1
|
Yildiz Türkyilmaz G, Özdokur KV, Alparslan L, Karasulu E. Sodium hyaluronate dry powder inhalation in combination with sodium cromoglycate prepared using optimized spray drying conditions. Pharm Dev Technol 2023; 28:240-247. [PMID: 36730066 DOI: 10.1080/10837450.2023.2176517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Sodium hyaluronate (SHA) is an anti-inflammatory and protective agent against bronchoconstriction, and sodium cromoglicate (SCG) prevents exercise-induced bronchoconstriction and inflammation. Based on the pharmacological properties of both substances, this study aimed to develop a dry powder inhaler (DPI) of SHA alone and in combination with SCG. The target of the study was to develop flowable formulations without any surfactants by using the spray drying method. To obtain respirable SHA and SCG:SHA particles, variables of the spray dryer, such as inlet temperature, atomized air flow, and feed solution, were changed. The particles 1-8 μm in size were produced with high yield by spray drying and increasing the ethanol percentage of the feed solution (60%), which is the most remarkable parameter. After that, physicochemical characterizations were performed. The aerosol performance of DPI formulations prepared using lactose was evaluated using Handihaler® DPI. The fine particle fraction (FPF) was 36% for the SHA formulation, whereas it was 52 and 53% for SCG and SHA, respectively, in the SCG:SHA formulation. Consequently, both particles were produced reproducibly by spray drying, and inhaled SHA and SCG:SHA dry powder formulations were developed due to their high FPF and flowability with lactose.
Collapse
Affiliation(s)
- Gülbeyaz Yildiz Türkyilmaz
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| | - Kemal Volkan Özdokur
- Department of Chemistry, Faculty of Science and Letter, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| | - Levent Alparslan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istinye University, Istanbul, Türkiye
| | - Ercüment Karasulu
- Center For Drug R&D and Pharmacokinetic Applications (ARGEFAR), Ege University, İzmir, Türkiye.,Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Türkiye
| |
Collapse
|
2
|
Adami R, Russo P, Amante C, De Soricellis C, Della Porta G, Reverchon E, Del Gaudio P. Supercritical Antisolvent Technique for the Production of Breathable Naringin Powder. Pharmaceutics 2022; 14:pharmaceutics14081623. [PMID: 36015250 PMCID: PMC9414961 DOI: 10.3390/pharmaceutics14081623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are polyphenolic compounds largely present in fruits and vegetables possessing antioxidant properties, anti-inflammatory and antibacterial activities. Their use in clinical practice is very poor due to their low bioavailability, susceptibility to oxidation and degradation. Moreover, their slight solubility in biological fluids and a consequent low dissolution rate leads to an irregular absorption from solid dosage forms, even though, anti-inflammatory formulations could be used as support for several disease treatment, i.e. the COVID-19 syndrome. To improve flavonoid bioavailability particle size of the powder can be reduced to make it breathable and to promote the absorption in the lung tissues. Supercritical fluid based antisolvent technique has been used to produce naringin particles, with size, shape and density as well as free flowing properties able to fit inhalation needs. The dried particles are produced with the removal of the solvent at lower temperatures compared to the most used traditional micronization processes, such as spray drying. The best breathable fraction for naringin particles is obtained for particles with a d50~7 µm manufactured at 35 °C-150 bar and at 60 °C-130 bar, corresponding to 32.6% and 36.7% respectively. The powder is produced using a high CO2 molar fraction (0.99) that assure a better removal of the solvent. NuLi-1 cell line of immortalised bronchial epithelial cells adopted to evaluate powder cytotoxicity indicated after 24 h absence of toxicity at concentration of 25 µM.
Collapse
Affiliation(s)
- Renata Adami
- Department of Physics E. Caianiello, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
- Correspondence: (R.A.); (P.D.G.)
| | - Paola Russo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara Amante
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Chiara De Soricellis
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Odontoiatry, Scuola Medica Salernitana, University of Salerno, Via Salvatore Allende, 1, 84081 Baronissi, SA, Italy;
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy;
| | - Pasquale Del Gaudio
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (P.R.); (C.A.); (C.D.S.)
- Correspondence: (R.A.); (P.D.G.)
| |
Collapse
|
3
|
Kankala RK, Xu PY, Chen BQ, Wang SB, Chen AZ. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: An eco-friendly welcome to active pharmaceutical ingredients (APIs). Adv Drug Deliv Rev 2021; 176:113846. [PMID: 34197896 DOI: 10.1016/j.addr.2021.113846] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/02/2021] [Accepted: 06/21/2021] [Indexed: 02/09/2023]
Abstract
Despite the success in developing various pharmaceutical formulations, most of the active pharmaceutical ingredients (APIs)/drugs, according to the Biopharmaceutics Classification System (BCS), often suffer from various intrinsic limitations of solubility and permeability, substantially hindering their bioavailability in vivo. Regardless of the fact that the availability of different particle fabrication approaches (top-down and bottom-up) towards pharmaceutical manufacturing, the supercritical fluid (SCF) technology has emerged as one of the highly effective substitutes due to the environmentally benign nature and processing convenience, as well as the economically promising character of SCFs. The exceptional features of SCFs have endowed the fabrication of various APIs either solely or in combination with the compatible supramolecular species towards achieving improved drug delivery. Operating such APIs in high-pressure conditions often results in arbitrary-sized particulate forms, ranging from micron-sized to sub-micron/nano-sized particles. Comparatively, these SCF-processed particles offer enhanced tailorable physicochemical and morphological properties (size, shape, and surface), as well as improved performance efficacy (bioavailability and therapy) over the unprocessed APIs. Although the "carrier-based" delivery is practical among diverse delivery systems, the direct fabrication of APIs into suitable particulate forms, referred to as "carrier-free" delivery, has increased attention towards improving the bioavailability and conveying a high payload of the APIs. This review gives a comprehensive emphasis on the SCF-assisted fabrication of diverse APIs towards exploring their great potential in drug delivery. Initially, we discuss various challenges of drug delivery and particle fabrication approaches. Further, different supercritical carbon dioxide (SC-CO2)-based fabrication approaches depending on the character of SCFs are explicitly described, highlighting their advantages and suitability in processing diverse APIs. Then, we provide detailed insights on various processing factors affecting the properties and morphology of SCF-processed APIs and their pharmaceutical applications, emphasizing their performance efficacy when administered through multiple routes of administration. Finally, we summarize this compilation with exciting perspectives based on the lessons learned so far and moving forward in terms of challenges and opportunities in the scale-up and clinical translation of these drugs using this innovative technology.
Collapse
|
4
|
Rodríguez I, Flores Bello J, Marie Serrano Valcárcel J, López-Mejías V. Design of Potential Pharmaceutical-Based Metal Complexes Derived from Cromolyn a Mast Cell Stabilizer. ACS OMEGA 2020; 5:29714-29721. [PMID: 33251407 PMCID: PMC7689660 DOI: 10.1021/acsomega.0c03320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
A series of pharmaceutical metal complexes (pMCs) were produced and characterized using the mast cell stabilizer, cromolyn, and bioactive metal ions (Zn+2, Mg+2, and Ca+2). Three novel pMCs, Cromolyn-Zn, Cromolyn-Mg, and Cromolyn-Ca, were formed through reactions under controlled temperature and pH conditions. Additional characterization for these materials was performed employing a number of solid-state characterization techniques, such as thermogravimetric analysis (TGA), powder and single-crystal X-ray diffraction (PXRD and SCXRD), and scanning electron microscopy coupled with energy-dispersive spectroscopy (SEM-EDS). TGA demonstrated that these metal complexes showed an enhanced thermal stability due to the strong coordination with the ligand, cromolyn. PXRD data indicates a high degree of crystallinity as well as a unique packing arrangement for each pMCs. SEM analysis showed materials with well-defined morphologies, while EDS presented elemental evidence for the unique composition of each pMCs. The crystal structure for these materials was elucidated through SCXRD, and a variety of binding modes and packing motifs were found within each respective metal complex. Only two-dimensional (2D) structures were achieved under the conditions studied. These binding modalities might affect the activity and delivery of cromolyn sodium (CS). The stability of the metal complexes was assessed in phosphate-buffered saline (PBS, pH = 7.40) and fasted-state simulated gastric fluids (FaSSGF, pH = 1.60). Dissolution studies show high stability and slow degradation for the metal complexes, while a higher dissolution was observed for the drug compound in PBS. Neither CS nor the pMCs dissolved significantly in FaSSGF at 37 °C.
Collapse
Affiliation(s)
- Israel Rodríguez
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931 United States
| | - Jeaninna Flores Bello
- Department
of Mathematics, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931 United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico 00926 United States
| | - Joyce Marie Serrano Valcárcel
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931 United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico 00926 United States
| | - Vilmalí López-Mejías
- Department
of Chemistry, University of Puerto Rico, Río Piedras, San Juan, Puerto Rico 00931 United States
- Crystallization
Design Institute, Molecular Sciences Research Center, University of Puerto Rico, San
Juan, Puerto Rico 00926 United States
| |
Collapse
|
5
|
Characterization and aerosolization performance of mannitol particles produced using supercritical assisted atomization. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2018.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Adami R, Liparoti S, Della Porta G, Del Gaudio P, Reverchon E. Lincomycin hydrochloride loaded albumin microspheres for controlled drug release, produced by Supercritical Assisted Atomization. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Cabral R, Sousa A, Silva A, Paninho A, Temtem M, Costa E, Casimiro T, Aguiar-Ricardo A. Design of experiments approach on the preparation of dry inhaler chitosan composite formulations by supercritical CO2-assisted spray-drying. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Precipitation kinetics and biological properties of chitosan microparticles produced using supercritical assisted atomization. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Wu HT, Huang SC, Yang CP, Chien LJ. Precipitation parameters and the cytotoxicity of chitosan hydrochloride microparticles production by supercritical assisted atomization. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Reverchon E, Adami R, Campardelli R, Della Porta G, De Marco I, Scognamiglio M. Supercritical fluids based techniques to process pharmaceutical products difficult to micronize: Palmitoylethanolamide. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.04.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Campardelli R, Baldino L, Reverchon E. Supercritical fluids applications in nanomedicine. J Supercrit Fluids 2015. [DOI: 10.1016/j.supflu.2015.01.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Labuschagne P, Adami R, Liparoti S, Naidoo S, Swai H, Reverchon E. Preparation of rifampicin/poly(d,l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Use of solvent mixtures in supercritical antisolvent process to modify precipitates morphology: Cellulose acetate microparticles. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.08.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Rotenone coprecipitation with biodegradable polymers by supercritical assisted atomization. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Reverchon E, Adami R. Supercritical assisted atomization to produce nanostructured chitosan-hydroxyapatite microparticles for biomedical application. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2013.05.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Adami R, Liparoti S, Izzo L, Pappalardo D, Reverchon E. PLA–PEG copolymers micronization by supercritical assisted atomization. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Liparoti S, Adami R, Reverchon E. PEG micronization by supercritical assisted atomization, operated under reduced pressure. J Supercrit Fluids 2012. [DOI: 10.1016/j.supflu.2012.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Adami R, Reverchon E. Composite polymer-Fe3O4 microparticles for biomedical applications, produced by Supercritical Assisted Atomization. POWDER TECHNOL 2012. [DOI: 10.1016/j.powtec.2011.11.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Nunes AVM, Duarte CMM. Dense CO₂ as a Solute, Co-Solute or Co-Solvent in Particle Formation Processes: A Review. MATERIALS 2011; 4:2017-2041. [PMID: 28824121 PMCID: PMC5448852 DOI: 10.3390/ma4112017] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/13/2011] [Accepted: 10/19/2011] [Indexed: 11/16/2022]
Abstract
The application of dense gases in particle formation processes has attracted great attention due to documented advantages over conventional technologies. In particular, the use of dense CO₂ in the process has been subject of many works and explored in a variety of different techniques. This article presents a review of the current available techniques in use in particle formation processes, focusing exclusively on those employing dense CO₂ as a solute, co-solute or co-solvent during the process, such as PGSS (Particles from gas-saturated solutions®), CPF (Concentrated Powder Form®), CPCSP (Continuous Powder Coating Spraying Process), CAN-BD (Carbon dioxide Assisted Nebulization with a Bubble Dryer®), SEA (Supercritical Enhanced Atomization), SAA (Supercritical Fluid-Assisted Atomization), PGSS-Drying and DELOS (Depressurization of an Expanded Liquid Organic Solution). Special emphasis is given to modifications introduced in the different techniques, as well as the limitations that have been overcome.
Collapse
Affiliation(s)
- Ana V M Nunes
- Requimte/CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica 2829-516, Portugal.
| | - Catarina M M Duarte
- Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, Oeiras 2781-901, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da Republica, Oeiras 2780-157, Portugal.
| |
Collapse
|
20
|
Reverchon E, Adami R, Scognamiglio M, Fortunato G, Della Porta G. Beclomethasone Microparticles for Wet Inhalation, Produced by Supercritical Assisted Atomization. Ind Eng Chem Res 2010. [DOI: 10.1021/ie101574z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ernesto Reverchon
- Department of Chemical and Food Engineering, University of Salerno, I-84084, Fisciano (SA), Italy, and Farmabios S.p.a, I-27027, Gropello Cairoli (PV), Italy
| | - Renata Adami
- Department of Chemical and Food Engineering, University of Salerno, I-84084, Fisciano (SA), Italy, and Farmabios S.p.a, I-27027, Gropello Cairoli (PV), Italy
| | - Mariarosa Scognamiglio
- Department of Chemical and Food Engineering, University of Salerno, I-84084, Fisciano (SA), Italy, and Farmabios S.p.a, I-27027, Gropello Cairoli (PV), Italy
| | - Giuseppe Fortunato
- Department of Chemical and Food Engineering, University of Salerno, I-84084, Fisciano (SA), Italy, and Farmabios S.p.a, I-27027, Gropello Cairoli (PV), Italy
| | - Giovanna Della Porta
- Department of Chemical and Food Engineering, University of Salerno, I-84084, Fisciano (SA), Italy, and Farmabios S.p.a, I-27027, Gropello Cairoli (PV), Italy
| |
Collapse
|
21
|
Aamir MN, Ahmad M. Production and stability evaluation of modified-release microparticles for the delivery of drug combinations. AAPS PharmSciTech 2010; 11:351-5. [PMID: 20221719 PMCID: PMC2850469 DOI: 10.1208/s12249-010-9392-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/28/2010] [Indexed: 11/30/2022] Open
Abstract
Production and evaluation of novel formulations of tizanidine and tramadol microparticles was the chief purpose of this project. Microparticles of both drugs were prepared separately via temperature change method. To extend the release of formulations, ethyl cellulose was employed. Higuchi, zero-order, first-order, and Korsmeyer-Peppas kinetic models were applied to appraise the mechanism and mode of drugs release. Higuichi model was found to be best for all release profiles. Stability of microparticles at 40 degrees C/75% RH over a 3-month duration was determined by Fourier transform infrared (FTIR), X-ray diffractometry (XRD), and drugs assay. Microparticles were compatible and stable as no significant differences were observed when subjected to drug assay, FTIR, and XRD during accelerated stability studies.
Collapse
Affiliation(s)
- Muhammad Naeem Aamir
- Faculty of Pharmacy & Alternative Medicine, The Islamia University of Bahawalpur, Punjab, Pakistan.
| | | |
Collapse
|
22
|
Adami R, Osséo LS, Reverchon E. Micronization of lysozyme by supercritical assisted atomization. Biotechnol Bioeng 2009; 104:1162-70. [DOI: 10.1002/bit.22470] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|