1
|
Harikai N, Kakuda H, Uchiyama T, Yamamoto T, Zaima K, Shinomiya K. Detection of the phosphorothioate oligonucleotide fomivirsen using a ligase detection reaction with polymerase chain reaction. ANAL SCI 2024; 40:965-971. [PMID: 38523232 DOI: 10.1007/s44211-024-00539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024]
Abstract
This study aimed to develop a simple and sensitive detection method for fomivirsen, a 21-nucleotide phosphorothioate oligonucleotide used as a nucleic acid medicine, using a ligase detection reaction. A ligation probe was designed to hybridize with fomivirsen and polymerase chain reaction (PCR) primers, with a deoxyuridine part between the primer binding sites. The probe was ligated to a circular product by Taq DNA ligase, and the resulting product was converted to a linear form through the removal of the uracil base using uracil DNA glycosylase. The linear product was then quantified using real-time PCR. The developed method could detect 0.025-6.4 nM of fomivirsen in water and HeLa genomic DNA solutions and 0.6-160 nM of fomivirsen in mouse serum in combination with an extraction method based on alkalinization and neutralization. This method could be useful for not only detecting fomivirsen but also other functional oligonucleotides composed of phosphorothioate oligonucleotides. In summary, this study presents a practical and effective approach to the detection of the nucleic acid medicine fomivirsen.
Collapse
Affiliation(s)
- Naoki Harikai
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| | - Haruka Kakuda
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Takumi Uchiyama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Tsubaki Yamamoto
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Kazumasa Zaima
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| | - Kazufusa Shinomiya
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan
| |
Collapse
|
2
|
Studzińska S. A simple and green solid phase extraction method for oligonucleotides using adsorbent with amino and carboxylic moieties. Talanta 2023; 255:124224. [PMID: 36584618 DOI: 10.1016/j.talanta.2022.124224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/25/2022] [Indexed: 12/28/2022]
Abstract
The study aimed to use a material with amino and carboxylic moieties to extract unmodified and phosphorothioate oligonucleotides. The charge of amine and carboxyl groups at the surface has changed with the change in pH of the adsorption (pH 4.5) and desorption solution (pH 9.5). Thus, both the binding and elution of the oligonucleotides were based on electrostatic interactions, and the procedure required only 10 mM ammonium acetate, with the change of pH depending on the extraction step. The developed procedure was successfully applied to extract oligonucleotides from aqueous solutions and serum samples. The method is simple and fast, providing good reproducibility (SD between 1 and 4%) and relatively high oligonucleotide recovery (81-98% for standards, 60-71% for diluted serum samples, and 80-92 for LLE serum extracts). Moreover, only environmentally friendly solvents were used.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St. PL-87 100, Torun, Poland.
| |
Collapse
|
3
|
LBAs vs chromatographic platforms for oligonucleotide quantification. Bioanalysis 2023; 15:53-55. [PMID: 36876831 DOI: 10.4155/bio-2023-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
|
4
|
Bioanalysis of Oligonucleotide by LC-MS: Effects of Ion Pairing Regents and Recent Advances in Ion-Pairing-Free Analytical Strategies. Int J Mol Sci 2022; 23:ijms232415474. [PMID: 36555119 PMCID: PMC9779676 DOI: 10.3390/ijms232415474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotides (OGNs) are relatively new modalities that offer unique opportunities to expand the therapeutic targets. Reliable and high-throughput bioanalytical methods are pivotal for preclinical and clinical investigations of therapeutic OGNs. Liquid chromatography-mass spectrometry (LC-MS) is now evolving into being the method of choice for the bioanalysis of OGNs. Ion paring reversed-phase liquid chromatography (IP-RPLC) has been widely used in sample preparation and LC-MS analysis of OGNs; however, there are technical issues associated with these methods. IP-free methods, such as hydrophilic interaction liquid chromatography (HILIC) and anion-exchange techniques, have emerged as promising approaches for the bioanalysis of OGNs. In this review, the state-of-the-art IP-RPLC-MS bioanalytical methods of OGNs and their metabolites published in the past 10 years (2012-2022) are critically reviewed. Recent advances in IP-reagent-free LC-MS bioanalysis methods are discussed. Finally, we describe future opportunities for developing new methods that can be used for the comprehensive bioanalysis of OGNs.
Collapse
|
5
|
Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection. Int J Mol Sci 2022; 23:ijms23179546. [PMID: 36076941 PMCID: PMC9455468 DOI: 10.3390/ijms23179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotides have many important applications, including as primers in polymerase chain reactions and probes for DNA sequencing. They are proposed as a diagnostic and prognostic tool for various diseases and therapeutics in antisense therapy. Accordingly, it is necessary to develop liquid chromatography and solid phase extraction methods to separate oligonucleotides and isolate them from biological samples. Many reviews have been written about the determination of these compounds using the separation technique or sample preparation for their isolation. However, presumably, there are no articles that critically review the adsorbents used in liquid chromatography or solid phase extraction. The present publication reviews the literature from the last twenty years related to supports (silica, polymers, magnetic nanoparticles) and their modifications. The discussed issues concern reversed phase (alkyl, aromatic, cholesterol, mixed ligands), ion-exchange (strong and weak ones), polar (silica, polyhydroxy, amide, zwitterionic), and oligonucleotide-based adsorbents.
Collapse
|
6
|
Stulz R, Milligan F, Stovold C, Love I, Strömberg R, Andersson S, Dahlén A. 34S-SIL of PCSK9-Active Oligonucleotide as Tools for Accurate Quantification by Mass Spectrometry. Nucleic Acid Ther 2021; 31:375-381. [PMID: 33978476 DOI: 10.1089/nat.2020.0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Stable isotope labeling (SIL) of active pharmaceutical ingredients (API) is a well-established technique for the accurate quantification of small-molecule drugs. As the scope of active ingredients is expanding into areas of larger molecules, such as oligonucleotides (ONs), the development of new quantification techniques is critical. Herein, we describe the analysis of a 34S-SIL anti-PCSK9 gapmer-type antisense ON. A new method for the quantification of this API in complex biological matrices was developed and applied to mouse, dog, and monkey tissue homogenates, which gave improved accuracy and reproducibility compared with the use of auxiliary ONs as internal standard.
Collapse
Affiliation(s)
- Rouven Stulz
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, NEO, S-14183 Huddinge, Sweden
| | - Fiona Milligan
- Bioanalysis Department, Charles River Laboratories, Elphinstone Research Centre, Tranent, United Kingdom
| | - Craig Stovold
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Iain Love
- Bioanalysis Department, Charles River Laboratories, Elphinstone Research Centre, Tranent, United Kingdom
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, S-14183 Huddinge, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
7
|
Santos IC, Brodbelt JS. Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010-2020). J Sep Sci 2021; 44:340-372. [PMID: 32974962 PMCID: PMC8378248 DOI: 10.1002/jssc.202000833] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/25/2022]
Abstract
The development of new strategies for the analysis of nucleic acids has gained momentum due to the increased interest in using these biomolecules as drugs or drug targets. The application of new mass spectrometry ion activation techniques and the optimization of separation methods including liquid chromatography, capillary electrophoresis, and ion mobility have allowed more detailed characterization of nucleic acids and oligonucleotide therapeutics including confirmation of sequence, localization of modifications and interaction sites, and structural analysis as well as identification of failed sequences and degradation products. This review will cover tandem mass spectrometry methods as well as the recent developments in liquid chromatography, capillary electrophoresis, and ion mobility coupled to mass spectrometry for the analysis of nucleic acids and oligonucleotides.
Collapse
Affiliation(s)
- Inês C Santos
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | | |
Collapse
|
8
|
Liu R, Luo Q, Liu Z, Gong L. Optimizing sample preparation workflow for bioanalysis of oligonucleotides through liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1629:461473. [PMID: 32841769 DOI: 10.1016/j.chroma.2020.461473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Liquid chromatography tandem mass spectrometry has been a widely used technique for quantifying oligonucleotides in biological samples. However, lack of simple and efficient sample cleanup approach remains a challenge. Our study aimed to evaluate the major factors during the sample pretreatment process for developing optimal sample preparation workflow for oligonucleotides. In this study, we have employed a model formed with rat plasma containing a 16 mer oligonucleotide standard in order to comprehensively optimize the sample preparation procedures. These included liquid-liquid extraction (LLE), solid-phase extraction (SPE), protein precipitation (PPT) and LLE combined with SPE. LLE with phenol: dichloromethane (2:1, v:v) was found to be the most efficient sample cleanup procedure with low cost and less toxicity. Followed by the extraction, ethanol precipitation (-80 °C, 5 min) was determined to be the optimal drying conditions. Also, mass spectrometric parameters were tuned to optimal conditions. It was found that the central composite design suite was proved to be highly practical for optimizing MS parameters. Finally, the thoroughly optimized sample preparation workflow was fully validated. The developed assay provided a quantitative range of 0.25-1000 nM, with accuracy and precision were < 7.45% and < 12.20%, respectively. Matrix effect and carryover were also evaluated and no significant effect was observed.
Collapse
Affiliation(s)
- Rong Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Qing Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
9
|
Thayer MB, Humphreys SC, Chung KS, Lade JM, Cook KD, Rock BM. POE Immunoassay: Plate-based oligonucleotide electro-chemiluminescent immunoassay for the quantification of nucleic acids in biological matrices. Sci Rep 2020; 10:10425. [PMID: 32591626 PMCID: PMC7319975 DOI: 10.1038/s41598-020-66829-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/26/2020] [Indexed: 12/29/2022] Open
Abstract
Oligonucleotide therapeutics use short interfering RNA (siRNA) or antisense oligonucleotide (ASO) molecules to exploit endogenous systems-neutralizing target RNA to prevent subsequent protein translation. While the potential clinical application is vast, delivery efficiency and extrahepatic targeting is challenging. Bioanalytical assays are important in building understanding of these complex relationships. The literature currently lacks description of robust and sensitive methods to measure siRNA and ASOs in complex biological matrices. Described herein is a non-enzymatic hybridization-based immunoassay that enables quantification of individual siRNA strands (antisense or sense) in serum, urine, bile, and liver and kidney homogenates. Assay utility is also demonstrated in ASOs. The assay improves upon previous works by abolishing enzymatic steps and further incorporating Locked Nucleic Acid (LNA) nucleotide modifications to increase analyte hybridization affinity and improve sensitivity, specificity, and robustness. We report an assay with an ultrasensitive dynamic range of 0.3 to 16,700 pM for siRNA in serum. The assay was submitted to full qualification for accuracy and precision in both serum and tissue matrices and assay performance was assessed with single and mixed analytes. The reliable LNA-hybridization-based approach removes the need for matrix sample extraction, enrichment or amplification steps which may be impeded by more advanced chemical modifications.
Collapse
Affiliation(s)
- Mai B Thayer
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Sara C Humphreys
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Kyu S Chung
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Julie M Lade
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Kevin D Cook
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US
| | - Brooke M Rock
- Amgen Research, Pharmacokinetics & Drug Metabolism, Amgen Inc., South San Francisco, CA, US.
| |
Collapse
|
10
|
Pendergraff H, Schmidt S, Vikeså J, Weile C, Øverup C, W. Lindholm M, Koch T. Nuclear and Cytoplasmatic Quantification of Unconjugated, Label-Free Locked Nucleic Acid Oligonucleotides. Nucleic Acid Ther 2020; 30:4-13. [PMID: 31618108 PMCID: PMC6987631 DOI: 10.1089/nat.2019.0810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/28/2019] [Indexed: 12/23/2022] Open
Abstract
Methods for the quantification of antisense oligonucleotides (AONs) provide insightful information on biodistribution and intracellular trafficking. However, the established methods have not provided information on the absolute number of molecules in subcellular compartments or about how many AONs are needed for target gene reduction for unconjugated AONs. We have developed a new method for nuclear AON quantification that enables us to determine the absolute number of AONs per nucleus without relying on AON conjugates such as fluorophores that may alter AON distribution. This study describes an alternative and label-free method using subcellular fractionation, nucleus counting, and locked nucleic acid (LNA) sandwich enzyme-linked immunosorbent assay to quantify absolute numbers of oligonucleotides in nuclei. Our findings show compound variability (diversity) by which 247,000-693,000 LNAs/nuclei results in similar target reduction for different compounds. This method can be applied to any antisense drug discovery platform providing information on specific and clinically relevant AONs. Finally, this method can directly compare nuclear entry of AON with target gene knockdown for any compound design and nucleobase sequence, gene target, and phosphorothioate stereochemistry.
Collapse
Affiliation(s)
- Hannah Pendergraff
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Steffen Schmidt
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Jonas Vikeså
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Christian Weile
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Charlotte Øverup
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Marie W. Lindholm
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| | - Troels Koch
- Roche Pharma Research and Early Development, RNA Therapeutics Research, Roche Innovation Center Copenhagen, Hørsholm, Denmark
| |
Collapse
|
11
|
Honcharenko M, Honcharenko D, Strömberg R. Efficient Conjugation to Phosphorothioate Oligonucleotides by Cu-Catalyzed Huisgen 1,3-Dipolar Cycloaddition. Bioconjug Chem 2019; 30:1622-1628. [PMID: 31067031 DOI: 10.1021/acs.bioconjchem.9b00217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improving oligonucleotide delivery is critical for the further development of oligonucleotide-based therapeutics. Covalent attachment of reporter molecules is one of the most promising approaches toward efficient oligonucleotide-based therapies. An efficient methods for the attachment of a variety of reporter groups is Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition. However, the majority of potential oligonucleotide (ON) therapeutics in clinical trials are carrying phosphorothioate (PS) linkages, and this robust conjugation method is not yet established for these ONs due to a general concern of Cu-S interaction. Here, we developed a method allowing for efficient conjugation of peptides to PS oligonucleotides. The method utilizes solid supported oligonucleotides that can be readily transformed into "clickable ONs" by simple linker conjugation and further reacted with an azido containing moiety (e.g., a peptide) using the CuBr × Me2S complex as a superior catalyst in that reaction. This study opens the way for further development of PS oligonucleotide-conjugates by means of efficient Cu(I)-catalyzed Huisgen azide-alkyne 1,3-dipolar cycloaddition.
Collapse
Affiliation(s)
- Malgorzata Honcharenko
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| | - Dmytro Honcharenko
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition , Karolinska Institute , SE-14183 Huddinge , Sweden
| |
Collapse
|
12
|
Liu R, Ruan Y, Liu Z, Gong L. The role of fluoroalcohols as counter anions for ion-pairing reversed-phase liquid chromatography/high-resolution electrospray ionization mass spectrometry analysis of oligonucleotides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:697-709. [PMID: 30668892 DOI: 10.1002/rcm.8386] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Hexafluoroisopropanol (HFIP) has been widely used as a counter anion in the mobile phase for ion-pairing reversed-phase liquid chromatography/mass spectrometry (IP-RP-LC/MS) analysis of oligonucleotides. However, researchers are still searching for improvements to counter anions for LC/MS analysis of oligonucleotides. This study aimed to find alternatives to HFIP for analyzing oligonucleotides. METHODS The study was performed using an Agilent 1290 ultra-high-performance liquid chromatography (UHPLC) system coupled to an Agilent 6540 mass spectrometer by using an oligonucleotide BEH C18 column (100 × 2.1 mm, 1.7 μm). Buffer systems containing ion-pairing reagents (triethylamine, tripropylamine, hexylamine, dimethylbutylamine, diisopropylethylamine, N,N-dimethylcyclohexylamine, and octylamine) and fluoroalcohols (HFIP and hexafluoro-2-methyl-2-propanol (HFTP)) were compared chromatographically and mass spectrometrically. RESULTS Results showed that HFTP has better desalting ability than HFIP, but both HFIP and HFTP have comparable effects on the separation of oligonucleotides sized from 10mer to 40mer for most of ion-pairing reagents, with the exception of triethylamine and N,N-dimethylcyclohexylamine, where HFIP performed better than HFTP. CONCLUSIONS The choice of fluoroalcohols in IP-RP-LC/MS analysis of oligonucleotides depends on the type of ion-pairing reagents used in the mobile phase. As a guideline, we would recommend to use either HA-HFIP or HA-HFTP for small oligonucleotides, but TPA-HFTP for large oligonucleotides for IP-RP-LC/MS analysis of synthetic oligonucleotides.
Collapse
Affiliation(s)
- Rong Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Yanjiao Ruan
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| | - Lingzhi Gong
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, 510006, PR China
| |
Collapse
|
13
|
Oligonucleotide analysis by hydrophilic interaction liquid chromatography-mass spectrometry in the absence of ion-pair reagents. J Chromatogr A 2019; 1595:39-48. [PMID: 30772056 DOI: 10.1016/j.chroma.2019.02.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/02/2019] [Accepted: 02/06/2019] [Indexed: 01/09/2023]
Abstract
Improving our understanding of nucleic acids, both in biological and synthetic applications, remains a bustling area of research for both academic and industrial laboratories. As nucleic acids research evolves, so must the analytical techniques used to characterize nucleic acids. One powerful analytical technique has been coupled liquid chromatography - tandem mass spectrometry (LC-MS/MS). To date, the most successful chromatographic mode has been ion-pairing reversed-phase liquid chromatography. Hydrophilic interaction liquid chromatography (HILIC), in the absence of ion-pair reagents, has been investigated here as an alternative chromatographic approach to the analysis of oligonucleotides. By combining a mobile phase system using commonly employed in liquid chromatography-mass spectrometry (LC-MS) - i.e., water, acetonitrile, and ammonium acetate - and a new, commercially available diol-based HILIC column, high chromatographic and mass spectrometric performance for a wide range of oligonucleotides is demonstrated. Particular applications of HILIC-MS for the analysis of deoxynucleic acid (DNA) oligomers, modified and unmodified oligoribonucleotides, and phosphorothioate DNA oligonucleotides are presented. Based on the LC-MS performance, this HILIC-based approach provides an attractive, sensitive and robust alternative to prior ion-pairing dependent methods with potential utility for both qualitative and quantitative analyses of oligonucleotides without compromising chromatographic or mass spectrometric performance.
Collapse
|
14
|
Kaczmarkiewicz A, Nuckowski Ł, Studzińska S, Buszewski B. Analysis of Antisense Oligonucleotides and Their Metabolites with the Use of Ion Pair Reversed-Phase Liquid Chromatography Coupled with Mass Spectrometry. Crit Rev Anal Chem 2019; 49:256-270. [PMID: 30612436 DOI: 10.1080/10408347.2018.1517034] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Antisense oligonucleotides (ASOs) have been widely investigated as a potential drugs because of their ability to bind with the target DNA or RNA strands, which may lead to inhibition of translational processes. This review presents currently approved oligonucleotide (OGN) drugs and summarizes their modification types, mechanisms of action, and application of ion pair reversed phase liquid chromatography for the analysis. Special attention was paid to the stationary phases selection for the separation of OGNs and the impact of different compositions of mobile phases on retention and signal intensity in mass spectrometry (MS). Moreover, the application of ion pair liquid chromatography coupled with MS for the separation and determination of metabolites of ASOs was described. The type of matrix, time of analysis, lower limits of quantification and detection, as well as precision, accuracy, and linearity of developed methods have been included as part of this contribution.
Collapse
Affiliation(s)
- Anna Kaczmarkiewicz
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Łukasz Nuckowski
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Sylwia Studzińska
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| | - Bogusław Buszewski
- a Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry , Nicolaus Copernicus University , Toruń , Poland
| |
Collapse
|
15
|
Studzińska S, Cywoniuk P, Sobczak K. Application of ion pair chromatography coupled with mass spectrometry to assess antisense oligonucleotides concentrations in living cells. Analyst 2018; 144:622-633. [PMID: 30462105 DOI: 10.1039/c8an01603h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Antisense oligonucleotides (ASOs) are synthetic bioactive compounds used as therapeutic agents in clinical trials. They act by binding to complementary sequences of the targeted nucleic acids in cells. Assessing the efficiency of ASO delivery to cells or tissues and the stability of these compounds in different biological systems is important. To answer these questions, we developed a new, quick and reliable method to determine the concentrations of different types of ASOs in treated cells. Ultra-high performance liquid chromatography coupled with mass spectrometry was used for the first time for the separation and determination of the studied compounds in total RNA extracts. To develop a method with the highest possible sensitivity, a central composite design was used to comprehensively optimize the MS parameters. Moreover, the effects of the type and concentration of the ion pair reagent on sensitivity were also examined. Finally, a mobile phase containing methanol, hexafluoroisopropanol and N,N-dimethylbutylamine was selected. The optimized method allowed good linearity, accuracy, precision and sensitivity of ASO detection. Next, these compounds were delivered into cells via transfection at a concentration of 25 nM or 125 nM in 1 mL of cell culture medium. After 48 hours, total RNA was isolated from the treated cells and analyzed with the use of the newly developed method. For the cells treated with a higher concentration of ASO composed of phosphorothioate 2'-O-methyl RNA units, the concentration in solution was 0.96 ± 0.06 μM, while in the case of shorter ASO composed of locked nucleic acid units, it was 0.72 ± 0.06 μM in the total RNA extract.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Torun, Poland.
| | - Piotr Cywoniuk
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 89 Umultowska St., PL 61 614 Poznan, Poland
| | - Krzysztof Sobczak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, 89 Umultowska St., PL 61 614 Poznan, Poland
| |
Collapse
|
16
|
Development of SPE method for the extraction of phosphorothioate oligonucleotides from serum samples. Bioanalysis 2018; 10:1667-1677. [PMID: 30354278 DOI: 10.4155/bio-2018-0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
AIM Comprehensive development of a method for SPE extraction of antisense phosphorothioate oligonucleotide and its metabolites and their determination with the use of UHPLC. RESULTS Polymer-based adsorbent and high percentage of methanol in elution solvent provided high recoveries compared with silica-based octadecyl cartridge. As to the type and concentration of ion pair reagent and organic solvent, the mixture of 5 mM of N,N-dimethylbutylamine/150 mM of 1,1,1,3,3,3-hexafluoroisopropanol and methanol was selected. Relatively high recoveries in the range of 79.2-81.2% with the SDs of 3.4-6.2% were obtained for the oligonucleotide and its metabolites extracted from human serum. CONCLUSION The developed method may be successfully applied for routine analysis of antisense oligonucleotides in serum since it is relatively easy, quick and reliable.
Collapse
|
17
|
Stulz R, Meuller J, Baždarević D, Wennberg Huldt C, Strömberg R, Andersson S, Dahlén A. A Versatile and Convenient Synthesis of 34 S-Labeled Phosphorothioate Oligonucleotides. Chembiochem 2018; 19:2114-2119. [PMID: 30062829 PMCID: PMC6585993 DOI: 10.1002/cbic.201800417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 12/20/2022]
Abstract
A synthetic protocol for 34 S-labeled phosphorothioate oligonucleotides (PS ONs) was developed to facilitate MS-based assay analysis. This was enabled by a highly efficient, two-step, one-pot synthesis of 34 S-labeled phenylacetyl disulfide (34 S-PADS), starting from 34 S-enriched elemental sulfur (34 S8 ). 34 S-PADS was subsequently used for stable isotope labeling (SIL) of oligonucleotides containing a phosphorothioate backbone. The 34 S-SIL PS ONs are shown to retain the same melting temperature, antisense activity, and secondary structure as those of the corresponding unlabeled 32 S PS ONs.
Collapse
Affiliation(s)
- Rouven Stulz
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden.,Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Hälsovägen 9, 14157, Huddinge, Sweden
| | - Johan Meuller
- Discovery Sciences IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Dženita Baždarević
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Charlotte Wennberg Huldt
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO, Hälsovägen 9, 14157, Huddinge, Sweden
| | - Shalini Andersson
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden
| | - Anders Dahlén
- Cardiovascular, Renal and Metabolism IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, 43150, Mölndal, Sweden
| |
Collapse
|
18
|
Nuckowski Ł, Kaczmarkiewicz A, Studzińska S. Review on sample preparation methods for oligonucleotides analysis by liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1090:90-100. [PMID: 29803869 DOI: 10.1016/j.jchromb.2018.05.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/10/2018] [Accepted: 05/17/2018] [Indexed: 02/01/2023]
Abstract
Antisense oligonucleotides have been successfully investigated for the treatment of different types of diseases. Detection and determination of antisense oligonucleotides and their metabolites are necessary for drug development and evaluation. This review focuses mainly on the first step of the analysis of oligonucleotides i.e. the sample preparation stage, and in particular on the techniques used for liquid chromatography and liquid chromatography coupled with mass spectrometry. Exceptional sample preparation techniques are required as antisense oligonucleotides need to be determined in complex biological matrices. The text discusses general issues in oligonucleotide sample preparation and approaches to their solution. The most popular techniques i.e. protein precipitation, protein enzyme digestion and liquid-liquid extraction are reviewed. Solid phase extraction methods are discussed and the issues connected with the application of each method are highlighted. Other newly reported promising techniques are also described. Finally, there is a summary of actually used techniques and the indication of the direction of future research.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Anna Kaczmarkiewicz
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland
| | - Sylwia Studzińska
- Chair of the Environmental Chemistry & Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87 100 Toruń, Poland.
| |
Collapse
|
19
|
Studzińska S. Review on investigations of antisense oligonucleotides with the use of mass spectrometry. Talanta 2017; 176:329-343. [PMID: 28917758 DOI: 10.1016/j.talanta.2017.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 11/17/2022]
Abstract
Antisense oligonucleotides have been investigated as potential drugs for years. They inhibit target gene or protein expression. The present review summarizes their modifications, modes of action, and applications of liquid chromatography coupled with mass spectrometry for qualitative and quantitative analysis of these compounds. The most recent reports on a given topic were given prominence, while some early studies were reviewed in order to provide a theoretical background. The present review covers the issues of using ion-exchange chromatography, ion-pair reversed-phase high performance liquid chromatography and hydrophilic interaction chromatography for the separation of antisense oligonucleotides. The application of mass spectrometry was described with regard to the ionization type used for the determination of these potential therapeutics. Moreover, the current approaches and applications of mass spectrometry for quantitative analysis of antisense oligonucleotides and their metabolites as well as their impurities during in vitro and in vivo studies were discussed. Finally, certain conclusions and perspectives on the determination of therapeutic oligonucleotides in various samples were briefly described.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Str., PL-87-100 Toruń, Poland.
| |
Collapse
|
20
|
Moravcová D, Rantamäki AH, Duša F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis 2016; 37:880-912. [PMID: 26800083 DOI: 10.1002/elps.201500520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
Abstract
Here, we have reviewed separation studies utilizing monolithic capillary columns for separation of compounds preceding MS analysis. The review is divided in two parts according to the used separation method, namely CEC and capillary LC (cLC). Based on our overview, monolithic CEC-MS technique have been more focused on the syntheses of highly specialized and selective separation phase materials for fast and efficient separation of specific types of analytes. In contrast, monolithic cLC-MS is more widely used and is often employed, for instance, in the analysis of oligonucleotides, metabolites, and peptides and proteins in proteomic studies. While poly(styrene-divinylbenzene)-based and silica-based monolithic capillaries found their place in proteomic analyses, the other laboratory-synthesized monoliths still wait for their wider utilization in routine analyses. The development of new monolithic materials will most likely continue due to the demand of more efficient and rapid separation of increasingly complex samples.
Collapse
Affiliation(s)
- Dana Moravcová
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | | - Filip Duša
- Institute of Analytical Chemistry of the CAS, v. v. i, Brno, Czech Republic
| | | |
Collapse
|
21
|
Close ED, Nwokeoji AO, Milton D, Cook K, Hindocha DM, Hook EC, Wood H, Dickman MJ. Nucleic acid separations using superficially porous silica particles. J Chromatogr A 2016; 1440:135-144. [PMID: 26948761 PMCID: PMC4801196 DOI: 10.1016/j.chroma.2016.02.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 01/31/2023]
Abstract
Ion pair reverse-phase liquid chromatography has been widely employed for nucleic acid separations. A wide range of alternative stationary phases have been utilised in conjunction with ion pair reverse-phase chromatography, including totally porous particles, non-porous particles, macroporous particles and monolithic stationary phases. In this study we have utilised superficially porous silica particles in conjunction with ion pair reverse-phase liquid chromatography for the analysis of nucleic acids. We have investigated a range of different pore-sizes and phases for the analysis of a diverse range of nucleic acids including oligonucleotides, oligoribonucleotides, phosphorothioate oligonucleotides and high molecular weight dsDNA and RNA. The pore size of the superficially porous silica particles was shown to significantly affect the resolution of the nucleic acids. Optimum separations of small oligonucleotides such as those generated in RNase mapping experiments were obtained with 80Å pore sizes and can readily be interfaced with mass spectrometry analysis. Improved resolution of larger oligonucleotides (>19mers) was observed with pore sizes of 150Å. The optimum resolution for larger dsDNA/RNA molecules was achieved using superficially porous silica particles with pore sizes of 400Å. Furthermore, we have utilised 150Å pore size solid-core particles to separate typical impurities of a fully phosphorothioated oligonucleotide, which are often generated in the synthesis of this important class of therapeutic oligonucleotide.
Collapse
Affiliation(s)
- Elizabeth D Close
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Alison O Nwokeoji
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Dafydd Milton
- Thermo Fisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, UK
| | - Ken Cook
- Thermo Fisher Scientific, Stafford House, Boundary Way, Hemel Hempstead HP2 7GE, UK
| | - Darsha M Hindocha
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Elliot C Hook
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Helen Wood
- GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| |
Collapse
|
22
|
Erb R, Oberacher H. Comparison of mobile-phase systems commonly applied in liquid chromatography-mass spectrometry of nucleic acids. Electrophoresis 2013; 35:1226-35. [PMID: 24123202 DOI: 10.1002/elps.201300269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/25/2013] [Accepted: 08/12/2013] [Indexed: 11/08/2022]
Abstract
LC-MS represents an important technology for the qualitative and quantitative analysis of nucleic acids. For MS, ESI in negative ion mode is used. The chromatographic method of choice is ion-pair (IP) RP chromatography. Chromatographic separations are usually accomplished by gradients of an organic modifier in aqueous solutions of IP reagents. Commonly applied IP reagents are 2.3 mM triethylamine/400 mM 1,1,1,3,3,3-hexafluoro-2-propanol (TEA/HFIP, pH 7.0) and 10-25 mM cyclohexyldimethylammonium acetate (CycHDMAA, pH 8.4). Direct comparison of mass spectrometric performance of the two solvent systems revealed that the TEA/HFIP system offers better detection sensitivity than the CycHDMAA system. This is mainly attributable to the depletion of HFIP during droplet formation and solvent evaporation. Removal of the anionic counterion facilitates oligonucleotide ionization, and the oligonucleotides are desorbed as highly charged ions into the gas phase. TEA/HFIP-based mobile phases are recommended for developing quantitative assays targeting defined oligonucleotides. The CycHDMAA system allows the formation of cyclohexyldimethylammonium adducts. These adducts are cleaved in the gas phase, and this decomposition gives rise to charge state reduction. Ammonium adduct formation is of particular importance in preventing adducting with metal ions. Thus, adducts with metal ions are efficiently suppressed with CycHDMAA. For the TEA/HFIP system, however, such adducting represents a severe problem particularly if large oligonucleotides are analyzed. Thus, CycHDMAA-based mobile phases are recommended for qualitative assays such as LC-MS-based genotyping.
Collapse
Affiliation(s)
- Robert Erb
- Institute of Legal Medicine and Core Facility Metabolomics, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
23
|
Thomas A, Walpurgis K, Delahaut P, Kohler M, Schänzer W, Thevis M. Detection of small interfering RNA (siRNA) by mass spectrometry procedures in doping controls. Drug Test Anal 2013; 5:853-60. [PMID: 23913913 DOI: 10.1002/dta.1519] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/03/2013] [Accepted: 07/06/2013] [Indexed: 01/26/2023]
Abstract
Uncovering manipulation of athletic performance via small interfering (si)RNA is an emerging field in sports drug testing. Due to the potential to principally knock down every target gene in the organism by means of the RNA interference pathway, this facet of gene doping has become a realistic scenario. In the present study, two distinct model siRNAs comprising 21 nucleotides were designed as double strands which were perfect counterparts to a sequence of the respective messenger RNA coding the muscle regulator myostatin of Rattus norvegicus. Several modified nucleotides were introduced in both the sense and the antisense strand comprising phosphothioates, 2'-O-methylation, 2'-fluoro-nucleotides, locked nucleic acids and a cholesterol tag at the 3'-end. The model siRNAs were applied to rats at 1 mg/kg (i.v.) and blood as well as urine samples were collected. After isolation of the RNA by means of a RNA purification kit, the target analytes were detected by liquid chromatography - high resolution/high accuracy mass spectrometry (LC-HRMS). Analytes were detected as modified nucleotides after alkaline hydrolysis, as intact oligonucleotide strands (top-down) and by means of denaturing SDS-PAGE analysis. The gel-separated siRNA was further subjected to in-gel hydrolysis with different RNases and subsequent identification of the fragments by untargeted LC-HRMS analysis (bottom-up, 'experimental RNomics'). Combining the results of all approaches, the identification of several 3'-truncated urinary metabolites was accomplished and target analytes were detected up to 24 h after a single administration. Simultaneously collected blood samples yielded no promising results. The methods were validated and found fit-for-purpose for doping controls.
Collapse
Affiliation(s)
- Andreas Thomas
- Center for Preventive Doping Research and Institute of Biochemistry, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | | | | | | | | | | |
Collapse
|