulation efficiencies ranging from 82.8 to 93.8%. The formulations remained stable at 4 °C for at least 3 months. Physicochemical and microscopic characterization were performed by photon correlation spectroscopy (PCS), transmission electron microscopy (TEM), atomic force microscopy (AFM); thermal properties by differential scanning calorimetry (DSC), thermogravimetry (TGA) and X-ray diffraction analysis (XRD). The results indicated the presence of spherical shape nanoparticles with a mean particle diameter around 160 nm in a narrow size distribution; the entrapped CBZ displayed an amorphous state. The in vitro release profile of CBZ fitted into a Baker-Lonsdale model for spherical matrices and almost the 100% of the encapsulated drug was released in a controlled manner during the first 24 h. The apparent permeability of CBZ-loaded nanoparticles through a cell monolayer model was similar to that of the free drug. In vivo experiments in a mice model of seizure suggested protection by CBZ-NLC against seizures for at least 2 h after intraperitoneal administration. The developed CBZ-loaded lipid nanocarriers displayed optimal characteristics of size, shape and drug release and possibly represent a promising tool to improve the treatment of refractory epilepsy linked to efflux transporters upregulation.
Collapse
Affiliation(s)
- S Scioli Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - M L Sbaraglini
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - A Talevi
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - M Couyoupetrou
- Departamento de Farmacología, Instituto Nacional de Medicamentos (INAME), Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), CABA, Buenos Aires, Argentina
| | - M Di Ianni
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - G O Pesce
- Departamento de Farmacología, Instituto Nacional de Medicamentos (INAME), Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT), CABA, Buenos Aires, Argentina
| | - V A Alvarez
- Grupo de Materiales Compuestos de Matriz Polimérica (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMDP) - CONICET, Solis 7575, B7608FDQ, Mar del Plata, Buenos Aires, Argentina
| | - L E Bruno-Blanch
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - G R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - M E Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| | - G A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Shields CW, White JP, Osta EG, Patel J, Rajkumar S, Kirby N, Therrien JP, Zauscher S. Encapsulation and controlled release of retinol from silicone particles for topical delivery. J Control Release 2018; 278:37-48. [PMID: 29604311 DOI: 10.1016/j.jconrel.2018.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 03/11/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
Retinol, a derivative of vitamin A, is a ubiquitous compound used to treat acne, reduce wrinkles and protect against conditions like psoriasis and ichthyosis. While retinol is used as the primary active ingredient (AI) in many skin care formulations, its efficacy is often limited by an extreme sensitivity to degrade and toxicity at high concentrations. While microencapsulation is an appealing method to help overcome these issues, few microencapsulation strategies have made a major translational impact due to challenges with complexity, cost, limited protection of the AI and poor control of the release of the AI. We have developed a class of silicone particles that addresses these challenges for the encapsulation, protection and controlled release of retinol and other hydrophobic compounds. The particles are prepared by the sol-gel polymerization of silane monomers, which enables their rapid and facile synthesis at scale while maintaining a narrow size distribution (i.e., CV < 20%). We show that our particles can: (i) encapsulate retinol with high efficiency (>85%), (ii) protect retinol from degradation (yielding a half-life 9× greater than unencapsulated retinol) and (iii) slowly release retinol over several hours (at rates from 0.14 to 0.67 μg cm-2 s-1/2). To demonstrate that the controlled release of retinol from the particles can reduce irritation, we performed a double blind study on human subjects and found that formulations containing our particles were 12-23% less irritating than identical formulations containing Microsponge® particles (an industry standard by Amcol, Inc.). To show that the silicone particles can elicit a favorable biological response, similar to the Microsponge® particles, we applied both formulations to reconstructed human epidermal tissues and found an upregulation of keratin 19 (K19) and a downregulation of K10, indicating that the reduced irritation observed in the human study was not caused by reduced activity. We also found a decrease in the production of interleukin-1α (IL-1α) compared to formulations containing the Microsponge particles, suggesting lower irritation levels and supporting the findings from the human study. Finally, we show that the silicone particles can encapsulate other AIs, including betamethasone, N, N-diethyl-meta-toluamide (DEET), homosalate and ingenol mebutate, establishing these particles as a true platform technology.
Collapse
Affiliation(s)
- C Wyatt Shields
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA.
| | - John P White
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Erica G Osta
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; NSF Partnerships for Research and Education in Materials, Texas State University, San Marcos, TX 78666, USA
| | - Jerishma Patel
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Shashank Rajkumar
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Nickolas Kirby
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA
| | | | - Stefan Zauscher
- NSF Research Triangle Materials Research Science and Engineering Center, Duke University, Durham, NC 27708, USA; Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA; Department of Chemistry, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
47
|
Pathan IB, Munde SJ, Shelke S, Ambekar W, Mallikarjuna Setty C. Curcumin loaded fish scale collagen-HPMC nanogel for wound healing application: Ex-vivo and In-vivo evaluation. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1429437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Inayat B. Pathan
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh J. Munde
- Department of Pharmaceutics, Government College of Pharmacy, Aurangabad, Maharashtra, India
| | - Santosh Shelke
- Department of Pharmaceutics, Yash Institute of Pharmacy, Aurangabad, Maharashtra, India
| | - Wahid Ambekar
- Department of Pharmaceutics, Dr. VVPF’s College of Pharmacy, Ahmednagar, Maharashtra, India
| | - C. Mallikarjuna Setty
- Department of Pharmaceutics, The Oxford College of Pharmacy, Pharmaceutics, Hongasandra, Bangalore, India
| |
Collapse
|
48
|
Deshmane S, Deshmane S, Shelke S, Biyani K. Enhancement of solubility and bioavailability of ambrisentan by solid dispersion using Daucus carota as a drug carrier: formulation, characterization, in vitro, and in vivo study. Drug Dev Ind Pharm 2018; 44:1001-1011. [PMID: 29382236 DOI: 10.1080/03639045.2018.1428339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ambrisentan is an US FDA approved drug, it is the second oral endothelin A receptor antagonist known for the treatment of pulmonary arterial hypertension, but its oral administration is limited due to its poor water solubility. Hence, the objective of the investigation was focused on enhancement of solubility and bioavailability of ambrisentan by solid dispersion technique using natural Daucus carota extract as drug carrier. Drug carrier was evaluated for solubility, swelling index, viscosity, angle of repose, hydration capacity, and acute toxicity test (LD50). Ambrisentan was studied for the saturation solubility, phase solubility, and Gibbs free energy change. Compatibility of drug and the natural carrier was confirmed by DSC, FTIR, and XRD. Solid dispersions were evaluated for drug content, solubility, morphology, in vitro, and in vivo study. Screening of the natural carrier showed the desirable properties like water solubility, less swelling index, less viscosity, and acute toxicity study revealed no any clinical symptoms of toxicity. Drug and carrier interaction study confirmed the compatibility to consider its use in the formulation. Formed particles were found to be spherical with smooth surface. In vitro studies revealed higher drug release from the solid dispersion than that of the physical mixture. Bioavailability study confirms the increased absorption and bioavailability by oral administration of solid dispersion. Hence, it can be concluded that the natural Daucus carota extract can be the better alternative source for the preparation of solid dispersion and/or other dosage forms for improving solubility and bioavailability.
Collapse
Affiliation(s)
- Subhash Deshmane
- a Department of Pharmaceutics , Anuradha College of Pharmacy , Chikhli , India
| | - Snehal Deshmane
- a Department of Pharmaceutics , Anuradha College of Pharmacy , Chikhli , India
| | - Santosh Shelke
- b Department of Pharmaceutics , Yash Institute of Pharmacy , Aurangabad , India
| | - Kailash Biyani
- a Department of Pharmaceutics , Anuradha College of Pharmacy , Chikhli , India
| |
Collapse
|
49
|
Mandlik SK, Siras SS, Birajdar KR. Optimization and characterization of sertaconazole nitrate flexisomes embedded in hydrogel for improved antifungal activity. J Liposome Res 2017; 29:10-20. [DOI: 10.1080/08982104.2017.1402926] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Satish K. Mandlik
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Shridhar S. Siras
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| | - Kiran R. Birajdar
- Department of Pharmaceutics, Sinhgad College of Pharmacy, Vadgaon (Bk), Pune, Maharashtra, India
| |
Collapse
|
50
|
Jijie R, Barras A, Boukherroub R, Szunerits S. Nanomaterials for transdermal drug delivery: beyond the state of the art of liposomal structures. J Mater Chem B 2017; 5:8653-8675. [PMID: 32264260 DOI: 10.1039/c7tb02529g] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of biomedical materials have been proposed to meet the different needs for controlled oral or intravenous drug delivery. The advantages of oral delivery such as self-administration of a pre-determined drug dose at defined time intervals makes it the most convenient means for the delivery of small molecular drugs. It fails however to delivery therapeutic macromolecules due to rapid degradation in the stomach and size-limited transport across the epithelium. The primary mode of administration of macromolecules is presently via injection. This administration mode is not without limitations, as the invasive nature of injections elicits pain and decreases patients' compliance. Alternative routes for drug delivery have been looked for, one being the skin. Delivery of drugs via the skin is based on the therapeutics penetrating the stratum corneum (SC) with the advantage of overcoming first-pass metabolism of drugs, to deliver drugs with a short-half-life time more easily and to eliminate frequent administrations to maintain constant drug delivery. The transdermal market still remains limited to a narrow range of drugs. The low permeability of the SC to water-soluble and macromolecular drugs poses significant challenges to transdermal administration via passive diffusion through the skin, as is the case for all topically administered drug formulations intended to bring the therapeutic into the general circulation. To widen the scope of drugs for transdermal delivery, new procedures to enhance skin permeation to hydrophilic drugs and macromolecules are under development. Next to the integration of skin enhancers into pharmaceutical formulations, nanoparticles based on lipid carriers have been widely considered and reviewed. While being briefly reviewed here, the main focus of this article is on current advancements using polymeric and metallic nanoparticles. Next to these passive technologies, the handful of active technologies for local and systemic transdermal drug delivery will be discussed and put into perspective. While passive approaches dominate the literature and the transdermal market, active delivery based on microneedles or iontophoresis approaches have shown great promise for transdermal drug delivery and have entered the market, in the last decade. This review gives an overall idea of the current activities in this field.
Collapse
Affiliation(s)
- Roxana Jijie
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520, IEMN, F-59000 Lille, France.
| | | | | | | |
Collapse
|