1
|
Yang C, Wang R, Hardy P. The Multifaceted Roles of MicroRNA-181 in Stem Cell Differentiation and Cancer Stem Cell Plasticity. Cells 2025; 14:132. [PMID: 39851559 PMCID: PMC11763446 DOI: 10.3390/cells14020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/26/2025] Open
Abstract
Stem cells are undifferentiated or partially differentiated cells with an extraordinary ability to self-renew and differentiate into various cell types during growth and development. The epithelial-mesenchymal transition (EMT), a critical developmental process, enhances stem cell-like properties in cells, and is associated with both normal stem cell function and the formation of cancer stem cells. Cell stemness and the EMT often coexist and are interconnected in various contexts. Cancer stem cells are a critical tumor cell population that drives tumorigenesis, cancer progression, drug resistance, and metastasis. Stem cell differentiation and the generation of cancer stem cells are regulated by numerous molecules, including microRNAs (miRNAs). These miRNAs, particularly through the modulation of EMT-associated factors, play major roles in controlling the stemness of cancer stem cells. This review presents an up-to-date summary of the regulatory roles of miR-181 in human stem cell differentiation and cancer cell stemness. We outline studies from the current literature and summarize the miR-181-controlled signaling pathways responsible for driving human stem cell differentiation or the emergence of cancer stem cells. Given its critical role in regulating cell stemness, miR-181 is a promising target for influencing human cell fate. Modulation of miR-181 expression has been found to be altered in cancer stem cells' biological behaviors and to significantly improve cancer treatment outcomes. Additionally, we discuss challenges in miRNA-based therapies and targeted delivery with nanotechnology-based systems.
Collapse
Affiliation(s)
- Chun Yang
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Rui Wang
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
| | - Pierre Hardy
- CHU Sainte-Justine Research Center, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pharmacology and Physiology, Université de Montréal, Montreal, QC H3T 1C5, Canada;
- Departments of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC H3T 1C5, Canada
| |
Collapse
|
2
|
Xie A, Wang H, Huang J, Sun M, Chen L. miR-3191 promotes the proliferation and metastasis of hepatocellular carcinoma via regulating PAK6. Infect Agent Cancer 2024; 19:64. [PMID: 39696440 DOI: 10.1186/s13027-024-00628-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND/AIMS microRNAs (miRNAs) contribute to tumorigenesis, progression and drug resistance of hepatocellular carcinoma (HCC). miR-3191 is a newly discovered miRNA, and its function and mechanism of action in biological processes and diseases are not completely understood. METHODS miR-3191 expression is determined via quantitative real-time polymerase chain reaction. Knockdown and overexpression of miR-3191 influence the proliferation and metastasis of HCC cells, which is measured by Cell Counting Kit-8 assay, Colony Formation assay and Cell metastasis assay. Protein expression is estimated by Western blot. The interplay between miR-3191 and target is validated by dual-luciferase reporter assay. RESULTS Here, we show that miR-3191 is upregulated in HCC tissues and associated with poor prognosis of HCC patients. Mechanistically, p21-activated protein kinase 6 (PAK6) was identified as a direct target of miR‑3191 in HCC. PAK6 knockdown partially recovered interference of miR‑3191‑induced decrease in cell proliferation and invasion. The accuracy of HCC patient prognosis could be improved by employing a combination of miR-3191 and PAK6 values. CONCLUSIONS miR-3191 promotes the proliferation and metastasis of HCC cells via targeting PAK6 and may serve as a prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Anqi Xie
- Community Health Service Center, Zhongshan Street, Songjiang District, Shanghai, China
| | - Hengjie Wang
- Department of Hepatic Surgery, Kunshan Hospital of Traditional Chinese Medicine, Kunshan, Jiangsu Province, 215300, China
| | - Jingchen Huang
- The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Minmin Sun
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, 225 Changhai Road, Shanghai, 200438, China.
| | - Lin Chen
- Community Health Service Center, Zhongshan Street, Songjiang District, Shanghai, China.
| |
Collapse
|
3
|
Ramoni D, Montecucco F. MicroRNA-206 as a promising epigenetic approach to modulate tumor-associated macrophages in hepatocellular carcinoma. World J Gastroenterol 2024; 30:4503-4508. [PMID: 39534416 PMCID: PMC11551670 DOI: 10.3748/wjg.v30.i41.4503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024] Open
Abstract
This letter comments on the recently published manuscript by Huang et al in the World Journal of Gastroenterology, which focused on the immunomodulatory effect of Calculus bovis on hepatocellular carcinoma (HCC) tumor microenvironments (TME) by inhibiting M2-tumor-associated macrophage (M2-TAM) polarization via Wnt/β-catenin pathway modulation. Recent research highlights the crucial role of TAMs and their polarization towards the M2 phenotype in promoting HCC progression. Epigenetic regulation, particularly through microRNAs (miR), has emerged as a key factor in modulating immune responses and TAM polarization in the TME, influencing treatment responses and tumor progression. This editorial focuses on miR-206, which has been found to inhibit HCC cell proliferation and migration and promote apoptosis. Moreover, miR-206 enhances anti-tumor immune responses by promoting M1-polarization of Kupffer cells, facilitating CD8+ T cell recruitment and suppressing liver cancer stem cell expansion. However, challenges remain in understanding the precise mechanisms regulating miR-206 and its potential as a therapeutic agent. Targeting epigenetic mechanisms and improving strategies, whether through pharmacological or genetic approaches, offer promising avenues to sensitize tumor cells to chemotherapy. Understanding the intricate interactions between cancer and non-coding RNA regulation opens new avenues for developing targeted therapies, potentially improving HCC prognosis.
Collapse
Affiliation(s)
- Davide Ramoni
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genoa, Genoa 16132, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa 16132, Italy
| |
Collapse
|
4
|
Guan YJ, Yu CQ, Li LP, You ZH, Wei MM, Wang XF, Yang C, Guo LX. MHESMMR: a multilevel model for predicting the regulation of miRNAs expression by small molecules. BMC Bioinformatics 2024; 25:6. [PMID: 38166644 PMCID: PMC10763044 DOI: 10.1186/s12859-023-05629-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
According to the expression of miRNA in pathological processes, miRNAs can be divided into oncogenes or tumor suppressors. Prediction of the regulation relations between miRNAs and small molecules (SMs) becomes a vital goal for miRNA-target therapy. But traditional biological approaches are laborious and expensive. Thus, there is an urgent need to develop a computational model. In this study, we proposed a computational model to predict whether the regulatory relationship between miRNAs and SMs is up-regulated or down-regulated. Specifically, we first use the Large-scale Information Network Embedding (LINE) algorithm to construct the node features from the self-similarity networks, then use the General Attributed Multiplex Heterogeneous Network Embedding (GATNE) algorithm to extract the topological information from the attribute network, and finally utilize the Light Gradient Boosting Machine (LightGBM) algorithm to predict the regulatory relationship between miRNAs and SMs. In the fivefold cross-validation experiment, the average accuracies of the proposed model on the SM2miR dataset reached 79.59% and 80.37% for up-regulation pairs and down-regulation pairs, respectively. In addition, we compared our model with another published model. Moreover, in the case study for 5-FU, 7 of 10 candidate miRNAs are confirmed by related literature. Therefore, we believe that our model can promote the research of miRNA-targeted therapy.
Collapse
Affiliation(s)
- Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi'an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi'an, China.
| | - Li-Ping Li
- College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China.
- College of Agriculture and Forestry, Longdong University, Qingyang, China.
| | - Zhu-Hong You
- School of Computer Science, North-Western Polytechnical University, Xi'an, China
| | - Meng-Meng Wei
- School of Information Engineering, Xijing University, Xi'an, China
| | - Xin-Fei Wang
- School of Information Engineering, Xijing University, Xi'an, China
| | - Chen Yang
- School of Information Engineering, Xijing University, Xi'an, China
| | - Lu-Xiang Guo
- School of Information Engineering, Xijing University, Xi'an, China
| |
Collapse
|
5
|
Khan M, Naeem M, Chaudary SA, Ahmed A, Ahmed A. Cancer Stem Cells and Treatment of Cancer: An Update and Future Perspectives. Curr Stem Cell Res Ther 2024; 19:1312-1320. [PMID: 37818567 DOI: 10.2174/011574888x247548230921063514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 10/12/2023]
Abstract
Cancer stem cells (CSCs) play an essential role in tumour progression and metastasis. Stem cell ability of self-renewal enables it to persist over time, thereby contributing to cancer relapse or recurrence and also resistance to current therapies. Therefore, targeting CSCs emerged as a promising strategy of cancer treatment. CSCs exhibit differentiation, self-renewal, and plasticity, they contribute to formation of malignant tumours, also favors, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Coventional cancer treatments predominantly target cancer cells that are not CSCs, CSCs frequently survive, eventually leading to relapse. This article focuses on the development of novel therapeutic strategies that combine conventional treatments and CSC inhibitors to eradicate cancer cells and CSCs, for the better and permanent treatment. However, the diversity of CSCs is a significant obstacle in the development of CSC-targeted therapies, necessitating extensive research for a better understanding and exploration of therapeutic approaches. Future development of CSC-targeted therapies will rely heavily on overcoming this obstacle.
Collapse
Affiliation(s)
- Mudassir Khan
- Department of Healthcare Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Mashal Naeem
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | | | - Affan Ahmed
- Department of Plant Biotechnology, Atta Ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Aftab Ahmed
- School of Biological Sciences, Punjab University, Lahore, Pakistan
| |
Collapse
|
6
|
Panahizadeh R, Vatankhah MA, Jeddi F, Arabzadeh A, Nejati-Koshki K, Salimnejad R, Najafzadeh N. Cytotoxicity of curcumin against CD44 ± prostate cancer cells: Roles of miR-383 and miR-708. AVICENNA JOURNAL OF PHYTOMEDICINE 2023; 13:429-441. [PMID: 37663388 PMCID: PMC10474917 DOI: 10.22038/ajp.2023.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/02/2022] [Indexed: 09/05/2023]
Abstract
Objective Cancer stem cells (CSCs) remaining in the tumor tissues after applying treatments may cause recurrence or metastasis of prostate cancer (PC). Curcumin has the promising potential to target CSCs. Here, we aim to evaluate the cytotoxic effects of curcumin on the expression of miR-383-5p and miR-708-5p and their target genes in CD44+ CSCs and CD44- non-CSCs isolated from the PC3 prostate cancer cell line. Materials and Methods We used MTT assay to determine the optimal cytotoxic dose of curcumin on CD44± PC cells. Then, we assessed nuclear morphological changes using DAPi staining. We used Annexin V-FITC/PI to quantify apoptotic cell death. qRT-PCR was also used to detect miRNA and gene expression levels after curcumin treatment. Results Curcumin significantly enhanced the apoptosis in both CD44- and CD44+ PC cells in a dose-dependent manner (p < 0.05). The cytotoxicity of curcumin against CD44- cells (IC50 40.30±2.32 μM) was found to be greater than that against CD44+ cells (IC50 83.31±2.91 μM). Also, curcumin promoted miR-383-5p and miR-708-5p overexpression while downregulating their target genes LDHA, PRDX3, and RAP1B, LSD1, respectively. Conclusion Our findings indicate that curcumin, by promoting the expression of tumor suppressors, miR-383-5p and miR-708-5p, and inhibiting their target genes, induced its cytotoxicity against CD44± PC cells. We trust that curcumin could be established as a promising adjuvant therapy to current PC treatment options following more research in clinical settings.
Collapse
Affiliation(s)
- Reza Panahizadeh
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Amin Vatankhah
- Students Research Committee, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
- Research laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Jeddi
- Department of Medical Genetics and Pathology, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - AmirAhmad Arabzadeh
- Department of Surgery, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kazem Nejati-Koshki
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Science, Ardabil, Iran
| | - Ramin Salimnejad
- Research laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nowruz Najafzadeh
- Research laboratory for Embryology and Stem Cells, Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
7
|
Osteogenic and Adipogenic Differentiation Potential of Oral Cancer Stem Cells May Offer New Treatment Modalities. Int J Mol Sci 2023; 24:ijms24054704. [PMID: 36902135 PMCID: PMC10002556 DOI: 10.3390/ijms24054704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
(1) Treatment failure of oral squamous cell carcinoma (OSCC) is generally due to the development of therapeutic resistance caused by the existence of cancer stem cells (CSCs), a small cell subpopulation with marked self-renewal and differentiation capacity. Micro RNAs, notably miRNA-21, appear to play an important role in OSCC carcinogenesis. Our objectives were to explore the multipotency of oral CSCs by estimating their differentiation capacity and assessing the effects of differentiation on stemness, apoptosis, and several miRNAs' expression. (2) A commercially available OSCC cell line (SCC25) and five primary OSCC cultures generated from tumor tissues obtained from five OSCC patients were used in the experiments. Cells harboring CD44, a CSC marker, were magnetically separated from the heterogeneous tumor cell populations. The CD44+ cells were then subjected to osteogenic and adipogenic induction, and the specific staining was used for differentiation confirmation. The kinetics of the differentiation process was evaluated by qPCR analysis of osteogenic (Bone Morphogenetic Protein-BMP4, Runt-related Transcription Factor 2-RUNX2, Alkaline Phosphatase-ALP) and adipogenic (Fibroblast Activation Protein Alpha-FAP, LIPIN, Peroxisome Proliferator-activated Receptor Gamma-PPARG) markers on days 0, 7, 14, and 21. Embryonic markers (Octamer-binding Transcription Factor 4-OCT4, Sex Determining Region Y Box 2-SOX2, and NANOG) and micro RNAs (miRNA-21, miRNA-133, and miRNA-491) were also correspondingly evaluated by qPCR. An Annexin V assay was used to assess the potential cytotoxic effects of the differentiation process. (3) Following differentiation, the levels of markers for the osteo/adipo lineages showed a gradual increase from day 0 to day 21 in the CD44+ cultures, while stemness markers and cell viability decreased. The oncogenic miRNA-21 also followed the same pattern of gradual decrease along the differentiation process, while tumor suppressor miRNA-133 and miRNA-491 levels increased. (4) Following induction, the CSCs acquired the characteristics of the differentiated cells. This was accompanied by loss of stemness properties, a decrease of the oncogenic and concomitant, and an increase of tumor suppressor micro RNAs.
Collapse
|
8
|
Feng J, Zhao D, Lv F, Yuan Z. Epigenetic Inheritance From Normal Origin Cells Can Determine the Aggressive Biology of Tumor-Initiating Cells and Tumor Heterogeneity. Cancer Control 2022; 29:10732748221078160. [PMID: 35213254 PMCID: PMC8891845 DOI: 10.1177/10732748221078160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The acquisition of genetic- and epigenetic-abnormalities during transformation has been recognized as the two fundamental factors that lead to tumorigenesis and determine the aggressive biology of tumor cells. However, there is a regularity that tumors derived from less-differentiated normal origin cells (NOCs) usually have a higher risk of vascular involvement, lymphatic and distant metastasis, which can be observed in both lymphohematopoietic malignancies and somatic cancers. Obviously, the hypothesis of genetic- and epigenetic-abnormalities is not sufficient to explain how the linear relationship between the cellular origin and the biological behavior of tumors is formed, because the cell origin of tumor is an independent factor related to tumor biology. In a given system, tumors can originate from multiple cell types, and tumor-initiating cells (TICs) can be mapped to different differentiation hierarchies of normal stem cells, suggesting that the heterogeneity of the origin of TICs is not completely chaotic. TIC’s epigenome includes not only genetic- and epigenetic-abnormalities, but also established epigenetic status of genes inherited from NOCs. In reviewing previous studies, we found much evidence supporting that the status of many tumor-related “epigenetic abnormalities” in TICs is consistent with that of the corresponding NOC of the same differentiation hierarchy, suggesting that they may not be true epigenetic abnormalities. So, we speculate that the established statuses of genes that control NOC’s migration, adhesion and colonization capabilities, cell-cycle quiescence, expression of drug transporters, induction of mesenchymal formation, overexpression of telomerase, and preference for glycolysis can be inherited to TICs through epigenetic memory and be manifested as their aggressive biology. TICs of different origins can maintain different degrees of innate stemness from NOC, which may explain why malignancies with stem cell phenotypes are usually more aggressive.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Dawei Zhao
- Medical Imaging Department, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Fudong Lv
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| | - Zhongyu Yuan
- Clinical-Pathology Center, Capital Medical University Affiliated Beijing Youan Hospital, Beijing, China
| |
Collapse
|
9
|
Park JW, Kim Y, Lee SB, Oh CW, Lee EJ, Ko JY, Park JH. Autophagy inhibits cancer stemness in triple-negative breast cancer via miR-181a-mediated regulation of ATG5 and/or ATG2B. Mol Oncol 2022; 16:1857-1875. [PMID: 35029026 PMCID: PMC9067148 DOI: 10.1002/1878-0261.13180] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/11/2022] [Indexed: 11/19/2022] Open
Abstract
Autophagy has a dual role in the maintenance of cancer stem cells (CSCs), but the precise relationship between autophagy and cancer stemness requires further investigation. In this study, it was found that luminal and triple‐negative breast cancers require distinct therapeutic approaches because of their different amounts of autophagy flux. We identified that autophagy flux was inhibited in triple‐negative breast cancer (TNBC) CSCs. Moreover, miRNA‐181a (miR‐181a) expression is upregulated in both TNBC CSCs and patient tissues. Autophagy‐related 5 (ATG5) and autophagy‐related 2B (ATG2B) participate in the early formation of autophagosomes and were revealed as targets of miR‐181a. Inhibition of miR‐181a expression led to attenuation of TNBC stemness and an increase in autophagy flux. Furthermore, treatment with curcumin led to attenuation of cancer stemness in TNBC CSCs; the expression of ATG5 and ATG2B was enhanced and there was an increase of autophagy flux. These results indicated that ATG5 and ATG2B are involved in the suppression of cancer stemness in TNBC. In summary, autophagy inhibits cancer stemness through the miR‐181a‐regulated mechanism in TNBC. Promoting tumor‐suppressive autophagy using curcumin may be a potential method for the treatment of TNBC.
Collapse
Affiliation(s)
- Jee Won Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Yesol Kim
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Soo-Been Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Chae Won Oh
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Eun Ji Lee
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Je Yeong Ko
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| |
Collapse
|
10
|
Huang M, Liao X, Li L, Li G, Chen M. MiR-552-3p facilitated cell proliferation, migration and invasion by sponging Fibulin 5 in non-small cell lung cancer via activation of ERK/GSK3β/β-catenin signaling pathway. Tissue Cell 2021; 73:101672. [PMID: 34736163 DOI: 10.1016/j.tice.2021.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/09/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Apart from the fact that miR-552-3p is known to promote cell progression among various cancers, its function on non-small cell lung cancer (NSCLC) is unknown which therefore emerges as the purpose of this research. TargetScan, Starbase, miRWalk, miRDB and the Cancer Genome Atlas Lung Adenocarcinoma (TCGA-LUAD) were utilized to analyze the target genes of miR-552-3p. NSCLC cells were transfected with miR-552-3p mimic, miR-552-3p inhibitor, Fibulin 5 (FBLN5) overexpression plasmid, and small interfering FBLN5 (siFBLN5) and treated with extracellular regulated protein kinases (ERK) pathway inhibitor PD98059. MiR-552-3p, FBLN5, p-ERK, ERK, p-glycogen synthase kinase 3β (GSK3β) and β-catenin levels were detected through quantitative reverse transcription-polymerase chain reaction and western blot. The binding sites between miR-552-3p and FBLN5 were predicted by TargetScan, which was tested through dual luciferase reporter analysis. Cell viability, migration and invasion were determined by cell counting kit-8 (CCK-8) assay, wound healing assay and transwell assay, respectively. MiR-552-3p expression was upregulated in NSCLC and FBLN5 functioned as its target. MiR-552-3p mimic promoted proliferation, migration, invasion, p-ERK, p-GSK3β and β-catenin expressions in NSCLC cells while miR-552-3p inhibitor did the opposite. Overexpressed FBLN5 suppressed proliferation, migration, invasion, p-ERK, p-GSK3β and β-catenin expressions in NSCLC cells whereas siFBLN5 exerted the effects opposite to overexpressed FBLN5. PD98059 enhanced the effect of overexpressed FBLN5 on NSCLC cell migration and invasion while reversing the effect of siFBLN5. MiR-552-3p facilitated cell proliferation, migration and invasion in NSCLC through sponging FBLN5 via activation of ERK/GSK3β/β-catenin pathway.
Collapse
Affiliation(s)
- Mingfang Huang
- Thoracic Surgery Department, Hainan General Hospital, China
| | - Xuqiang Liao
- Thoracic Surgery Department, Hainan General Hospital, China
| | - Liang Li
- Thoracic Surgery Department, Hainan General Hospital, China
| | - Gao Li
- Thoracic Surgery Department, Hainan General Hospital, China
| | - Minbiao Chen
- Thoracic Surgery Department, Hainan General Hospital, China.
| |
Collapse
|
11
|
Feng J, Zhu R, Yin Y, Wang S, Zhou L, Lv F, Zhao D. Re-Recognizing the Cellular Origin of the Primary Epithelial Tumors of the Liver. J Hepatocell Carcinoma 2021; 8:1537-1563. [PMID: 34917552 PMCID: PMC8668194 DOI: 10.2147/jhc.s334935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
The primary epithelial tumors of the liver (PETL) are composed of a series of heterogeneous tumors. Although the classification of PETLs has been updated several times by the World Health Organization, the cellular origins of some tumors in this family remain to be precisely depicted. In addition, certain tumors in different categories have similar histology, molecular phenotypes and biological characteristics, suggesting that they may have the same cellular origin. In this work, a narrative review method was adopted to review the relevant papers. By comparing the expression profiles of biomarkers of liver epithelium at different lineages and stages of differentiation, the cells-of-origin of some major members of the PETL family were reassessed. We propose that 1) hepatic adenomas, hepatocellular carcinomas (HCCs) and pure fetal hepatoblastomas (HBs) share the same spectrum in their cellular origin including the hepatocytic-committed progenitors (HCP) and their differentiated descendants. 2) Bile duct adenomas, peribiliary cysts and intrahepatic cholangiocellular carcinomas (ICCs) can share the same spectrum in their cellular origin including the cholangiocytic-committed progenitors (CCP) and their differentiated descendants. 3) The cells-of-origin of embryonal HBs include liver stem cells (LSCs), hepatoblasts, and transitional cells between them. Embryonal HB with small cell element, small cell undifferentiated HB and small cell neuroendocrine carcinoma of the liver can have the same or similar cells-of-origin from LSC. Embryonal HB lacking the small cell component of the LSC phenotype and presenting both hepatocytic and bile duct/ductule components may originate from actual hepatoblasts/hepatic progenitor cells (HPCs) as the combined HCC-ICC does. 4) Teratoid hepatoblastoma and mixed epithelial/mesenchymal HBs can be derived from the LSCs or even less committed extrahepatic pluripotent stem cell. 5) Many members of the PETLs family, including those derived from LSCs, hepatoblasts/HPCs, early HCPs and CCPs, have neuroendocrine potentiality. Except for those primary hepatic neuroendocrine tumor (PHNET) exhibit hepatocytic and/or cholangiocytic phenotypes, other PHNETs subtype may be derived from the descendants of LSC that differentiate towards the upper digestive tract, pancreas or other lineages.
Collapse
Affiliation(s)
- Jiliang Feng
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
- Correspondence: Jiliang Feng Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, No. 8, Xitoutiao, Youanmenwai Street, FengTai District, Beijing, 100069, People’s Republic of ChinaTel +86-10-83997342Fax +86-10-83997343 Email
| | - Ruidong Zhu
- General Surgical Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Yu Yin
- Department of Pathology, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Shanshan Wang
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Lei Zhou
- Department of Pathology, First Affiliated Hospital of Bengbu Medical College/Bengbu Medical College, Bengbu, 233004, People’s Republic of China
| | - Fudong Lv
- Clinical-Pathology Center, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, People’s Republic of China
| | - Dawei Zhao
- Department of Medical Imaging, Capital Medical University, Beijing, 100069, People’s Republic of China
| |
Collapse
|
12
|
Shah JA, Khattak S, Rauf MA, Cai Y, Jin J. Potential Biomarkers of miR-371-373 Gene Cluster in Tumorigenesis. Life (Basel) 2021; 11:life11090984. [PMID: 34575133 PMCID: PMC8465240 DOI: 10.3390/life11090984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA transcripts (20–24 nucleotides) that bind to their complementary sequences in the 3′-untranslated regions (3′-UTR) of targeted genes to negatively or positively regulate their expression. miRNAs affect the expression of genes in cells, thereby contributing to several important biological processes, including tumorigenesis. Identifying the miRNA cluster as a human embryonic stem cell (hESC)-specific miRNAs initially led to the identification of miR-371, miR-372, miR-373, and miR-373*, which can ultimately be translated into mature miRNAs. Recent evidence suggests that miR-371–373 genes are abnormally expressed in various cancers and act either as oncogenes or tumor suppressors, indicating they may be suitable as molecular biomarkers for cancer diagnosis and prevention. In this article, we summarize recent studies linking miR-371–373 functions to tumorigenesis and speculate on the potential applications of miR-371–373 as biomarkers for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Junaid Ali Shah
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
| | - Saadullah Khattak
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China;
| | - Mohd Ahmar Rauf
- Department of Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; or
| | - Yong Cai
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Jingji Jin
- School of Life Sciences, Jilin University, Changchun 130012, China; (J.A.S.); (Y.C.)
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China
- Correspondence:
| |
Collapse
|
13
|
Talib WH, Mahmod AI, Kamal A, Rashid HM, Alashqar AMD, Khater S, Jamal D, Waly M. Ketogenic Diet in Cancer Prevention and Therapy: Molecular Targets and Therapeutic Opportunities. Curr Issues Mol Biol 2021; 43:558-589. [PMID: 34287243 PMCID: PMC8928964 DOI: 10.3390/cimb43020042] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer is still one of the most significant global challenges facing public health, the world still lacks complementary approaches that would significantly enhance the efficacy of standard anticancer therapies. One of the essential strategies during cancer treatment is following a healthy diet program. The ketogenic diet (KD) has recently emerged as a metabolic therapy in cancer treatment, targeting cancer cell metabolism rather than a conventional dietary approach. The ketogenic diet (KD), a high-fat and very-low-carbohydrate with adequate amounts of protein, has shown antitumor effects by reducing energy supplies to cells. This low energy supply inhibits tumor growth, explaining the ketogenic diet's therapeutic mechanisms in cancer treatment. This review highlights the crucial mechanisms that explain the ketogenic diet's potential antitumor effects, which probably produces an unfavorable metabolic environment for cancer cells and can be used as a promising adjuvant in cancer therapy. Studies discussed in this review provide a solid background for researchers and physicians to design new combination therapies based on KD and conventional therapies.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Ayah Kamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Hasan M. Rashid
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Aya M. D. Alashqar
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Samar Khater
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Duaa Jamal
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan; (A.I.M.); (A.K.); (H.M.R.); (A.M.D.A.); (S.K.); (D.J.)
| | - Mostafa Waly
- Department of Food Science and Nutrition, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 34-123, Oman;
| |
Collapse
|
14
|
Zhou M, Gao Y, Wang M, Guo X, Li X, Zhu F, Xu S, Qin R. MiR-146b-3p regulates proliferation of pancreatic cancer cells with stem cell-like properties by targeting MAP3K10. J Cancer 2021; 12:3726-3740. [PMID: 33995647 PMCID: PMC8120187 DOI: 10.7150/jca.48418] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: Cancer stem cells (CSCs) initiate and maintain tumorigenesis due to their unique pluripotency. However, pancreatic stem cell gene signatures are not completely revealed yet. Here, we isolated pancreatic cancer stem cells (P-CSCs) and exploited their distinct genome-wide mRNA and miRNA expression profiles using microarrays. Methods: CD24+ CD44+ ESA+ cells were isolated from two pancreatic xenograft cells by the flow cytometry and identified the stem cell-like properties by the tumor formation, self-renew and chemoresistance. Microarrays and qRT-PCR were used to exploit their distinct Genome-wide mRNA and miRNA expression profiles. The function and candidate target genes of key microRNA were detected after Ectopic restoration in the pancreatic cancer cell lines MIA Paca-2 (CSChigh) and BxPC-3 (CSClow). Results: In this study, we isolated P-CSCs from two xenografts cells. Genome-wide profiling experiments showed 479 genes and 15 microRNAs specifically expressed in the P-CSCs, including genes involved in TGF-β and p53 signaling pathways and particularly miR-146b-3p as the most significantly downregulated miRNA. We confirmed miR-146b-3p as a downregulated signature in pancreatic cancer tissues and cell line MIA Paca-2 (CSChigh) cells. Ectopic restoration of miR-146b-3p expression with pre-miR reduced cell proliferation, induced apoptosis, increased G1 phase and reduced S phase in cell cycle in MIA Paca-2 (CSChigh), but not in BxPC-3 (CSClow). Re-expression of miR-146b-3p with lentivirus significantly inhibited tumorigenicity in vivo in MIA Paca-2, but slightly in BxPC-3. Furthermore, we demonstrated that miR-146b-3p directly targeted MAP3K10 and might activate Hedgehog pathway as well through DYRK2 and GLI2. Conclusions: These results suggest that P-CSCs have distinct gene expression profiles. MiR-146b-3p inhibits proliferation and induced apoptosis in P-CSCs high cells lines by targeting MAP3K10. Targeting P-CSCs specific genes may provide novel strategies for therapeutic purposes.
Collapse
Affiliation(s)
- Min Zhou
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Gao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Simiao Xu
- Department of Endocrinology, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
15
|
miR-93 regulates liver tumor initiating cells expansion and predicts chemotherapeutic response of patients. Arch Biochem Biophys 2021; 703:108871. [PMID: 33831356 DOI: 10.1016/j.abb.2021.108871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 01/27/2023]
Abstract
Tumor initiating cells (T-ICs) play an important role in tumorigenesis, progression, metastasis, recurrence and drug resistance, but the underlying mechanism was not clearly elucidated. In our study, we found that miR-93 was highly expressed in liver T-ICs. Self-renewal and tumorigenesis ability of liver T-ICs were enhanced by miR-93 overexpression and attenuated by miR-93 interference. Mechanically, miR-93 regulated liver T-ICs by binding to 3'-UTR of myotubularin-related protein 3 (MTMR3). In addition, miR-93 was found highly expressed in cisplatin or sorafenib-resistant liver cancer tissues. Interference of miR-93 sensitizes hepatoma cells to cisplatin or sorafenib treatment. Clinical cohort analysis showed that Hepatocellular carcinoma (HCC) patients with low miR-93 were benefit more from TACE or sorafenib treatment. In conclusion, our study demonstrates a new regulation mechanism of liver T-ICs, a new target for HCC, and a biomarker for postoperative TACE or sorafenib.
Collapse
|
16
|
Zhang R, Tang L, Zhao B, Tian Y, Zhou B, Mu Y, Yang L. A Peptide-Based Small RNA Delivery System to Suppress Tumor Growth by Remodeling the Tumor Microenvironment. Mol Pharm 2021; 18:1431-1443. [PMID: 33522823 DOI: 10.1021/acs.molpharmaceut.0c01253] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
MicroRNAs can regulate a variety of physiological and pathological processes and are increasingly recognized as being involved in regulating the malignant progression of cancer, which is an important direction for the study and treatment of cancer. In addition, the tumor microenvironment has gradually become an important direction of study for combating cancer. Researchers can inhibit tumor growth by remodeling and suppressing an immunosuppressive phenotype in the tumor microenvironment. Therefore, the combination of microRNA delivery and tumor microenvironment remodeling may be a potential research direction. In a previous study, we developed a novel cationic and hydrophilic antimicrobial peptide, DP7, by computer simulation. It was found that cholesterol-modified DP7 (DP7-C) has dual functions as a carrier and an immune adjuvant. In this experiment, we used DP7-C to deliver microRNAs or inhibitors intratumorally, where it played a dual role as a carrier and an immune adjuvant. As a delivery vector, DP7-C has more advantages in terms of transfection efficiency and cytotoxicity than Lipo2000 and PEI25K. Components of the DP7-C/RNA complex can effectively escape endosomes after uptake via caveolin- and clathrin-dependent pathways. As an immune adjuvant, DP7-C can activate dendritic cells and promote macrophage polarization. Moreover, it can transform the immunosuppressive tumor microenvironment into an immune-activated tumor microenvironment, indicating its potential as an anticancer therapy. In conclusion, this study identifies a novel microRNA and inhibitor delivery system that can remodel the tumor microenvironment and introduces an alternative scheme for antitumor treatment.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Binyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Bailing Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yandong Mu
- Stomatology Department, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| |
Collapse
|
17
|
Jiang ZB, Ma BQ, Feng Z, Liu SG, Gao P, Yan HT. miR-365 inhibits the progression of gallbladder carcinoma and predicts the prognosis of Gallbladder carcinoma patients. Cell Cycle 2021; 20:308-319. [PMID: 33459111 DOI: 10.1080/15384101.2021.1874694] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gallbladder carcinoma (GBC) is one of the most common fatal biliary tract tumors in the world. Its 3-year survival rate is 30% and the recurrence rate remains very high. miR-365 was downregulated in numerous tumors and worked as tumor suppressor gene. However, the role of miR-365 in GBC was unclear. In this study, our results found that the expression of miR-365 in GBC tissues was reduced rather than that in non-cancerous tissues. miR-365 overexpression inhibited the proliferation, metastasis and expansion of GBC CSCs. Mechanically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in GBC cells reduced the RAC1 mRNA and protein expression. The special RAC1 inhibitor EHop-106 abolished the discrepancy of growth, metastasis and self-renewal ability between miR-365-overexpression GBC cells and their control cells, which further demonstrated that RAC1 was involved in miR-365-disrupted GBC cells growth, metastasis and self-renewal. More importantly, reduced expression of miR-365 was a predictor of poor prognosis of GBC patients. In conclusion, miR-365 inhibited GBC cell growth, metastasis and self-renewal capacity by directly targeting RAC1, and may therefore prove to be a novel prognosis biomarker for GBC patients.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Zongfeng Feng
- Department of General Surgery, Cao County People's Hospital , Heze, Shandong Province, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital , Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital , Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital , Gansu, China
| |
Collapse
|
18
|
Li J, Zhu Y. Recent Advances in Liver Cancer Stem Cells: Non-coding RNAs, Oncogenes and Oncoproteins. Front Cell Dev Biol 2020; 8:548335. [PMID: 33117795 PMCID: PMC7575754 DOI: 10.3389/fcell.2020.548335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide, with high morbidity, relapse, metastasis and mortality rates. Although liver surgical resection, transplantation, chemotherapy, radiotherapy and some molecular targeted therapeutics may prolong the survival of HCC patients to a certain degree, the curative effect is still poor, primarily because of tumor recurrence and the drug resistance of HCC cells. Liver cancer stem cells (LCSCs), also known as liver tumor-initiating cells, represent one small subset of cancer cells that are responsible for disease recurrence, drug resistance and death. Therefore, understanding the regulatory mechanism of LCSCs in HCC is of vital importance. Thus, new studies that present gene regulation strategies to control LCSC differentiation and replication are under development. In this review, we provide an update on the latest advances in experimental studies on non-coding RNAs (ncRNAs), oncogenes and oncoproteins. All the articles addressed the crosstalk between different ncRNAs, oncogenes and oncoproteins, as well as their upstream and downstream products targeting LCSCs. In this review, we summarize three pathways, the Wnt/β-catenin signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway, and interleukin 6/Janus kinase 2/signal transducer and activator of transcription 3 (IL6/JAK2/STAT3) signaling pathway, and their targeting gene, c-Myc. Furthermore, we conclude that octamer 4 (OCT4) and Nanog are two important functional genes that play a pivotal role in LCSC regulation and HCC prognosis.
Collapse
Affiliation(s)
- Juan Li
- Department of Radiotherapy Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Zhu
- Department of Infectious Disease, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liver Disease Center of Integrated Traditional and Western Medicine, Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
19
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Cho Y, Kim YK. Cancer Stem Cells as a Potential Target to Overcome Multidrug Resistance. Front Oncol 2020; 10:764. [PMID: 32582535 PMCID: PMC7280434 DOI: 10.3389/fonc.2020.00764] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Multidrug resistance (MDR), which is a significant impediment to the success of cancer chemotherapy, is attributable to various defensive mechanisms in cancer. Initially, overexpression of ATP-binding cassette (ABC) transporters such as P-glycoprotein (P-gp) was considered the most important mechanism for drug resistance; hence, many investigators for a long time focused on the development of specific ABC transporter inhibitors. However, to date their efforts have failed to develop a clinically applicable drug, leaving only a number of problems. The concept of cancer stem cells (CSCs) has provided new directions for both cancer and MDR research. MDR is known to be one of the most important features of CSCs and thus plays a crucial role in cancer recurrence and exacerbation. Therefore, in recent years, research targeting CSCs has been increasing rapidly in search of an effective cancer treatment. Here, we review the drugs that have been studied and developed to overcome MDR and CSCs, and discuss the limitations and future perspectives.
Collapse
Affiliation(s)
| | - Yong Kee Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, South Korea
| |
Collapse
|
21
|
MicroRNA Expression Profiling of Normal and Malignant Human Colonic Stem Cells Identifies miRNA92a as a Regulator of the LRIG1 Stem Cell Gene. Int J Mol Sci 2020; 21:ijms21082804. [PMID: 32316543 PMCID: PMC7216254 DOI: 10.3390/ijms21082804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have a critical role in regulating stem cells (SCs) during development, and because aberrant expression of miRNAs occurs in various cancers, our goal was to determine if dysregulation of miRNAs is involved in the SC origin of colorectal cancer (CRC). We previously reported that aldehyde dehydrogenase (ALDH) is a marker for normal and malignant human colonic SCs and tracks SC overpopulation during colon tumorigenesis. MicroRNA expression was studied in ALDH-positive SCs from normal and malignant human colon tissues by Nanostring miRNA profiling. Our findings show that: (1) A unique miRNA signature distinguishes ALDH-positive CRC cells from ALDH-positive normal colonic epithelial cells, (2) Expression of four miRNAs (miRNA200c, miRNA92a, miRNA20a, miRNA93) are significantly altered in CRC SCs compared to normal colonic SCs, (3) miRNA92a expression is also upregulated in ALDH-positive HT29 CRC SCs as compared to ALDH-negative SCs, (4) miRNA92a targets the 3′UTR of LRIG1 SC gene, and (5) miRNA92a modulates proliferation of HT29 CRC cells. Thus, our findings indicate that overexpression of miRNA92a contributes to the SC origin of CRC. Strategies designed to modulate miRNA expression, such as miRNA92a, may provide ways to target malignant SCs and to develop more effective therapies against CRC.
Collapse
|
22
|
Liu C, Li J, Wang W, Zhong X, Xu F, Lu J. miR-206 inhibits liver cancer stem cell expansion by regulating EGFR expression. Cell Cycle 2020; 19:1077-1088. [PMID: 32286127 DOI: 10.1080/15384101.2020.1739808] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liver cancer stem cells (CSCs) are involved in tumorigenesis, progression, drug resistance and recurrence of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver cancer stem cells was unclear. Herein, we observed miR-206 expression was reduced in both chemoresistant HCCs and recurrent HCCs from patients. A dramatically decrease of miR-206 was detected in cluster of differentiation 133 (CD133) or epithelial cell adhesion molecule (EpCAM)-positive liver CSCs and in CSC-enriched hepatoma spheres. Functional studies revealed that a forced expression of miR-206 inhibited liver CSCs expansion by suppressing the dedifferentiation of hepatoma cells and attenuating the self-renewal of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified epidermal growth factor receptor (EGFR) as a direct target of miR-206. Moreover, miR-206 downregulated the expression of EGFR in liver CSCs. There was a significant inverse correlation between miR-206 and EGFR mRNA expression in HCC samples. Special EGFR inhibitor Gefitinib abolished the discrepancy in liver CSC proportion and the self-renewal capacity between miR-206 overexpression hepatoma cells and control cells, which further confirmed that EGFR was required in miR-206-inhibited liver CSCs expansion. Conclusion: miR-206 could suppress HCC cell dedifferentiation and liver CSCs expansion by targeting EGFR signaling.
Collapse
Affiliation(s)
- Caifeng Liu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Wei Wang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Xingyang Zhong
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Feng Xu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Junhua Lu
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| |
Collapse
|
23
|
Piao L, Li H, Feng Y, Yang Z, Kim S, Xuan Y. SET domain-containing 5 is a potential prognostic biomarker that promotes esophageal squamous cell carcinoma stemness. Exp Cell Res 2020; 389:111861. [PMID: 31981592 DOI: 10.1016/j.yexcr.2020.111861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
SET domain-containing 5 (SETD5) is an uncharacterized member of the protein lysine methyltransferase family. Although it was reported that SETD5 gene mutations are associated with the several types of human cancer, its functional role in esophageal squamous cell carcinoma (ESCC) progression has not been fully elucidated. In the present study, we used tissue samples from 147 patients with ESCC and ESCC cell lines to determine the clinicopathological significance of SETD5 in ESCC and its effects on ESCC stemness. We performed immunohistochemical staining, immunofluorescence imaging, and tumor sphere formation, colony formation, flow cytometry, wound healing, Transwell, and western blotting assays. SETD5 expression was upregulated in ESCC tissue and associated with primary tumor (pT) stage, clinical stage, lymph node metastasis, shorter overall survival rate, and disease-free survival rate. Cox regression analyses indicated that SETD5 is an independent poor prognostic factor of ESCC. In addition, SETD5 expression was correlated with cancer stemness-related protein, hypoxia-inducible factor-1α (HIF-1α), and CD68 expression. Moreover, immunofluorescence analysis revealed that SETD5 was co-localized with CD44 and SOX2 in TE10 and TE11 cells and that exposing cells to cobalt chloride increased HIF-1α, SETD5, and stemness-related protein expression in a time-dependent manner. Furthermore, SETD5 expression was significantly correlated with the expression of cell cycle-related genes and PI3K/Akt signaling pathway-related proteins. Finally, knocking down SETD5 downregulated the expression of stemness-related and PI3K/Akt signaling pathway proteins, while inhibiting tumor spheroid formation, cell proliferation, migration, and invasion in ESCC cells. These results indicate that SETD5 expression is associated with cancer stemness and that SETD5 is a potential prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Lihua Piao
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Haoyue Li
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China
| | - Seokhyung Kim
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University College of Medicine, Seoul, 110-745, South Korea
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China; Department of Pathology, Yanbian University College of Medicine, Yanji, 133002, Jilin Province, PR China.
| |
Collapse
|
24
|
Han T, Zhang Y, Yang X, Han L, Li H, Chen T, Zheng Z. miR-552 Regulates Liver Tumor-Initiating Cell Expansion and Sorafenib Resistance. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 19:1073-1085. [PMID: 32044726 PMCID: PMC7015836 DOI: 10.1016/j.omtn.2019.12.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/24/2019] [Accepted: 12/09/2019] [Indexed: 01/27/2023]
Abstract
MicroRNAs (miRNAs) are involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). However, few miRNAs have been identified and entered clinical practice. Herein, we report that microRNA (miR)-552 is upregulated in HCC tissues and has an important function in liver tumor-initiating cells (T-ICs). Functional studies revealed that a forced expression of miR-552 promotes liver T-IC self-renewal and tumorigenesis. Conversely, miR-552 knockdown inhibits liver T-IC self-renewal and tumorigenesis. Mechanistically, miR-552 downregulates phosphatase and tensin homolog (PTEN) via its mRNA 3' UTR and activates protein kinase B (AKT) phosphorylation. Our clinical investigations elucidated the prognostic value of miR-552 in HCC patients. Furthermore, miR-552 expression determines the responses of hepatoma cells to sorafenib treatment. The analysis of patient cohorts and patient-derived xenografts (PDXs) further demonstrated that miR-552 may predict sorafenib benefits in HCC patients. In conclusion, our findings revealed the crucial role of the miR-552 in liver T-IC expansion and sorafenib response, rendering miR-552 an optimal target for the prevention and intervention in HCC.
Collapse
Affiliation(s)
- Tao Han
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China; Department of Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Liaoning Province, China
| | - Yue Zhang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China; Graduate School, Jinzhou Medical University, Jinzhou, 121000 Liaoning Province, China
| | - Xiaodan Yang
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China
| | - Lei Han
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China
| | - Hengyu Li
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Second Military Medical University, 200433 Shanghai, China.
| | - Tingsong Chen
- Department of Cancer Intervention, Shanghai Seventh People's Hospital, 200001 Shanghai, China.
| | - Zhendong Zheng
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016 Liaoning Province, China.
| |
Collapse
|
25
|
Zhao W, Han T, Li B, Ma Q, Yang P, Li H. miR-552 promotes ovarian cancer progression by regulating PTEN pathway. J Ovarian Res 2019; 12:121. [PMID: 31815639 PMCID: PMC6900846 DOI: 10.1186/s13048-019-0589-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/04/2019] [Indexed: 12/29/2022] Open
Abstract
Background Increasing researches have demonstrated the critical functions of MicroRNAs (miRNAs) in the progression of malignant tumors, including ovarian cancer. It was reported that miR-552 was an important oncogene in both breast cancer and colorectal cancer. However, the role of miR-552 in ovarian cancer (OC) remains to be elucidated. Methods RT-PCR and western blot analysis were used to detect the expression of miR-552 and PTEN. The impact of miR-552 on ovarian cancer proliferation and metastasis was investigated in vitro. The prognostic value of miR-552 was evaluated using the online bioinformatics tool Kaplan-Meier plotter. Results In the present study, we for first found that miR-552 was upregulated in ovarian cancer, especially in metastatic and recurrence ovarian cancer. Forced miR-552 expression promotes the growth and metastasis of ovarian cancer cells. Consistently, miR-552 interference inhibits the proliferation and metastasis of ovarian cancer cells. Mechanically, bioinformatics and luciferase reporter analysis identified Phosphatase and tension homolog (PTEN) as a direct target of miR-552. miR-552 downregulated the PTEN mRNA and protein expression in ovarian cancer cells. Furthermore, the PTEN siRNA abolishes the discrepancy of growth and metastasis capacity between miR-552 mimic ovarian cells and control cells. More importantly, upregulation of miR-552 predicts the poor prognosis of ovarian cancer patients. Conclusion Our findings revealed that miR-552 could promote ovarian cancer cells progression by targeting PTEN signaling and might therefore be useful to predict patient prognosis.
Collapse
Affiliation(s)
- Wenman Zhao
- Department of General surgery, Cao county people's hospital, East of Qinghe Road, Heze, 274400, Shandong province, China.
| | - Tao Han
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, 110016, Liaoning Province, China
| | - Bao Li
- Department of General surgery, Cao county people's hospital, East of Qinghe Road, Heze, 274400, Shandong province, China
| | - Qianyun Ma
- Department of Urology surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China.
| | - Hengyu Li
- Department of Breast and Thyroid surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
26
|
Si A, Wang L, Miao K, Zhang R, Ji H, Lei Z, Cheng Z, Fang X, Hao B. miR-219 regulates liver cancer stem cell expansion via E-cadherin pathway. Cell Cycle 2019; 18:3550-3561. [PMID: 31724462 PMCID: PMC6927721 DOI: 10.1080/15384101.2019.1691762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 02/06/2023] Open
Abstract
Liver cancer stem cells contribute to tumorigenesis, progression, recurrence and drug resistance of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liverCSCs is not fully understood yet. Here we show that miR-219 is upregulated in liver CSCs. Knockdown of miR-219 attenuates the self-renewal and tumorigenicity of liver CSCs. Conversely, miR-219 overexpressing enhances the self-renewal and tumorigenicity of liver CSCs.Mechanistically,miR-219 downregulates E-cadherin via itsmRNA 3'UTR in liver CSCs. The correlation between miR-219 and E-cadherin is validated in human HCC tissues. Furthermore, the miR-219 expression determines the responses of hepatoma cells to sorafenib treatment. Our findings indicate that miR-219 plays a critical role in liver CSCs expansion and sorafenib response, rendering miR-219 as an optimal target for the prevention and intervention of HCC.Abbreviations: HCC: Hepatocellular carcinoma; CSCs: cancer stem cells; DMEM: Dulbecco's modified Eagle's medium; FBS: fetal bovine serum; OS: overall survival.
Collapse
Affiliation(s)
- Anfeng Si
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Longqi Wang
- Department of General Surgery I, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Kun Miao
- Oncology Department Ward, Tianchang People’s Hospital, Anhui, China
| | - Rongrong Zhang
- Department of General Surgery III, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Huiyu Ji
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Zhengqing Lei
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Zhangjun Cheng
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Xiangchun Fang
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Baobing Hao
- Department of Surgical Oncology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
27
|
Li B, Liu D, Yang P, Li HY, Wang D. miR-613 inhibits liver cancer stem cell expansion by regulating SOX9 pathway. Gene 2019; 707:78-85. [PMID: 31075412 DOI: 10.1016/j.gene.2019.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 12/23/2022]
Abstract
Liver cancer stem cells (CSCs) contribute to tumorigenesis, progression, drug resistance and recurrence of hepatocellular carcinoma (HCC). However, the underlying mechanism for the propagation of liver CSCs remains unclear. Herein, we observed miR-613 expression was downregulated in both chemoresistant and recurrent HCC patients. A remarkable decrease in miR-613 was detected in CD24 or OV6-positive liver CSCs and CSC-enriched hepatoma spheres. Down-regulation of miR-613 facilitated liver CSCs expansion by promoting the dedifferentiation of hepatoma cells and enhancing the self-renewal of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified SOX9 as a direct target of miR-613. Overexpression of miR-613 inhibited the expression of SOX9 in HCC cells. Special SOX9 siRNA abolished the discrepancy in liver CSCs proportion and the self-renewal capacity between miR-613 overexpression hepatoma cells and control cells, which further confirmed that SOX9 was required in miR-613-inhibited liver CSCs expansion. Furthermore, hepatoma cells with miR-613 overexpression performed more sensitivity to cisplatin or sorafenib treatment. Conclusion: miR-613 could inhibit HCC cell dedifferentiation and liver CSCs expansion by targeting SOX9 signaling and may prove to be a novel therapeutic target for HCC patients.
Collapse
Affiliation(s)
- Bao Li
- Department of General Surgery, Cao County People's Hospital, Heze, Shandong Province 274400, China
| | - Dan Liu
- Department of General Surgery, Cao County People's Hospital, Heze, Shandong Province 274400, China
| | - Pinghua Yang
- Department of Biliary Tract Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, China.
| | - Heng-Yu Li
- Department of General Surgery, First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, China.
| | - Deyuan Wang
- Department of Oncology, Cao County People's Hospital, Heze, Shandong Province 274400, China.
| |
Collapse
|
28
|
Tang C, Zhou H, Zheng X, Zhang Y, Sha X. Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA Biol 2019; 16:601-611. [PMID: 30676207 PMCID: PMC6546388 DOI: 10.1080/15476286.2019.1570811] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/30/2018] [Accepted: 01/03/2019] [Indexed: 01/21/2023] Open
Abstract
Since lots of miRNA-disease associations have been verified, it is meaningful to discover more miRNA-disease associations for serving disease diagnosis and prevention of human complex diseases. However, it is not practical to identify potential associations using traditional biological experimental methods since the process is expensive and time consuming. Therefore, it is necessary to develop efficient computational methods to accomplish this task. In this work, we introduced a matrix completion model with dual Laplacian regularization (DLRMC) to infer unknown miRNA-disease associations in heterogeneous omics data. Specifically, DLRMC transformed the task of miRNA-disease association prediction into a matrix completion problem, in which the potential missing entries of the miRNA-disease association matrix were calculated, the missing association can be obtained based on the prediction scores after the completion procedure. Meanwhile, the miRNA functional similarity and the disease semantic similarity were fully exploited to serve the miRNA-disease association matrix completion by using a dual Laplacian regularization term. In the experiments, we conducted global and local Leave-One-Out Cross Validation (LOOCV) and case studies to evaluate the efficacy of DLRMC on the Human miRNA-disease associations dataset obtained from the HMDDv2.0 database. As a result, the AUCs of DLRMC is 0.9174 and 0.8289 in global LOOCV and local LOOCV, respectively, which significantly outperform a variety of previous methods. In addition, in the case studies on four significant diseases related to human health including Colon Neoplasms, Kidney neoplasms, Lymphoma and Prostate neoplasms, 90%, 92%, 92% and 94% out of the top 50 predicted miRNAs has been confirmed, respectively.
Collapse
Affiliation(s)
- Chang Tang
- School of Computer Science, China University of Geosciences, Wuhan, China
| | - Hua Zhou
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiao Zheng
- Wuhan University of Technology Hospital, Wuhan University of Technology, Wuhan, China
| | - Yanming Zhang
- Department of Hematology, The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Xiaofeng Sha
- Department of Oncology, Huai’an Hongze District People’s Hospital, Huai’an, China
| |
Collapse
|
29
|
Ran RZ, Chen J, Cui LJ, Lin XL, Fan MM, Cong ZZ, Zhang H, Tan WF, Zhang GQ, Zhang YJ. miR-194 inhibits liver cancer stem cell expansion by regulating RAC1 pathway. Exp Cell Res 2019; 378:66-75. [DOI: 10.1016/j.yexcr.2019.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Accepted: 03/03/2019] [Indexed: 01/02/2023]
|
30
|
Feng H, Zhang Z, Qing X, French SW, Liu D. miR-186-5p promotes cell growth, migration and invasion of lung adenocarcinoma by targeting PTEN. Exp Mol Pathol 2019; 108:105-113. [PMID: 30981721 DOI: 10.1016/j.yexmp.2019.04.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/13/2019] [Accepted: 04/10/2019] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To explore the expression of miR-186-5p in lung adenocarcinoma (LUAD) and its possible function associated with cancer cell proliferation, migration and invasion. METHODS MiR-186-5p expression levels in LUAD samples, human LUAD cell lines H1299 and NCI-H1975, and normal human lung epithelial cell line BEAS-IB were assessed by quantitative real-time PCR (qRT-PCR). H1299 and NCI-H1975 cells were transfected with miR-186-5p mimic or miRNA negative control. CCK-8 assay was performed to evaluate the cell proliferation. Transwell assay and transwell-matrigel™ invasion assay were applied to assess the migration and invasion abilities of H1299 and NCI-H1975 cells. RESULTS miR-186-5p expression was significantly up-regulated in LUAD tumor tissues and LUAD cell lines as compared with tumor-adjacent tissues and normal human lung epithelial cells, respectively. MiR-186-5p overexpression remarkably promoted the proliferation, migration and invasion of LUAD cells. Furthermore, phosphatase and tensin homolog (PTEN) was a direct target of miR-186-5p verified by luciferase reporter assay. Overexpression of PTEN significantly suppressed LUAD cells to proliferate, migrate and invade. MiR-186-5p overexpression-induced LUAD cell phenotype could be partially rescued by co-overexpression of miR-186-5p and PTEN. CONCLUSION This study demonstrated that miR-186-5p is up-regulated in LUAD, and functionally associated with cell proliferation, migration and invasion. MiR-186-5p promotes the proliferation, migration and invasion of LUAD cells by targeting PTEN. MiR-186-5p may be utilized as a novel molecular marker and therapeutic target of LUAD.
Collapse
Affiliation(s)
- Hongxiang Feng
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Zhenrong Zhang
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China
| | - Xin Qing
- Department of Pathology, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90502, USA
| | - Deruo Liu
- Department of Thoracic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China.
| |
Collapse
|
31
|
Hemming ML, Lawlor MA, Andersen JL, Hagan T, Chipashvili O, Scott TG, Raut CP, Sicinska E, Armstrong SA, Demetri GD, Bradner JE, Ganz PA, Tomlinson G, Olopade OI, Couch FJ, Wang X, Lindor NM, Pankratz VS, Radice P, Manoukian S, Peissel B, Zaffaroni D, Barile M, Viel A, Allavena A, Dall'Olio V, Peterlongo P, Szabo CI, Zikan M, Claes K, Poppe B, Foretova L, Mai PL, Greene MH, Rennert G, Lejbkowicz F, Glendon G, Ozcelik H, Andrulis IL, Thomassen M, Gerdes AM, Sunde L, Cruger D, Birk Jensen U, Caligo M, Friedman E, Kaufman B, Laitman Y, Milgrom R, Dubrovsky M, Cohen S, Borg A, Jernström H, Lindblom A, Rantala J, Stenmark-Askmalm M, Melin B, Nathanson K, Domchek S, Jakubowska A, Lubinski J, Huzarski T, Osorio A, Lasa A, Durán M, Tejada MI, Godino J, Benitez J, Hamann U, Kriege M, Hoogerbrugge N, van der Luijt RB, van Asperen CJ, Devilee P, Meijers-Heijboer EJ, Blok MJ, Aalfs CM, Hogervorst F, Rookus M, Cook M, Oliver C, Frost D, Conroy D, Evans DG, Lalloo F, Pichert G, Davidson R, Cole T, Cook J, Paterson J, Hodgson S, Morrison PJ, Porteous ME, Walker L, Kennedy MJ, Dorkins H, Peock S, Godwin AK, Stoppa-Lyonnet D, de Pauw A, Mazoyer S, Bonadona V, Lasset C, Dreyfus H, Leroux D, Hardouin A, Berthet P, Faivre L, Loustalot C, Noguchi T, Sobol H, Rouleau E, Nogues C, Frénay M, Vénat-Bouvet L, Hopper JL, Daly MB, Terry MB, John EM, Buys SS, Yassin Y, Miron A, Goldgar D, Singer CF, Dressler AC, Gschwantler-Kaulich D, Pfeiler G, Hansen TVO, Jønson L, Agnarsson BA, Kirchhoff T, Offit K, Devlin V, Dutra-Clarke A, Piedmonte M, Rodriguez GC, Wakeley K, Boggess JF, Basil J, Schwartz PE, Blank SV, Toland AE, Montagna M, Casella C, Imyanitov E, Tihomirova L, Blanco I, Lazaro C, Ramus SJ, Sucheston L, Karlan BY, Gross J, Schmutzler R, Wappenschmidt B, Engel C, Meindl A, Lochmann M, Arnold N, Heidemann S, Varon-Mateeva R, Niederacher D, Sutter C, Deissler H, Gadzicki D, Preisler-Adams S, Kast K, Schönbuchner I, Caldes T, de la Hoya M, Aittomäki K, Nevanlinna H, Simard J, Spurdle AB, Holland H, Chen X, Platte R, Chenevix-Trench G, Easton DF. Enhancer Domains in Gastrointestinal Stromal Tumor Regulate KIT Expression and Are Targetable by BET Bromodomain Inhibition. Cancer Res 2019. [PMID: 18483246 DOI: 10.1158/0008-5472] [Citation(s) in RCA: 718] [Impact Index Per Article: 119.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gastrointestinal stromal tumor (GIST) is a mesenchymal neoplasm characterized by activating mutations in the related receptor tyrosine kinases KIT and PDGFRA. GIST relies on expression of these unamplified receptor tyrosine kinase (RTK) genes through a large enhancer domain, resulting in high expression levels of the oncogene required for tumor growth. Although kinase inhibition is an effective therapy for many patients with GIST, disease progression from kinase-resistant mutations is common and no other effective classes of systemic therapy exist. In this study, we identify regulatory regions of the KIT enhancer essential for KIT gene expression and GIST cell viability. Given the dependence of GIST upon enhancer-driven expression of RTKs, we hypothesized that the enhancer domains could be therapeutically targeted by a BET bromodomain inhibitor (BBI). Treatment of GIST cells with BBIs led to cell-cycle arrest, apoptosis, and cell death, with unique sensitivity in GIST cells arising from attenuation of the KIT enhancer domain and reduced KIT gene expression. BBI treatment in KIT-dependent GIST cells produced genome-wide changes in the H3K27ac enhancer landscape and gene expression program, which was also seen with direct KIT inhibition using a tyrosine kinase inhibitor (TKI). Combination treatment with BBI and TKI led to superior cytotoxic effects in vitro and in vivo, with BBI preventing tumor growth in TKI-resistant xenografts. Resistance to select BBI in GIST was attributable to drug efflux pumps. These results define a therapeutic vulnerability and clinical strategy for targeting oncogenic kinase dependency in GIST. SIGNIFICANCE: Expression and activity of mutant KIT is essential for driving the majority of GIST neoplasms, which can be therapeutically targeted using BET bromodomain inhibitors.
Collapse
Affiliation(s)
- Matthew L Hemming
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. .,Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Matthew A Lawlor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Jessica L Andersen
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Timothy Hagan
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Otari Chipashvili
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Thomas G Scott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Chandrajit P Raut
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ewa Sicinska
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Scott A Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - George D Demetri
- Center for Sarcoma and Bone Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bao B, Prasad AS. Targeting CSC in a Most Aggressive Subtype of Breast Cancer TNBC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1152:311-334. [DOI: 10.1007/978-3-030-20301-6_17] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Wang X, Meng Q, Qiao W, Ma R, Ju W, Hu J, Lu H, Cui J, Jin Z, Zhao Y, Wang Y. miR-181b/Notch2 overcome chemoresistance by regulating cancer stem cell-like properties in NSCLC. Stem Cell Res Ther 2018; 9:327. [PMID: 30470250 PMCID: PMC6260863 DOI: 10.1186/s13287-018-1072-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/21/2018] [Accepted: 11/09/2018] [Indexed: 01/23/2023] Open
Abstract
Background Lung cancer stem cells have the ability to self-renew and are resistant to conventional chemotherapy. MicroRNAs (miRNAs) regulate and control the expression and function of many target genes; therefore, miRNA disorders are involved in the pathogenesis of human diseases, such as cancer. However, the effects of miRNA dysregulation on tumour stemness and drug resistance have not been fully elucidated. miR-181b has been reported to be a tumour suppressor miRNA and is associated with drug-resistant non-small cell lung cancer. Methods Cancer stem cell (CSC)-like properties were tested by a cell proliferation assay and flow cytometry; miR-181b expression was measured by real-time PCR; and Notch2 and related proteins were detected by Western blotting and immunohistochemistry. A mouse xenograft model was also established. Results In this study, we found that ectopic miR-181b expression suppressed cancer stem cell properties and enhanced sensitivity to cisplatin (DDP) treatment by directly targeting Notch2. miR-181b could inactivate the Notch2/Hes1 signalling pathway. In addition, tumours from nude mice treated with miR-181b were significantly smaller than tumours from mice treated with control agomir. Decreased miR-181b expression and increased Notch2 expression were observed to have a significant relationship with overall survival (OS) and CSC-like properties in non-small cell lung cancer (NSCLC) patients. Conclusions This study elucidates an important role of miR-181b in the regulation of CSC-like properties, suggesting a potential therapeutic target for overcoming drug resistance in NSCLC. Electronic supplementary material The online version of this article (10.1186/s13287-018-1072-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Qingwei Meng
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Wenbo Qiao
- The Department of Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Ruishuang Ma
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Weiwei Ju
- Pathology Department, Laboratory of Molecular Medicine, College of Medicine, Eastern Liaodong University, Dandong, Liaoning Province, China
| | - Jing Hu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Hailing Lu
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Jianqi Cui
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Zhao Jin
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Yanbin Zhao
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| | - Yan Wang
- The Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China.
| |
Collapse
|
34
|
Jiang ZB, Ma BQ, Liu SG, Li J, Yang GM, Hou YB, Si RH, Gao P, Yan HT. miR-365 regulates liver cancer stem cells via RAC1 pathway. Mol Carcinog 2018; 58:55-65. [PMID: 30182377 PMCID: PMC6585981 DOI: 10.1002/mc.22906] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/11/2022]
Abstract
Liver cancer stem cells (CSCs) were involved in tumorigenesis, progression, recurrence, and drug resistance of hepatocellular carcinoma (HCC). miR-365 was downregulated in hepatocellular carcinoma and inhibited HCC cell proliferation and invasion. However, the role of miR-365 in liver cancer stem cells was unknown. Herein, we observed a remarkable decrease of miR-365 expression in CD133 or EpCAM-positive liver CSCs as well as in CSC-enriched hepatoma spheres. Up-regulated miR-365 suppressed liver CSC expansion by inhibiting the dedifferentiation of hepatoma cells and decreasing the self-renewal ability of liver CSCs. Mechanistically, bioinformatic and luciferase reporter analysis identified Ras-related C3 botulinum toxin substrate 1 (RAC1) as a direct target of miR-365. Overexpression of miR-365 in hepatoma cells downregulated the RAC1 mRNA and protein expression. RAC1 also could promote the expansion of liver CSCs. The special RAC1 inhibitor EHop-106 or RAC1 overexpression abolished the discrepancy in liver CSC proportion and the self-renewal capacity between miR-365 overexpression hepatoma cells and control cells, which further confirmed that RAC1 was required in miR-365-suppressed liver CSCs expansion. miR-365 was downregulated in liver CSCs and could inhibit HCC cells dedifferentiation and liver CSCs expansion by targeting RAC1 signaling.
Collapse
Affiliation(s)
- Ze-Bin Jiang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Bing-Qiang Ma
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Shao-Guang Liu
- Department of Emergency Surgery, Gansu Provincial Hospital, Gansu, China
| | - Jing Li
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Guang-Ming Yang
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ya-Bo Hou
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Ruo-Huang Si
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Peng Gao
- Department of General Surgery, Gansu Provincial Hospital, Gansu, China
| | - Hui-Ting Yan
- Department of Nursing Department, Gansu Provincial Hospital, Gansu, China
| |
Collapse
|
35
|
Chen X, Yan CC, Zhang X, You ZH, Huang YA, Yan GY. HGIMDA: Heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 2018; 7:65257-65269. [PMID: 27533456 PMCID: PMC5323153 DOI: 10.18632/oncotarget.11251] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Recently, microRNAs (miRNAs) have drawn more and more attentions because accumulating experimental studies have indicated miRNA could play critical roles in multiple biological processes as well as the development and progression of human complex diseases. Using the huge number of known heterogeneous biological datasets to predict potential associations between miRNAs and diseases is an important topic in the field of biology, medicine, and bioinformatics. In this study, considering the limitations in the previous computational methods, we developed the computational model of Heterogeneous Graph Inference for MiRNA-Disease Association prediction (HGIMDA) to uncover potential miRNA-disease associations by integrating miRNA functional similarity, disease semantic similarity, Gaussian interaction profile kernel similarity, and experimentally verified miRNA-disease associations into a heterogeneous graph. HGIMDA obtained AUCs of 0.8781 and 0.8077 based on global and local leave-one-out cross validation, respectively. Furthermore, HGIMDA was applied to three important human cancers for performance evaluation. As a result, 90% (Colon Neoplasms), 88% (Esophageal Neoplasms) and 88% (Kidney Neoplasms) of top 50 predicted miRNAs are confirmed by recent experiment reports. Furthermore, HGIMDA could be effectively applied to new diseases and new miRNAs without any known associations, which overcome the important limitations of many previous computational models.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| | - Yu-An Huang
- Department of Computing, Hong Kong Polytechnic University, Hong Kong, China
| | - Gui-Ying Yan
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
36
|
Shi DM, Bian XY, Qin CD, Wu WZ. miR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by targeting PTEN via PI3K/Akt pathway. Onco Targets Ther 2018; 11:571-585. [PMID: 29416358 PMCID: PMC5790077 DOI: 10.2147/ott.s152611] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The miRNA miR-106b-5p has been previously reported to be increased in hepatocellular carcinoma (HCC) tissues compared to cirrhotic tissues. The purpose of this study was to detect its expression in HCC cell lines with distinct metastatic potentials and to explore the molecular mechanisms underlying HCC stemness and migration. Methods miR-106b-5p expression was studied in HCC tissues and cell lines. In vitro cancer stem cell (CSC)-like properties, cell migration and invasion were compared between HCC cell lines with upregulation or downregulation of miR-106b-5p. In vivo tail vein injection models were established to evaluate the role of miR-106b-5p in lung metastasis. Bioinformatics programs, luciferase reporter assay and rescue experiments were used to validate the downstream targets of miR-106b-5p. The relationship between the expression of the targeted gene and clinicopathological parameters was also analyzed. Results miR-106b-5p expression was higher in HCC tissues and cell lines than that in non-tumor tissues and hepatocyte Chang liver, respectively. Upregulation of miR-106b-5p exhibited a promoting role in CSC properties, cell migration and activation of phosphatidylinositol-3 kinase (PI3K)/Akt signaling in vitro, as well as in lung metastasis in vivo. However, downregulation of miR-106b-5p exhibited the opposite effect. Furthermore, PTEN was verified as a direct target of miR-106b-5p. Upon clinicopathological analysis, lower level of PTEN was significantly associated with more aggressive characteristics. Patients with high PTEN expression had longer overall survival and disease-free survival. Conclusion miR-106b-5p promotes HCC stemness maintenance and metastasis by targeting PTEN via PI3K/Akt pathway. Inhibition of miR-106b-5p might be effective therapeutic strategies to treat advanced HCC.
Collapse
Affiliation(s)
- Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Xin-Yu Bian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Cheng-Dong Qin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, People's Republic of China
| |
Collapse
|
37
|
Mansouri S, Singh S, Alamsahebpour A, Burrell K, Li M, Karabork M, Ekinci C, Koch E, Solaroglu I, Chang JT, Wouters B, Aldape K, Zadeh G. DICER governs characteristics of glioma stem cells and the resulting tumors in xenograft mouse models of glioblastoma. Oncotarget 2018; 7:56431-56446. [PMID: 27421140 PMCID: PMC5302925 DOI: 10.18632/oncotarget.10570] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
The RNAse III endonuclease DICER is a key regulator of microRNA (miRNA) biogenesis and is frequently decreased in a variety of malignancies. We characterized the role of DICER in glioblastoma (GB), specifically demonstrating its effects on the ability of glioma stem-like cells (GSCs) to form tumors in a mouse model of GB. DICER silencing in GSCs reduced their stem cell characteristics, while tumors arising from these cells were more aggressive, larger in volume, and displayed a higher proliferation index and lineage differentiation. The resulting tumors, however, were more sensitive to radiation treatment. Our results demonstrate that DICER silencing enhances the tumorigenic potential of GSCs, providing a platform for analysis of specific relevant miRNAs and development of potentially novel therapies against GB.
Collapse
Affiliation(s)
- Sheila Mansouri
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Sanjay Singh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Amir Alamsahebpour
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Kelly Burrell
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Mira Li
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Merve Karabork
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Can Ekinci
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey
| | - Elizabeth Koch
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Ihsan Solaroglu
- School of Medicine, Koç University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.,Loma Linda University, School of Medicine, Loma Linda, CA, USA
| | - Jeffery T Chang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas, Houston, TX, USA
| | - Bradly Wouters
- Ontario Cancer Institute and Campbell Family Institute for Cancer Research, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Kenneth Aldape
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada
| | - Gelareh Zadeh
- Princess Margaret Cancer Centre and MacFeeters-Hamilton Centre for Neuro-Oncology Research, Toronto, ON, Canada.,Department of Neurosurgery, Toronto Western Hospital, University Health Network, 4W-436, Toronto, ON, Canada
| |
Collapse
|
38
|
Begicevic RR, Falasca M. ABC Transporters in Cancer Stem Cells: Beyond Chemoresistance. Int J Mol Sci 2017; 18:E2362. [PMID: 29117122 PMCID: PMC5713331 DOI: 10.3390/ijms18112362] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/02/2017] [Accepted: 11/02/2017] [Indexed: 12/19/2022] Open
Abstract
The efficacy of chemotherapy is one of the main challenges in cancer treatment and one of the major obstacles to overcome in achieving lasting remission and a definitive cure in patients with cancer is the emergence of cancer resistance. Indeed, drug resistance is ultimately accountable for poor treatment outcomes and tumour relapse. There are various molecular mechanisms involved in multidrug resistance, such as the change in the activity of membrane transporters primarily belonging to the ATP binding cassette (ABC) transporter family. In addition, it has been proposed that this common feature could be attributed to a subpopulation of slow-cycling cancer stem cells (CSCs), endowed with enhanced tumorigenic potential and multidrug resistance. CSCs are characterized by the overexpression of specific surface markers that vary in different cancer cell types. Overexpression of ABC transporters has been reported in several cancers and more predominantly in CSCs. While the major focus on the role played by ABC transporters in cancer is polarized by their involvement in chemoresistance, emerging evidence supports a more active role of these proteins, in which they release specific bioactive molecules in the extracellular milieu. This review will outline our current understanding of the role played by ABC transporters in CSCs, how their expression is regulated and how they support the malignant metabolic phenotype. To summarize, we suggest that the increased expression of ABC transporters in CSCs may have precise functional roles and provide the opportunity to target, particularly these cells, by using specific ABC transporter inhibitors.
Collapse
Affiliation(s)
- Romana-Rea Begicevic
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth WA 6102, Australia.
| |
Collapse
|
39
|
Zhang Y, Zhao W, Han H, Li S, Chen D, Zhang Z. MicroRNA-31 suppresses the self-renewal capability of α2δ1 + liver tumor-initiating cells by targeting ISL1. Oncotarget 2017; 8:87647-87657. [PMID: 29152108 PMCID: PMC5675660 DOI: 10.18632/oncotarget.21140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 08/26/2017] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence demonstrates that miRNAs, a class of small non-coding RNAs, are involved in the regulation of tumor-initiating cells (TICs) which are considered to be the origin of cancer development according to the cancer stem cell hypothesis. We have previously identified that miR-31 may play suppressive roles in α2δ1+ hepatocellular carcinoma (HCC) TICs. Here, we confirm that the expression of miR-31 is significantly downregulated in α2δ1+ HCC TICs. Overexpression of miR-31 in α2δ1+ HCC TICs results in significant suppression of the self-renewal and tumorigenicity abilities of these cells. Conversely, knockdown the expression of miR-31 in PLC/PRF/5 cells is able to reprogram them into TICs with stem cell-like properties. Furthermore, the expression of ISL LIM Homeobox 1(ISL1), a transcription factor involved in recognition of undifferentiated cardiac progenitors, is negatively regulated by miR-31, and the luciferase reporters’ activities with the 3′-UTRs of ISL1 are inhibited significantly by miR-31. Collectively, our results suggest that miR-31 can negatively regulate the self-renewal ability of α2δ1+ liver TICs via silencing ISL1.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Haibo Han
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Sheng Li
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Dongji Chen
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhiqian Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
40
|
Affiliation(s)
- Anjusha Mohan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Shantikumar V. Nair
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
| | - Vinoth-Kumar Lakshmanan
- Centre for Nanosciences and Molecular Medicine, School of Medicine, Amrita University, Kochi campus, India
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| |
Collapse
|
41
|
Sun L, Liu T, Zhang S, Guo K, Liu Y. Oct4 induces EMT through LEF1/β-catenin dependent WNT signaling pathway in hepatocellular carcinoma. Oncol Lett 2017; 13:2599-2606. [PMID: 28454439 PMCID: PMC5403449 DOI: 10.3892/ol.2017.5788] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/21/2016] [Indexed: 01/06/2023] Open
Abstract
Octamer 4 (Oct4), a member of the Pit-Oct-Unc transcription factor family required to maintain self-renewal and pluripotency of embryonic stem cells, has been previously identified to be associated with tumorigenesis and malignant transformation of numerous types of cancer including hepatocellular carcinoma (HCC). The present data shows that Oct4 enhances cancer stem cell properties and increases invasion ability in the Huh7 cell line. To increase understanding of the role of Oct4 in HCC, the present study used a functional genomics approach and analyzed the resulting transcriptional profiles to identify Oct4-dependent genes in Huh7. Affymetrix GeneChip Human genome U133 Plus 2.0 Arrays were used to determine differential gene expression profiles and then validated by quantitative polymerase chain reaction. The present study found that altered expression of 673 genes (fold-change ≥2) affected multiple signaling pathways linked with self-renew and metastasis. Among these differentially expressed genes, the present study noticed that the key component of the WNT signaling pathway lymphoid enhancer binding factor 1 (LEF1) and Twist Family BHLH transcription factor 1 were upregulated by Oct4, whilst cadherin 2 was downregulated. Additional studies found that the nuclear β-catenin aggregation was increased in Oct4 overexpressed HCC cell lines. These results suggest that Oct4 regulates LEF1 to active LEF1/β-catenin dependent WNT signaling pathway and promote epithelial-mesenchymal transition. The present findings provide novel mechanistic insight into an important role of Oct4 in HCC.
Collapse
Affiliation(s)
- Lu Sun
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Tianhua Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| | - Shu Zhang
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Kun Guo
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai 200032, P.R. China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
42
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Naik PP, Das DN, Panda PK, Mukhopadhyay S, Sinha N, Praharaj PP, Agarwal R, Bhutia SK. Implications of cancer stem cells in developing therapeutic resistance in oral cancer. Oral Oncol 2016; 62:122-135. [PMID: 27865365 DOI: 10.1016/j.oraloncology.2016.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/05/2016] [Accepted: 10/15/2016] [Indexed: 12/13/2022]
Abstract
Conventional therapeutics are often frequented with recurrences, refraction and regimen resistance in oral cavity cancers which are predominantly manifested by cancer stem cells (CSCs). During oncoevolution, cancer cells may undergo structural and functional reprogramming wherein they evolve as highly tolerant CSC phenotypes with greater survival advantages. The CSCs possess inherent and exclusive properties including self-renewal, hierarchical differentiation, and tumorigenicity that serve as the basis of chemo-radio-resistance in oral cancer. However, the key mechanisms underlying the CSC-mediated therapy resistance need to be further elucidated. A spectrum of dysfunctional cellular pathways including the developmental signaling, apoptosis, autophagy, cell cycle regulation, DNA damage responses and epigenetic regulations protect the CSCs from conventional therapies. Moreover, tumor niche shelters CSCs and creates an immunosuppressive environment favoring the survival of CSCs. Maintenance of lower redox status, epithelial-to-mesenchymal transition (EMT), metabolic reprogramming and altered drug responses are the accessory features that aid in the process of chemo-radio-resistance in oral CSCs. This review deals with the functional and molecular basis of cancer cell pluripotency-associated resistance highlighting the abrupt fundamental cellular processes; targeting these events may hold a great promise in the successful treatment of oral cancer.
Collapse
Affiliation(s)
- Prajna Paramita Naik
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Prashanta Kumar Panda
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Subhadip Mukhopadhyay
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | | | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, United States; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO, United States.
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India.
| |
Collapse
|
44
|
Fan T, Wang W, Zhang B, Xu Y, Chen L, Pan S, Hu H, Geng Q. Regulatory mechanisms of microRNAs in lung cancer stem cells. SPRINGERPLUS 2016; 5:1762. [PMID: 27795904 PMCID: PMC5056920 DOI: 10.1186/s40064-016-3425-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 09/28/2016] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that cancer stem cells (CSCs) are a key occurrence in the process of many human cancers. Lung cancer is the most common aggressive malignancy and cause of cancer death worldwide. The research on lung cancer stem cells has been highlighted for many years. Lung CSCs seem to play a major role in lung cancer metastasis, drug resistance and tumour-self-renewal. MicroRNAs (miRNAs), a class of newly emerging small noncoding RNAs that act as post-transcriptional regulators of gene expression, have been demonstrated to serve as a vital player in fine-tuning a number of biological activities ranging from embryogenesis to programmed cell death as well as tumourigenesis. In recent years, several miRNAs have been highlighted to be specifically expressed in CSCs. The miRNA profile of CSCs is remarkably different from non-stem cancer cells. As such, many miRNAs have been shown to regulate self-renewal and differentiation properties of CSCs. In this review, we present the latest findings on miRNAs that regulate the tumour microenvironment of lung CSCs with the goal to prompt the development of novel therapeutic strategies for patients with lung cancer.
Collapse
Affiliation(s)
- Tao Fan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Wei Wang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Boyou Zhang
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Yao Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Lei Chen
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Shize Pan
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Hao Hu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| |
Collapse
|
45
|
Liu Y, Liu DL, Dong LL, Wen D, Shi DM, Zhou J, Fan J, Wu WZ. miR-612 suppresses stem cell-like property of hepatocellular carcinoma cells by modulating Sp1/Nanog signaling. Cell Death Dis 2016; 7:e2377. [PMID: 27685621 PMCID: PMC5059880 DOI: 10.1038/cddis.2016.282] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022]
Abstract
In our previous study we found that miR-612 negatively regulated stem cell-like property and tumor metastasis of hepatocellular carcinoma cells (HCC). In this study, we try to elucidate underlying mechanism of the regulation, and find that miR-612 inversely modulate the mRNA and protein level of epithelial cell adhesion molecule as well as CD133, negatively regulate the numbers and sizes of tumor spheres, directly inhibit the protein level of Sp1, and subsequently reduce transcription activity of Nanog. Of importance, the higher levels of Sp1 and Nanog in biopsies are the more unfavorable prognoses of HCC patients are found after tumor resection. Taken together, miR-612 has a suppressive role on HCC stemness via Sp1/Nanog signaling pathway.
Collapse
Affiliation(s)
- Yang Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Dong-Li Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Li-Li Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Duo Wen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.,Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Dong-Min Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Wei-Zhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, China
| |
Collapse
|
46
|
Kojima S, Goto Y, Naya Y. The roles of microRNAs in the progression of castration-resistant prostate cancer. J Hum Genet 2016; 62:25-31. [PMID: 27278789 DOI: 10.1038/jhg.2016.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/28/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the leading causes of cancer-related death in men. PCa is androgen-dependent, and androgen-deprivation therapy is effective for first-line hormonal treatment, but the androgen-independent phenotype of PCa eventually develops, which is difficult to treat and has no effective cure. Recently, microRNAs have been discovered to have important roles in the initiation and progression of PCa, suggesting their use in diagnosis, predicting prognosis and development of treatment for castration-resistant PCa (CRPC). Understanding the networks of microRNAs and their target genes is necessary to ascertain their roles and importance in the development and progression of PCa. This review summarizes the current knowledge about microRNAs regulating PCa progression and elucidates the mechanism of progression to CRPC.
Collapse
Affiliation(s)
- Satoko Kojima
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yukio Naya
- Department of Urology, Teikyo University Chiba Medical Center, Ichihara, Japan
| |
Collapse
|
47
|
McIntosh K, Balch C, Tiwari AK. Tackling multidrug resistance mediated by efflux transporters in tumor-initiating cells. Expert Opin Drug Metab Toxicol 2016; 12:633-44. [DOI: 10.1080/17425255.2016.1179280] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Kyle McIntosh
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Curt Balch
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
48
|
Anti-Apoptotic Effects of Lentiviral Vector Transduction Promote Increased Rituximab Tolerance in Cancerous B-Cells. PLoS One 2016; 11:e0153069. [PMID: 27045839 PMCID: PMC4821607 DOI: 10.1371/journal.pone.0153069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/23/2016] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by great genetic and clinical heterogeneity which complicates prognostic prediction and influences treatment efficacy. The most common regimen, R-CHOP, consists of a combination of anthracycline- and immuno-based drugs including Rituximab. It remains elusive how and to which extent genetic variability impacts the response and potential tolerance to R-CHOP. Hence, an improved understanding of mechanisms leading to drug tolerance in B-cells is crucial, and modelling by genetic intervention directly in B-cells is fundamental in such investigations. Lentivirus-based gene vectors are widely used gene vehicles, which in B-cells are an attractive alternative to potentially toxic transfection-based methodologies. Here, we investigate the use of VSV-G-pseudotyped lentiviral vectors in B-cells for exploring the impact of microRNAs on tolerance to Rituximab. Notably, we find that robust lentiviral transduction of cancerous B-cell lines markedly and specifically enhances the resistance of transduced germinal center B-cells (GCBs) to Rituximab. Although Rituximab works partially through complement-mediated cell lysis, increased tolerance is not achieved through effects of lentiviral transduction on cell death mediated by complement. Rather, reduced levels of PARP1 and persistent high levels of CD43 in Rituximab-treated GCBs demonstrate anti-apoptotic effects of lentiviral transduction that may interfere with the outcome and interpretation of Rituximab tolerance studies. Our findings stress that caution should be exercised exploiting lentiviral vectors in studies of tolerance to therapeutics in DLBCL. Importantly, however, we demonstrate the feasibility of using the lentiviral gene delivery platform in studies addressing the impact of specific microRNAs on Rituximab responsiveness.
Collapse
|
49
|
Hsu CY, Hsieh TH, Tsai CF, Chen HS, Liang PI, Hsu YL, Tsai EM. Synthetic Steroid Hormones Regulated Cell Proliferation Through MicroRNA-34a-5p in Human Ovarian Endometrioma1. Biol Reprod 2016; 94. [DOI: 10.1095/biolreprod.115.133330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
|
50
|
Mamoori A, Gopalan V, Smith RA, Lam AKY. Modulatory roles of microRNAs in the regulation of different signalling pathways in large bowel cancer stem cells. Biol Cell 2016; 108:51-64. [DOI: 10.1111/boc.201500062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Afraa Mamoori
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
- Department of Pathology and Forensic Medicine, College of Medicine; University of Babylon; Iraq
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
| | - Robert Anthony Smith
- Genomics Research Centre, Institute for Health and Biomedical Innovation; Queensland University of Technology; Queensland Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland; Griffith University; Gold Coast Queensland Australia
| |
Collapse
|