1
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2024. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
2
|
Cheng E, Ou FS, Gatten C, Ma C, Venook AP, Lenz HJ, O'Reilly EM, Campbell PT, Kuang C, Caan BJ, Blanke CD, Ng K, Meyerhardt JA. Plant-Based Diet and Survival Among Patients with Metastatic Colorectal Cancer. J Natl Cancer Inst 2024:djae213. [PMID: 39212617 DOI: 10.1093/jnci/djae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/24/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Plant-based diet is associated with better survival among patients with non-metastatic colorectal cancer (CRC), but its association in metastatic CRC is unknown. METHODS Using an NCI-sponsored trial (CALGB/SWOG 80405), we included 1,284 patients who completed validated food frequency questionnaires at the initiation of metastatic CRC treatment. We calculated three indices: overall plant-based diet index (PDI), which emphasized consumption of all plant foods while reducing animal food intake; healthful plant-based diet index (hPDI), which emphasized consumption of healthful plant foods such as whole grains, fruits, and vegetables; and unhealthful plant-based diet index (uPDI), which emphasized consumption of less healthful plant foods such as fruit juices, refined grains, and sugar-sweetened beverages. We estimated the associations of three indices (quintiles) with overall survival (OS) and progression-free survival (PFS) using multivariable Cox proportional hazards regression. RESULTS We observed 1,100 deaths and 1,204 progression events (median follow-up: 6.1 years). Compared to the lowest quintile, patients in the highest quintile of PDI had significantly better survival (HR for OS: 0.76 [0.62-0.94], P trend=0.004; PFS: 0.81 [0.66-0.99], P trend=0.09). Similar findings were observed for hPDI (HR for OS: 0.81 [0.65-1.01], P trend=0.053; PFS: 0.80 [0.65-0.98], P trend=0.04), whereas uPDI was not associated with worse survival (HR for OS: 1.16 [0.94-1.43], P trend=0.21; PFS: 1.12 [0.92-1.36], P trend=0.42). CONCLUSIONS Our study suggests that plant-based diet, especially when rich in healthful plant foods, is associated with better survival among patients with metastatic CRC. The cause of survival benefits warrants further investigation.
Collapse
Affiliation(s)
- En Cheng
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Epidemiology, Prevention and Control Program, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Fang-Shu Ou
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Clare Gatten
- Alliance Statistics and Data Management Center, Mayo Clinic, Rochester, MN, USA
| | - Chao Ma
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan P Venook
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Heinz-Josef Lenz
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Epidemiology, Prevention and Control Program, Montefiore Einstein Comprehensive Cancer Center, Bronx, NY, USA
| | - Chaoyuan Kuang
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bette J Caan
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Charles D Blanke
- Southwest Oncology Group Chair's Office and Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | |
Collapse
|
3
|
Bashir I, Dilshad E. A comparative study of Mentha longifolia var. asiatica and Zygophyllum arabicum ZnO nanoparticles against breast cancer targeting Rab22A gene. PLoS One 2024; 19:e0308982. [PMID: 39213285 PMCID: PMC11364221 DOI: 10.1371/journal.pone.0308982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Breast cancer is the most frequently diagnosed cancer worldwide, and the incidence rate has increased enormously over the last three decades. Rab proteins are members of the Rab GTPase superfamily. The aberrant function of these proteins leads to the development of tumors. Mentha longifolia var. asiatica and Zygophyllum arabicum have been known for their therapeutic potential for ages. The present study aimed to synthesize ZnO nanoparticles encapsulated with the extracts of M. longifolia var. asiatica and Z. arabicum and evaluating their therapeutic potential against breast cancer, targeting the Rab22A gene and its protein. UV-Vis spectrophotometer showed characteristic absorbance peaks at 295 nm and 345 nm for Z. arabicum and M. longifolia var. asiatica ZnONPs, respectively. The FTIR bands of Z. arabicum nanoparticles suggested the presence of aldehydes, alcohols, and polyols whereas bands of M. longifolia var. asiatica ZnONPs suggested the presence of carboxyl groups, hydroxyl groups, alkynes, and amines. SEM revealed the size of Z. arabicum ZnO NPs to be 25 ± 4 nm with a spherical shape as compared to nanoparticles of M. longifolia var. asiatica having a size of 35 ± 6 nm with a hexagonal shape. EDX determined the elemental composition of both particles. The cytotoxicity of both plant extracts and respective NPs was determined against the MCF-7 breast cancer cell line, which was found to be significant with an IC50 value of 51.68 μM for Z. arabicum and 88.02 μM for M. longifolia var. asiatica ZnO compared to plant extracts (64.01 μM and 107.9 μM for Z. arabicum and M. longifolia var. asiatica). The gene expression and protein levels of Rab22A were decreased in nanoparticle-treated cells as compared to the control group. The apoptotic role of synthesized nanoparticles against the MCF-7 cell line was also determined by the expression of apoptotic pathway genes and proteins (bax, caspase 3, caspase 8 and caspase 9). All samples showed significant apoptotic activity by activating intrinsic and extrinsic pathway genes. The activity of Z. arabicum was more eminent as compared to M. longifolia var. asiatica which was evident by the greater expression of studied genes and proteins as determined by Real-time qPCR and ELISA. This is the first-ever report describing the comparative analysis of the efficacy of Z. arabicum and M. longifolia var. asiatica ZnONPs against breast cancer.
Collapse
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| |
Collapse
|
4
|
Kubatka P, Mazurakova A, Koklesova L, Kuruc T, Samec M, Kajo K, Kotorova K, Adamkov M, Smejkal K, Svajdlenka E, Dvorska D, Brany D, Baranovicova E, Sadlonova V, Mojzis J, Kello M. Salvia officinalis L. exerts oncostatic effects in rodent and in vitro models of breast carcinoma. Front Pharmacol 2024; 15:1216199. [PMID: 38464730 PMCID: PMC10921418 DOI: 10.3389/fphar.2024.1216199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/25/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Based on extensive data from oncology research, the use of phytochemicals or plant-based nutraceuticals is considered an innovative tool for cancer management. This research aimed to analyze the oncostatic properties of Salvia officinalis L. [Lamiaceae; Salviae officinalis herba] using animal and in vitro models of breast carcinoma (BC). Methods: The effects of dietary administered S. officinalis in two concentrations (0.1%/SAL 0.1/and 1%/SAL 1/) were assessed in both syngeneic 4T1 mouse and chemically induced rat models of BC. The histopathological and molecular evaluations of rodent carcinoma specimens were performed after the autopsy. Besides, numerous in vitro analyses using two human cancer cell lines were performed. Results and Conclusion: The dominant metabolites found in S. officinalis propylene glycol extract (SPGE) were representatives of phenolics, specifically rosmarinic, protocatechuic, and salicylic acids. Furthermore, the occurrence of triterpenoids ursolic and oleanolic acid was proved in SPGE. In a mouse model, a non-significant tumor volume decrease after S. officinalis treatment was associated with a significant reduction in the mitotic activity index of 4T1 tumors by 37.5% (SAL 0.1) and 31.5% (SAL 1) vs. controls (set as a blank group with not applied salvia in the diet). In addition, salvia at higher doses significantly decreased necrosis/whole tumor area ratio by 46% when compared to control tumor samples. In a rat chemoprevention study, S. officinalis at a higher dose significantly lengthened the latency of tumors by 8.5 days and significantly improved the high/low-grade carcinomas ratio vs. controls in both doses. Analyses of the mechanisms of anticancer activities of S. officinalis included well-validated prognostic, predictive, and diagnostic biomarkers that are applied in both oncology practice and preclinical investigation. Our assessment in vivo revealed numerous significant changes after a comparison of treated vs. untreated cancer cells. In this regard, we found an overexpression in caspase-3, an increased Bax/Bcl-2 ratio, and a decrease in MDA, ALDH1, and EpCam expression. In addition, salvia reduced TGF-β serum levels in rats (decrease in IL-6 and TNF-α levels were with borderline significance). Evaluation of epigenetic modifications in rat cancer specimens in vivo revealed a decline in the lysine methylations of H3K4m3 and an increase in lysine acetylation in H4K16ac levels in treated groups. Salvia decreased the relative levels of oncogenic miR21 and tumor-suppressive miR145 (miR210, miR22, miR34a, and miR155 were not significantly altered). The methylation of ATM and PTEN promoters was decreased after S. officinalis treatment (PITX2, RASSF1, and TIMP3 promoters were not altered). Analyzing plasma metabolomics profile in tumor-bearing rats, we found reduced levels of ketoacids derived from BCAAs after salvia treatment. In vitro analyses revealed significant anti-cancer effects of SPGE extract in MCF-7 and MDA-MB-231 cell lines (cytotoxicity, caspase-3/-7, Bcl-2, Annexin V/PI, cell cycle, BrdU, and mitochondrial membrane potential). Our study demonstrates the significant chemopreventive and treatment effects of salvia haulm using animal or in vitro BC models.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Koklesova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Klaudia Kotorova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Eva Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| |
Collapse
|
5
|
Jayakumar R, Dash MK, Kumar P, Sharma S, Gulati S, Pandey A, Cholke K, Fatima Z, Trigun SK, Joshi N. Pharmaceutical characterization and exploration of Arkeshwara rasa in MDA-MB-231 cells. J Ayurveda Integr Med 2024; 15:100823. [PMID: 38160612 PMCID: PMC10792653 DOI: 10.1016/j.jaim.2023.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND The diverse specificity mode of cancer treatment targets and chemo resistance demands the necessity of drug entities which can address the devastating dynamicity of the disease. OBJECTIVES To check the anti-tumour potential of traditional medicine rich in polyherbal components and metal nanoparticle namely Arkeshwara rasa (AR). MATERIAL METHODS The AR was prepared in a modified version with reference from Rasaratna Samuchaya and characterized using sophisticated instrumental analysis including XRD, SEM-EDAX, TEM, TGA-DSC, and LC-MS and tested against the MDA-MB-231 cell line to screen cell viability and the cytotoxicity with MTT, SRB and the AO assay. RESULTS XRD pattern shows cubic tetrahedrite structure with Sb, Cu, S peaks and trace elements like Fe, Mg, etc. The particle size of AR ranges between 20 and 30 nm. The TGA points thermal decomposition at 210 °C and the metal sulphide peaks in DSC. LC-MS analysis reveals the components of the formulation more on the flavonoid portion. The IC50 value of MTT and SRB are 25.28 μg/mL and 31.7 μg/mL respectively. The AO colorimeter substantiated the cell viability and the apoptosis figures of the same cell line. The AR exhibits cytotoxicity and reaffirms the apoptosis fraction with SRB assay. CONCLUSIONS The Hesperidine, Neohesperidin, Rutin components in the phytochemical pool can synergize the anti-tumour potential with either influencing cellular pathways or decreasing chemo resistance to conventional treatment. AR need to be further experimented with reverse transcription, flow cytometry, western blotting, etc.
Collapse
Affiliation(s)
- Remya Jayakumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Manoj Kumar Dash
- Department of Rasashastra and Bhaishajya Kalpana, Government Ayurveda College, Raipur, India.
| | - Pankaj Kumar
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Shiwakshi Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| | - Saumya Gulati
- Dept of Rasashastra and Bhaishjya Kalpana, Babu Yugraj Singh Ayurvedic Medical College and Hospital, Gomtinagar Extension, Sector 6 Lucknow, Uttar Pradesh, 226010, India
| | - Akanksha Pandey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kaushavi Cholke
- Amity Lipidomics Research Facility (ALRF), Amity University, Haryana, Manesar, Gurugram, 122413, India; Institute of Biochemistry and Molecular Medicine, University of Bern, 3012, Switzerland
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, 61922, Saudi Arabia; Amity Institute of Biotechnology, Amity University, Haryana, Manesar, Gurugram, 122413, India
| | - S K Trigun
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Namrata Joshi
- Department of Rasashastra and Bhaishajya Kalpana, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
6
|
Singh S. Review on Natural Agents as Aromatase Inhibitors: Management of Breast Cancer. Comb Chem High Throughput Screen 2024; 27:2623-2638. [PMID: 37861041 DOI: 10.2174/0113862073269599231009115338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023]
Abstract
Breast cancer is a prevalent type of cancer that is typically hormone-dependent, caused by estrogen. Aromatase inhibitors are frequently utilised in the treatment of hormonereceptor- positive breast cancer because they prevent the enzyme aromatase from converting androgens to estrogens. Natural medicines with aromatase inhibitory characteristics have attracted interest as potential alternatives or complementary therapy to manufactured medications. This review discusses the function of natural agents as aromatase inhibitors in treating breast cancer. A variety of natural compounds have been investigated for their capacity to inhibit aromatase activity and lower estrogen levels. These agents include resveratrol from red wine and grapes, curcumin from turmeric extract and green teahigh in catechins, and other flavonoids such as genistein, luteolin and quercetin. It has been demonstrated that by decreasing estrogen synthesis, they can slow the growth of breast cancer cells that are dependent on estrogen. However, the clinical evidence supporting their efficacy and safety in breast cancer treatment is inadequate. More research is required to investigate the therapeutic potential of natural medicines, such as aromatase inhibitors, in treating breast cancer. The clinical trials are required to assess their efficacy, appropriate doses, and potential interactions with other therapies. In conclusion, natural aromatase inhibitory drugs are promising adjuncts in the treatment of hormone receptor-positive breast cancer. Their clinical value and safety profile, however, require additional investigation.
Collapse
Affiliation(s)
- Sonia Singh
- Institute of Pharmaceutical Research, GLA University Mathura, U.P: 281406, India
| |
Collapse
|
7
|
Elzeiny N, Sayed Shafei AE, Wagih S, Saad M, Sayed D, Salem EY, Wael M, Ellackany R, Matboli M. Phytochemicals in cervical cancer: an epigenetic overview. Epigenomics 2023; 15:941-959. [PMID: 37916277 DOI: 10.2217/epi-2023-0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Cervical cancer is the fourth most common female malignancy worldwide and a complex disease that typically starts with HPV infection. Various genetic and epigenetic alterations are implicated in its development. The current cervical cancer therapies have unsatisfactory outcomes due to their serious adverse effects, necessitating the need for safe, effective preventive and therapeutic modalities. Phytochemicals have been addressed in cervical cancer prevention and treatment, and further understanding the epigenetics of cervical cancer pathogenesis is critical to investigate new preventive and therapeutic modalities. Addressing the epigenetic mechanisms of potential phytochemicals will provide an overview of their use individually or in combination. The primary aim of this review is to highlight the epigenetic effects of the phytochemicals addressed in cervical cancer therapy.
Collapse
Affiliation(s)
- Noha Elzeiny
- Departement of Medical Biochemistry & Molecular Biology, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
| | - Ayman El Sayed Shafei
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Sherin Wagih
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Maha Saad
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Dina Sayed
- Clinical Pharmacology Department, Faculty of Medicine Ain Shams University, Cairo, Egypt
| | - Esraa Y Salem
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Mostafa Wael
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Rawan Ellackany
- Undergraduate Students, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| | - Marwa Matboli
- Departement of Medical Biochemistry & Molecular Biology, Faculty of Medicine Ain Shams University, Cairo, 11566, Egypt
- Biomedical Research Department, Faculty of Medicine, Modern University for Technology & Information, Cairo, Egypt
| |
Collapse
|
8
|
Gómez de Cedrón M, Moreno Palomares R, Ramírez de Molina A. Metabolo-epigenetic interplay provides targeted nutritional interventions in chronic diseases and ageing. Front Oncol 2023; 13:1169168. [PMID: 37404756 PMCID: PMC10315663 DOI: 10.3389/fonc.2023.1169168] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/24/2023] [Indexed: 07/06/2023] Open
Abstract
Epigenetic modifications are chemical modifications that affect gene expression without altering DNA sequences. In particular, epigenetic chemical modifications can occur on histone proteins -mainly acetylation, methylation-, and on DNA and RNA molecules -mainly methylation-. Additional mechanisms, such as RNA-mediated regulation of gene expression and determinants of the genomic architecture can also affect gene expression. Importantly, depending on the cellular context and environment, epigenetic processes can drive developmental programs as well as functional plasticity. However, misbalanced epigenetic regulation can result in disease, particularly in the context of metabolic diseases, cancer, and ageing. Non-communicable chronic diseases (NCCD) and ageing share common features including altered metabolism, systemic meta-inflammation, dysfunctional immune system responses, and oxidative stress, among others. In this scenario, unbalanced diets, such as high sugar and high saturated fatty acids consumption, together with sedentary habits, are risk factors implicated in the development of NCCD and premature ageing. The nutritional and metabolic status of individuals interact with epigenetics at different levels. Thus, it is crucial to understand how we can modulate epigenetic marks through both lifestyle habits and targeted clinical interventions -including fasting mimicking diets, nutraceuticals, and bioactive compounds- which will contribute to restore the metabolic homeostasis in NCCD. Here, we first describe key metabolites from cellular metabolic pathways used as substrates to "write" the epigenetic marks; and cofactors that modulate the activity of the epigenetic enzymes; then, we briefly show how metabolic and epigenetic imbalances may result in disease; and, finally, we show several examples of nutritional interventions - diet based interventions, bioactive compounds, and nutraceuticals- and exercise to counteract epigenetic alterations.
Collapse
Affiliation(s)
- Marta Gómez de Cedrón
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- Cell Metabolism Unit, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
| | - Rocío Moreno Palomares
- Molecular Oncology Group, IMDEA Food Institute, CEI UAM, CSIC, Madrid, Spain
- FORCHRONIC S.L, Avda. Industria, Madrid, Spain
| | | |
Collapse
|
9
|
Borgonetti V, Anceschi L, Brighenti V, Corsi L, Governa P, Manetti F, Pellati F, Galeotti N. Cannabidiol-rich non-psychotropic Cannabis sativa L. oils attenuate peripheral neuropathy symptoms by regulation of CB2-mediated microglial neuroinflammation. Phytother Res 2023; 37:1924-1937. [PMID: 36583304 DOI: 10.1002/ptr.7710] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/31/2022]
Abstract
Neuropathic pain (NP) is a chronic disease that affects the normal quality of life of patients. To date, the therapies available are only symptomatic and they are unable to reduce the progression of the disease. Many studies reported the efficacy of Cannabis sativa L. (C. sativa) on NP, but no Δ9 -tetrahydrocannabinol (Δ9 -THC)-free extracts have been investigated in detail for this activity so far. The principal aim of this work is to investigate the potential pain-relieving effect of innovative cannabidiol-rich non-psychotropic C. sativa oils, with a high content of terpenes (K2), compared to the same extract devoid of terpenes (K1). Oral administration of K2 (25 mg kg-1 ) induced a rapid and long-lasting relief of pain hypersensitivity in a mice model of peripheral neuropathy. In spinal cord samples, K2 reduced mitogen-activated protein kinase (MAPKs) levels and neuroinflammatory factors. These effects were reverted by the administration of a CB2 antagonist (AM630), but not by a CB1 antagonist (AM251). Conversely, K1 showed a lower efficacy in the absence of CB1/CB2-mediated mechanisms. In LPS-stimulated murine microglial cells (BV2), K2 reduced microglia pro-inflammatory phenotype through the downregulation of histone deacetylase 1 (HDAC-1) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IKBα) and increased interleukin-10 (IL-10) expression, an important antiinflammatory cytokine. In conclusion, these results suggested that K2 oral administration attenuated NP symptoms by reducing spinal neuroinflammation and underline the important role of the synergism between cannabinoids and terpenes.
Collapse
Affiliation(s)
- Vittoria Borgonetti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Lisa Anceschi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Virginia Brighenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Governa
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy - Department of Excellence 2018-2022, University of Siena, Siena, Italy
| | - Federica Pellati
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Nicoletta Galeotti
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Kour S, Biswas I, Sheoran S, Arora S, Sheela P, Duppala SK, Murthy DK, Pawar SC, Singh H, Kumar D, Prabhu D, Vuree S, Kumar R. Artificial intelligence and nanotechnology for cervical cancer treatment: Current status and future perspectives. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
11
|
Shannar A, Sarwar MS, Kong ANT. A New Frontier in Studying Dietary Phytochemicals in Cancer and in Health: Metabolic and Epigenetic Reprogramming. Prev Nutr Food Sci 2022; 27:335-346. [PMID: 36721757 PMCID: PMC9843711 DOI: 10.3746/pnf.2022.27.4.335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2023] Open
Abstract
Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in regulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic cofactors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mechanisms by which phytochemicals can mitigate cancer.
Collapse
Affiliation(s)
- Ahmad Shannar
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Md. Shahid Sarwar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA,
Correspondence to Ah-Ng Tony Kong,
| |
Collapse
|
12
|
Gor R, Ramachandran I, Ramalingam S. Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals. Curr Top Med Chem 2022; 22:2589-2597. [PMID: 36380414 DOI: 10.2174/1567205020666221114112814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022]
Abstract
Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.
Collapse
Affiliation(s)
- Ravi Gor
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600113, Tamil Nadu, India
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603203, Tamil Nadu, India
| |
Collapse
|
13
|
In Vitro Anti-Colorectal Cancer and Anti-Microbial Effects of Pinus roxburghii and Nauplius graveolens Extracts Modulated by Apoptotic Gene Expression. SEPARATIONS 2022. [DOI: 10.3390/separations9120393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The use of phytochemicals is gaining increasing attention for treating cancer morbidity with minimal burden side effects. This study evaluated the cytotoxicity and antimicrobial activities of Pinus roxburghii branch (P. roxburghii) and Nauplius graveolens (N. graveolens) extracts in vitro. Cell viability was estimated using MTT assay. DNA fragmentation was determined to detect apoptotic pathway initiation. Mechanistically, the apoptotic pathway was tracked by estimating the relative mRNA expression levels of the Bcl-2, Bax, Cas3, NF-κB, and PI3k genes by qRT-PCR. P. roxburghii exhibited moderate antioxidant activity, while N. graveolens possessed highly significant (p < 0.05) scavenging activity against DPPH and ABTS assays. HPLC analysis demonstrated that catechin and chlorogenic acid were the predominant polyphenolic compounds in P. roxburghii and N. graveolens, respectively. The P. roxburghii and N. graveolens extracts inhibited the viability of HCT-116 cells with IC50 values of 30.6 µg mL−1 and 26.5 µg mL−1, respectively. DNA fragmentation analysis showed that the proposed extracts induced apoptosis in HCT-116 cells. Moreover, the IC50 doses of the selected extracts significantly (p < 0.05) upregulated Bax and cleaved Cas-3, and downregulated Bcl-2, NF-κB, and PI3k genes versus the GAPDH gene as a housekeeping gene in comparison to the control group. The Bax/Bcl-2 ratio was raised upon treatment. The mentioned extracts exhibited antimicrobial action against all tested bacteria and fungi. The highest antibacterial effect was recorded against E. coli, with inhibition zones of 12.0 and 11.2 mm for P. roxburghii and N. graveolens, respectively. On the other hand, the highest antifungal action was registered for Penicillium verrucosum and A. niger, with inhibition zones of 9.8 and 9.2 mm for the tested extracts, respectively. In conclusion, the outcomes of this study indicate that P. roxburghii and N. graveolens extracts could potentially be used as anticancer, antibacterial, and antifungal agents.
Collapse
|
14
|
Adelipour M, Cheraghzadeh M, Rashidi M. Polyphenols as epigenetic modulators in treating or preventing of cancers. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Simanullang RH, Situmorang PC, Siahaan JM, Widjaja SS, Mutiara M. Effects of Zanthoxylum acanthopodium on MMP-9 and GLUT-1 expression and histology changes in rats with cervical carcinoma. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e89368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cervical cancer is one of the most common cancers in Indonesia. It can be treated with molecular therapies targeting Matrix metallopeptidase 9 (MMP-9) and Glucose transporter (GLUT-1), which are enzymes that are involved in tumour cell invasion, metastasis and angiogenesis. Zanthoxylum acanthopodium (andaliman) is an Indonesian herb with anti-cancer properties. This study aimed to investigate the histological changes andaliman treatment caused in MMP-9 and GLUT-1 expression. This study used five groups of rats: control (C-), cancer model (C+), cancer-bearing rats with a 100-mg dose of Zanthoxylum acanthopodium methanol extract (ZAM)/BW (ZAM100), cancer-bearing rats with a 200-mg dose of ZAM /BW (ZAM200) and cancer-bearing rats with a 400-mg dose of ZAM/BW (ZAM400). Immunohistochemical methods were used to stain cervical tissue with MMP-9 and GLUT-1 antibodies, and a TUNEL assay was performed to investigate cell apoptosis. Zanthoxylum acanthopodium methanol extract administration did not affect rat body weight but had a significant effect on cervical cancer growth. There was an increase in MDA levels associated with SOD deficiency in tumour tissue. SOD activity increased due to ZAM administration, allowing cells to be protected from oxidant disruption and oxidative stress. ZAM ameliorated cervical carcinoma tissue damage and reduced the expression of MMP-9, GLUT-1 and apoptosis in serum and tissue (p < 0.01) In short, the higher the ZAM dose, the lower the expression of MMP-9, GLUT-1 and apoptosis, indicating that ZAM is effective to treat cervical cancer.
Collapse
|
16
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
17
|
Langeh U, Kumar V, Singh C, Singh A. Drug-herb combination therapy in cancer management. Mol Biol Rep 2022; 49:11009-11024. [PMID: 36083521 DOI: 10.1007/s11033-022-07861-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
Cancer is the second leading cause of fatality all over the world. Various unwanted side effects are being reported with the use of conventional chemotherapy. The plant derived bioactive compounds are the prominent alternative medicinal approach for reduction of chemotherapy associated side effects. The data is collected from Pubmed, Sci-hub, Google scholar, and Research gate were systematically searched up to year 2020. Several herbal drugs have been investigated and found with grateful anti-cancer potentials hence, it can be used in combination with chemotherapy for the depletion of associated side-effects. Herbal drugs and their extracts contain a mixture of active ingredients, which show interactions within themselves and along with chemotherapeutic agents to show either synergistic or antagonistic therapeutic effects. Therefore, it is necessary to develop alternative treatment to control chemotherapy associated side-effects. In this review, we discussed some of the significant chemical compounds, which could be efficient against cancer. This review focuses on the different herbal drugs that play an important role in the treatment of cancer and its associated side-effects. This study aimed to evaluate the efficacy of herbal treatment in combination with chemotherapy for cancer treatment.
Collapse
Affiliation(s)
- Urvashi Langeh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Charan Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
18
|
Herbal Ingredients in the Prevention of Breast Cancer: Comprehensive Review of Potential Molecular Targets and Role of Natural Products. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6044640. [PMID: 36017236 PMCID: PMC9398845 DOI: 10.1155/2022/6044640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/06/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Among various cancers, breast cancer is the most prevalent type in women throughout the world. Breast cancer treatment is challenging due to complex nature of the etiology of disease. Cell division cycle alterations are often encountered in a variety of cancer types including breast cancer. Common treatments include chemotherapy, surgery, radiotherapy, and hormonal therapy; however, adverse effects and multidrug resistance lead to complications and noncompliance. Accordingly, there is an increasing demand for natural products from medicinal plants and foods. This review summarizes molecular mechanisms of signaling pathways in breast cancer and identifies mechanisms by which natural compounds may exert their efficacy in the treatment of breast cancer.
Collapse
|
19
|
Chen X, Zhu X, Dong J, Chen F, Gao Q, Zhang L, Cai D, Dong H, Ruan B, Wang Y, Jiang Q, Cao W. Reversal of Epigenetic Peroxisome Proliferator-Activated Receptor-γ Suppression by Diacerein Alleviates Oxidative Stress and Osteoarthritis in Mice. Antioxid Redox Signal 2022; 37:40-53. [PMID: 35196878 DOI: 10.1089/ars.2021.0219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aims: The pathogenesis of osteoarthritis (OA) is characterized by oxidative stress (OS) and sustained inflammation that are substantially associated with epigenetic DNA methylation alterations of osteogenic gene expression. Diacerein as an anthraquinone anti-OA drug exhibits multiple chondroprotective properties, but less clarified pharmacological actions. Since anthraquinone contain an epigenetic modulating property, in this study we investigate whether the anti-OA functions of diacerein involve DNA methylation modulation and antioxidant signaling. Results: The OA mice incurred by destabilization of medial meniscus exhibited marked suppression of peroxisome proliferator-activated receptor-gamma (PPARγ), a chondroprotective transcription factor with anti-inflammation and OS-balancing properties, aberrant upregulations of DNA methyltransferase (DNMT)1/3a, and PPARγ promoter hypermethylation in knee joint cartilage. Diacerein treatment mitigated the cartilage damage and significantly inhibited the DNMT1/3a upregulation, the PPARγ promoter hypermethylation, and the PPARγ loss, and it effectively corrected the adverse expression of antioxidant enzymes and inflammatory cytokines. In cultured chondrocytes, diacerein reduced the interleukin-1β-induced PPARγ suppression and the abnormal expression of its downstream antioxidant enzymes in a gain of DNMT and PPARγ inhibition-sensitive manner, and in PPARγ knockout mice, the anti-OA effects of diacerein were significantly reduced. Innovation: Our work reveals a novel anti-OA pharmacological property of diacerein and identifies the aberrant DNMT elevation and the resultant PPARγ suppression as an important epigenetic pathway that mediates diacerein's anti-OA activities. Conclusion: DNA methylation aberration and the resultant PPARγ suppression contribute significantly to epigenetic OA pathogenesis, and targeting PPARγ suppression via DNA demethylation is an important component of diacerein's anti-OA functions. Antioxid. Redox Signal. 37, 40-53.
Collapse
Affiliation(s)
- Xingren Chen
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Xiaobo Zhu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Jian Dong
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Fang Chen
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Qi Gao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Lijun Zhang
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| | - Dawei Cai
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Hui Dong
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, The Affiliated Hospital of Nanjing University Medical School, Yangzhou, China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedics, State Key Lab of Pharmaceutical Biotechnology, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Wangsen Cao
- Nanjing University School of Medicine, Department of Basic Medical Science, Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China
| |
Collapse
|
20
|
Mazurakova A, Koklesova L, Samec M, Kudela E, Kajo K, Skuciova V, Csizmár SH, Mestanova V, Pec M, Adamkov M, Al-Ishaq RK, Smejkal K, Giordano FA, Büsselberg D, Biringer K, Golubnitschaja O, Kubatka P. Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA J 2022; 13:315-334. [PMID: 35437454 PMCID: PMC9008621 DOI: 10.1007/s13167-022-00277-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer incidence is actually the highest one among all cancers. Overall breast cancer management is associated with challenges considering risk assessment and predictive diagnostics, targeted prevention of metastatic disease, appropriate treatment options, and cost-effectiveness of approaches applied. Accumulated research evidence indicates promising anti-cancer effects of phytochemicals protecting cells against malignant transformation, inhibiting carcinogenesis and metastatic spread, supporting immune system and increasing effectiveness of conventional anti-cancer therapies, among others. Molecular and sub-/cellular mechanisms are highly complex affecting several pathways considered potent targets for advanced diagnostics and cost-effective treatments. Demonstrated anti-cancer affects, therefore, are clinically relevant for improving individual outcomes and might be applicable to the primary (protection against initial cancer development), secondary (protection against potential metastatic disease development), and tertiary (towards cascading complications) care. However, a detailed data analysis is essential to adapt treatment algorithms to individuals’ and patients’ needs. Consequently, advanced concepts of patient stratification, predictive diagnostics, targeted prevention, and treatments tailored to the individualized patient profile are instrumental for the cost-effective application of natural anti-cancer substances to improve overall breast cancer management benefiting affected individuals and the society at large.
Collapse
|
21
|
Ortea I. Foodomics in health: advanced techniques for studying the bioactive role of foods. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Javaid A, Zahra D, Rashid F, Mashraqi M, Alzamami A, Khurshid M, Ali Ashfaq U. Regulation of micro-RNA, epigenetic factor by natural products for the treatment of cancers: Mechanistic insight and translational Association. Saudi J Biol Sci 2022; 29:103255. [PMID: 35495735 PMCID: PMC9052154 DOI: 10.1016/j.sjbs.2022.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
From onset to progression, cancer is a ailment that might take years to grow. All common epithelial malignancies, have a long latency period, frequently 20 years or more, different gene may contain uncountable mutations if they are clinically detectable. MicroRNAs (miRNAs) are around 22nt non-coding RNAs that control gene expression sequence-specifically through translational inhibition or messenger degradation of RNA (mRNA). Epigenetic processes of miRNA control genetic variants through genomic DNA methylation, post-translation histone modification, rework of the chromatin, and microRNAs. The field of miRNAs has opened a new era in understanding small non-coding RNAs since discovering their fundamental mechanisms of action. MiRNAs have been found in viruses, plants, and animals through molecular cloning and bioinformatics approaches. Phytochemicals can invert the epigenetic aberrations, a leading cause of the cancers of various organs, and act as an inhibitor of these changes. The advantage of phytochemicals is that they only function on cells that cause cancer without affecting normal cells. Phytochemicals appear to play a significant character in modulating miRNA expression, which is linked to variations in oncogenes, tumor suppressors, and cancer-derived protein production, according to several studies. In addition to standard anti-oxidant or anti-inflammatory properties, the initial epigenetic changes associated with cancer prevention may be modulated by many polyphenols. In correlation with miRNA and epigenetic factors to treat cancer some of the phytochemicals, including polyphenols, curcumin, resveratrol, indole-3-carbinol are studied in this article.
Collapse
|
23
|
The ponatinib/gossypol novel combination provides enhanced anticancer activity against murine solid Ehrlich carcinoma via triggering apoptosis and inhibiting proliferation/angiogenesis. Toxicol Appl Pharmacol 2021; 432:115767. [PMID: 34699866 DOI: 10.1016/j.taap.2021.115767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/20/2022]
Abstract
The search for new antitumor agents or combinations that are more effective and, hopefully, provide fewer health hazards is ongoing. Therefore, this study investigated the efficacy of a novel combination of ponatinib, a multi-targeted tyrosine kinase inhibitor, and the natural phytochemical gossypol against murine solid Ehrlich carcinoma. Six groups of ten mice each received vehicle (I), ponatinib in doses of 10 and 15 mg/kg (II, III) respectively, gossypol in a dose of 4 mg/kg (IV), and ponatinib (10 or 15 mg/kg) in combination with gossypol (4 mg/kg; V, VI). All treatments started on the 12th post-Ehrlich ascites carcinoma (EAC) implantation day and were administered intraperitoneally in daily doses for 3 weeks. Treatment of EAC-bearing mice with ponatinib/gossypol combination improved anticancer efficacy over either drug alone, as demonstrated by greater decreases in tumor weight and volume, and ponatinib (10 mg/kg)/gossypol combination was more efficient than ponatinib (15 mg/kg). Mechanistically, the ponatinib/gossypol combination significantly increased apoptotic markers p53, Bax, and caspase-9 while decreasing anti-apoptotic marker Bcl-2. Furthermore, it greatly decreased proliferative and angiogenic markers, FGFR4 and VEGF, respectively. Histopathology revealed a significant decline in neoplastic cells, the majority of which have necrotic changes and numerous apoptotic bodies, as well as a decrease in mitotic figures and tumor giant cells, indicating the capacity to suppress cancer proliferation/persistence. Overall, gossypol could be used as an adjuvant medication for ponatinib in cancer treatment, possibly leading to successful dose reductions and fewer side effects; however, further research is needed before a clinical application could be feasible.
Collapse
|
24
|
Targeting miRNA by Natural Products: A Novel Therapeutic Approach for Nonalcoholic Fatty Liver. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6641031. [PMID: 34426744 PMCID: PMC8380168 DOI: 10.1155/2021/6641031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) as multifactorial chronic liver disease and the lack of a specific treatment have begun a new era in its treatment using gene expression changes and microRNAs. This study aimed to investigate the potential therapeutic effects of natural compounds in NAFLD by regulating miRNA expression. MicroRNAs play essential roles in regulating the cell's biological processes, such as apoptosis, migration, lipid metabolism, insulin resistance, and adipocyte differentiation, by controlling the posttranscriptional gene expression level. The impact of current NAFLD pharmacological management, including drug and biological therapies, is uncertain. In this context, various dietary fruits or medicinal herbal sources have received worldwide attention versus NAFLD development. Natural ingredients such as berberine, lychee pulp, grape seed, and rosemary possess protective and therapeutic effects against NAFLD by modifying the gene's expression and noncoding RNAs, especially miRNAs.
Collapse
|
25
|
Saad B, Ghareeb B, Kmail A. Metabolic and Epigenetics Action Mechanisms of Antiobesity Medicinal Plants and Phytochemicals. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:9995903. [PMID: 34211580 PMCID: PMC8208872 DOI: 10.1155/2021/9995903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/05/2021] [Accepted: 05/31/2021] [Indexed: 11/29/2022]
Abstract
Ever-growing research efforts are demonstrating the potential of medicinal plants and their phytochemicals to prevent and manage obesity, either individually or synergistically. Multiple combinations of phytochemicals can result in a synergistic activity that increases their beneficial effects at molecular, cellular, metabolic, and temporal levels, offering advantages over chemically synthesized drug-based treatments. Herbs and their derived compounds have the potential for controlling appetite, inhibiting pancreatic lipase activity, stimulating thermogenesis and lipid metabolism, increasing satiety, promoting lipolysis, regulating adipogenesis, and inducing apoptosis in adipocytes. Furthermore, targeting adipocyte life cycle using various dietary bioactives that affect different stages of adipocyte life cycle represents also an important target in the development of new antiobesity drugs. In this regard, different stages of adipocyte development that are targeted by antiobesity drugs can include preadipocytes, maturing preadipocytes, and mature adipocytes. Various herbal-derived active compounds, such as capsaicin, genistein, apigenin, luteolin, kaempferol, myricetin, quercetin, docosahexaenoic acid, quercetin, resveratrol, and ajoene, affect adipocytes during specific stages of development, resulting in either inhibition of adipogenesis or induction of apoptosis. Although numerous molecular targets that can be used for both treatment and prevention of obesity have been identified, targeted single cellular receptor or pathway has resulted in limited success. In this review, we discuss the state-of-the-art knowledge about antiobesity medicinal plants and their active compounds and their effects on several cellular, molecular, and metabolic pathways simultaneously with multiple phytochemicals through synergistic functioning which might be an appropriate approach to better management of obesity. In addition, epigenetic mechanisms (acetylation, methylation, miRNAs, ubiquitylation, phosphorylation, and chromatin packaging) of phytochemicals and their preventive and therapeutic perspective are explored in this review.
Collapse
Affiliation(s)
- Bashar Saad
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
- Qasemi Research Center, Al-Qasemi Academy, P.O. Box 124, 30100 Baqa Al-Gharbia, Israel
| | - Bilal Ghareeb
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| | - Abdalsalam Kmail
- Faculties of Medicine and Arts and Sciences, Arab American University, P.O. Box 240, Jenin, State of Palestine
| |
Collapse
|
26
|
To KKW, Cho WCS. Flavonoids Overcome Drug Resistance to Cancer Chemotherapy by Epigenetically Modulating Multiple Mechanisms. Curr Cancer Drug Targets 2021; 21:289-305. [PMID: 33535954 DOI: 10.2174/1568009621666210203111220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/25/2020] [Accepted: 12/03/2020] [Indexed: 11/22/2022]
Abstract
Drug resistance is the major reason accounting for the treatment failure in cancer chemotherapy. Dysregulation of the epigenetic machineries is known to induce chemoresistance. It was reported that numerous genes encoding the key mediators in cancer proliferation, apoptosis, DNA repair, and drug efflux are dysregulated in resistant cancer cells by aberrant DNA methylation. The imbalance of various enzymes catalyzing histone post-translational modifications is also known to alter chromatin configuration and regulate multiple drug resistance genes. Alteration in miRNA signature in cancer cells also gives rise to chemoresistance. Flavonoids are a large group of naturally occurring polyphenolic compounds ubiquitously found in plants, fruits, vegetables and traditional herbs. There has been increasing research interest in the health-promoting effects of flavonoids. Flavonoids were shown to directly kill or re-sensitize resistant cancer cells to conventional anticancer drugs by epigenetic mechanisms. In this review, we summarize the current findings of the circumvention of drug resistance by flavonoids through correcting the aberrant epigenetic regulation of multiple resistance mechanisms. More investigations including the evaluation of synergistic anticancer activity, dosing sequence effect, toxicity in normal cells, and animal studies, are warranted to establish the full potential of the combination of flavonoids with conventional chemotherapeutic drugs in the treatment of cancer with drug resistance.
Collapse
Affiliation(s)
- Kenneth K W To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
27
|
Zúñiga-Muñoz A, García-Niño WR, Carbó R, Navarrete-López LÁ, Buelna-Chontal M. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci 2021; 277:119599. [PMID: 33989666 DOI: 10.1016/j.lfs.2021.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.
Collapse
Affiliation(s)
- Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Wylly-Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Roxana Carbó
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Luis-Ángel Navarrete-López
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico.
| |
Collapse
|
28
|
Hamed MM, Handoussa H, Hussein NH, Eissa RA, Abdel-Aal LK, El Tayebi HM. Oleuropin controls miR-194/XIST/PD-L1 loop in triple negative breast cancer: New role of nutri-epigenetics in immune-oncology. Life Sci 2021; 277:119353. [PMID: 33798547 DOI: 10.1016/j.lfs.2021.119353] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/07/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Oleuropein, the main secoiridoid glucoside found in Olea europaea L., has attracted scientific community as a potential anticancer agent. Immunotherapy and RNA interference revolutionized cancer treatment. Success of PD-L1/PD-1 antibodies encouraged the investigation of PD-1/PD-L1 regulation by non-coding RNAs. This study aimed to verify the cytotoxic effect of oleuropein on MDA-MB-231 cell line and to unravel novel ceRNA interaction between miR-194-5p and XIST in breast cancer and their immunomodulatory effect on PD-L1 expression to propose a promising prophylactic and preventive role of Oleuropin in diet. For the first time, miR-194/Lnc-RNA XIST/PD-L1 triad was investigated in breast cancer, where miR-194 and PD-L1 levels were significantly upregulated in 21 BC-biopsies, yet XIST was downregulated. Ectopic expression of miR-194 enhanced cell function and viability with concomitant increase in PD-L1 expression yet XIST expression decreased, in contrast to miR-194 antagomirs that yielded opposite results. XIST knock-out elevated miR194-5p and PD-L1 levels. miR-194-5p mimics and XIST siRNAs co-transfection induced PD-L1 expression, while miR-194-5p mimics and TSIX siRNAs co-transfection showed opposite effect. Oleuropein showed anti-carcinogenic impact by decreasing miR-194 and PD-L1 levels while increasing XIST level. In conclusion, our study highlighted novel ceRNA interaction controlling PD-L1 expression in BC. Oleuropein is a promising nutraceutical for cancer therapy. Therefore, oleuropin represents a new nutri-epigenetic in immune-oncology that controls miR-194/XIST/PD-L1 loop in triple negative breast cancer.
Collapse
Affiliation(s)
- Marwa M Hamed
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Heba Handoussa
- Department of Pharmaceutical Biology, German University in Cairo, Cairo, Egypt
| | - Nada H Hussein
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Reda A Eissa
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lobna K Abdel-Aal
- Department of Pharmacology and Toxicology, German University in Cairo, Cairo, Egypt
| | - Hend M El Tayebi
- The Molecular Pharmacology Research Group, Department of Pharmacology, Toxicology and Clinical Pharmacy, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.
| |
Collapse
|
29
|
Gospodinova ZI, Zupkó I, Bózsity N, Manova VI, Georgieva MS, Todinova SJ, Taneva SG, Ocsovszki I, Krasteva ME. Cotinus coggygria Scop. induces cell cycle arrest, apoptosis, genotoxic effects, thermodynamic and epigenetic events in MCF7 breast cancer cells. ACTA ACUST UNITED AC 2021; 76:129-140. [PMID: 32975208 DOI: 10.1515/znc-2020-0087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022]
Abstract
Current plant-derived anticancer therapeutics aim to reach higher effectiveness, to potentiate chemosensitivity and minimize the toxic side effects compared to conventional chemotherapy. Cotinus coggygria Scop. is a herb with high pharmacological potential, widely applied in traditional phytotherapy. Our previous study revealed that leaf aqueous ethanolic extract from C. coggygria exerts in vitro anticancer activity on human breast, ovarian and cervical cancer cell lines. The objective of the present research was to investigate possible molecular mechanisms and targets of the antitumor activity of the extract in breast cancer MCF7 cells through analysis of cell cycle and apoptosis, clonogenic ability assessment, evaluation of the extract genotoxic capacity, characterization of cells thermodynamic properties, and analysis on the expression of genes involved in cellular epigenetic processes. The obtained results indicated that in MCF7 cells C. coggygria extract causes S phase cell cycle arrest and triggers apoptosis, reduces colony formation, induces DNA damage, affects cellular thermodynamic parameters, and tends to inhibit the relative expression of DNMT1, DNMT3a, MBD3, and p300. Further studies on the targeted molecules and the extract anti-breast cancer potential on animal experimental model system, need to be performed in the future.
Collapse
Affiliation(s)
- Zlatina I Gospodinova
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Istvan Zupkó
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eotvos Str. 6, H-6720 Szeged, Hungary
| | - Noémi Bózsity
- Department of Pharmacodynamics and Biopharmacy, University of Szeged, Eotvos Str. 6, H-6720 Szeged, Hungary
| | - Vasilissa I Manova
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Mariyana S Georgieva
- Laboratory of Regulation of Gene Expression, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Svetla J Todinova
- Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Stefka G Taneva
- Department of Biomacromolecules and Biomolecular Interactions, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| | - Imre Ocsovszki
- Department of Biochemistry, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| | - Maria E Krasteva
- Laboratory of Genome Dynamics and Stability, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
30
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
31
|
Khaledi F, Ghasemi S. A review on epigenetic effects of environmental factors causing and inhibiting cancer. Curr Mol Med 2021; 22:8-24. [PMID: 33573554 DOI: 10.2174/1566524021666210211112800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/13/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic modifications refer to reversible changes in gene expression. Epigenetic changes include DNA methylation, histone modification, and non-coding RNAs that are collectively called epigenome. Various epigenetic effects account for the main impacts of environment and lifestyle on multifactorial diseases such as cancers. The environment's impacts on cancers act as double-edged swords. While some of them are involved in cancer development, some others contribute to preventing it. In this review article, the keywords 'cancer', 'epigenetic', 'lifestyle', 'carcinogen', ' cancer inhibitors" and related words were searched to finding a link between environmental factors and epigenetic mechanisms influencing cancer in ISI, PUBMED, SCOPUS, and Google Scholar databases. Based on the literature environmental factors that are effective in cancer development or cancer prevention in this review will be divided into physical, chemical, biological, and lifestyle types. Different types of epigenetic mechanisms known for each of these agents will be addressed in this review. Unregulated changes in epigenome play roles in tumorigenicity and cancer development. The action mechanism and genes targeted which are related to the signaling pathway for epigenetic alterations determine whether environmental agents are carcinogenic or prevent cancer. Having knowledge about the effective factors and related mechanisms such as epigenetic on cancer can help to prevent and better cancers treatment.
Collapse
Affiliation(s)
- Fatemeh Khaledi
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord. Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord. Iran
| |
Collapse
|
32
|
Li F, Qasim S, Li D, Dou QP. Updated review on green tea polyphenol epigallocatechin-3-gallate as a cancer epigenetic regulator. Semin Cancer Biol 2021; 83:335-352. [PMID: 33453404 DOI: 10.1016/j.semcancer.2020.11.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/26/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
In-depth insights in cancer biology over the past decades have highlighted the important roles of epigenetic mechanisms in the initiation and progression of tumorigenesis. The cancer epigenome usually experiences multiple alternations, including genome-wide DNA hypomethylation and site-specific DNA hypermethylation, various histone posttranslational modifications, and dysregulation of non-coding RNAs (ncRNAs). These epigenetic changes are plastic and reversible, and could potentially occur in the early stage of carcinogenesis preceding genetic mutation, offering unique opportunities for intervention therapies. Therefore, targeting the cancer epigenome or cancer epigenetic dysregulation with some selected agents (called epi-drugs) represents an evolving and promising strategy for cancer chemoprevention and therapy. Phytochemicals, as a class of pleiotropic molecules, have manifested great potential in modulating different cancer processes through epigenetic machinery, of which green tea polyphenol epigallocatechin-3-gallate (EGCG) is one of the most extensively studied. In this review, we first summarize epigenetic events involved in the pathogenesis of cancer, including DNA/RNA methylations, histone modifications and ncRNAs' dysregulations. We then focus on the recently discovered roles of phytochemicals, with a special emphasis on EGCG, in modulating different cancer processes through regulating epigenetic machinery. We finally discuss limitations of EGCG as an epigenetic modulator for cancer chemoprevention and treatment and offer potential strategies to overcome the shortcomings.
Collapse
Affiliation(s)
- Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Syeda Qasim
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA; Ryerson University, Toronto, Ontario, M5B 2K3, Canada
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Tainan, 271018, China
| | - Q Ping Dou
- Departments of Oncology, Pharmacology & Pathology, School of Medicine, Barbara Ann Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
33
|
Hepigenetics: A Review of Epigenetic Modulators and Potential Therapies in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9593254. [PMID: 33299889 PMCID: PMC7707949 DOI: 10.1155/2020/9593254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma is the fifth most common cancer worldwide and the second most lethal, following lung cancer. Currently applied therapeutic practices rely on surgical resection, chemotherapy and radiotherapy, or a combination thereof. These treatment options are associated with extreme adversities, and risk/benefit ratios do not always work in patients' favor. Anomalies of the epigenome lie at the epicenter of aberrant molecular mechanisms by which the disease develops and progresses. Modulation of these anomalous events poses a promising prospect for alternative treatment options, with an abundance of felicitous results reported in recent years. Herein, the most recent epigenetic modulators in hepatocellular carcinoma are recapitulated on.
Collapse
|
34
|
Xia C, Zhou H, Xu X, Jiang T, Li S, Wang D, Nie Z, Sheng Q. Identification and Investigation of miRNAs From Gastrodia elata Blume and Their Potential Function. Front Pharmacol 2020; 11:542405. [PMID: 33101016 PMCID: PMC7545038 DOI: 10.3389/fphar.2020.542405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Gastrodia elata Blume (G. elata) is a valuable traditional Chinese medicine with neuroprotection, anti-inflammatory, and immune regulatory functions. MicroRNAs (miRNA) is a kind of endogenous noncoding small RNAs that plays distinctly important roles for gene regulation of organisms. So far, the research on G. elata is mainly focused on the pharmacological functions of the natural chemical ingredients, and the function of G. elata miRNA remains unknown. In this study, 5,718 known miRNAs and 38 novel miRNAs were identified by high-throughput sequencing from G. elata. Based on GO and KEGG analysis, we found that the human genes possibly regulated by G. elata miRNAs were related to the cell cycle, immune regulation, intercellular communication, etc. Furthermore, two novel miRNAs as Gas-miR01 and Gas-miR02 have stable and high expression in the medicinal tissues of G. elata. Further bioinformatics prediction showed that both Gas-miR01 and Gas-miR02 could target Homo sapiens A20 gene, furthermore, the dual-luciferase reporter gene assay and Western Blotting verified the interaction of Gas-miR01 or Gas-miR02 with A20. These evidences suggested that G. elata-unique miRNAs might be involved in certain physiological processes. The animal experiment showed that Gas-miR01 and Gas-miR02 could be detected in some tissues of mice by intragastric administration; meanwhile, the A20 expression in some tissues of mice was downregulated. These results supported for the functional study of G. elata miRNAs.
Collapse
Affiliation(s)
- Chunxin Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huaixiang Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Xu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tianlong Jiang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shouliang Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Dan Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zuoming Nie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Sheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
35
|
The Potential of Phytochemicals in Oral Cancer Prevention and Therapy: A Review of the Evidence. Biomolecules 2020; 10:biom10081150. [PMID: 32781654 PMCID: PMC7465709 DOI: 10.3390/biom10081150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022] Open
Abstract
The etiological factors of oral cancer are complex including drinking alcohol, smoking tobacco, betel quid chewing, human papillomavirus infection, and nutritional deficiencies. Understanding the molecular mechanism of oral cancer is vital. The traditional treatment for patients with oral squamous cell carcinoma (e.g., surgery, radiotherapy, and chemotherapy) and targeted molecular therapy still have numerous shortcomings. In recent years, the use of phytochemical factors to prevent or treat cancer has received increasing attention. These phytochemicals have little or no toxicity against healthy tissues and are thus ideal chemopreventive agents. However, phytochemicals usually have low water solubility, low bioavailability, and insufficient targeting which limit therapeutic use. Numerous studies have investigated the development of phytochemical delivery systems to address these problems. The present article provides an overview of oral cancer including the etiological factors, diagnosis, and traditional therapy. Furthermore, the classification, dietary sources, anticancer bioactivity, delivery system improvements, and molecular mechanisms against oral cancer of phytochemicals are also discussed in this review.
Collapse
|
36
|
Sur S, Ray RB. Bitter Melon ( Momordica Charantia), a Nutraceutical Approach for Cancer Prevention and Therapy. Cancers (Basel) 2020; 12:E2064. [PMID: 32726914 PMCID: PMC7464160 DOI: 10.3390/cancers12082064] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Many dietary plant products show promising anticancer effects. Bitter melon or bitter gourd (Momordica charantia) is a nutrient-rich medicinal plant cultivated in tropical and subtropical regions of many countries. Traditionally, bitter melon is used as a folk medicine and contains many bioactive components including triterpenoids, triterpene glycoside, phenolic acids, flavonoids, lectins, sterols and proteins that show potential anticancer activity without significant side effects. The preventive and therapeutic effects of crude extract or isolated components are studied in cell line-based models and animal models of multiple types of cancer. In the present review, we summarize recent progress in testing the cancer preventive and therapeutic activity of bitter melon with a focus on underlying molecular mechanisms. The crude extract and its components prevent many types of cancers by enhancing reactive oxygen species generation; inhibiting cancer cell cycle, cell signaling, cancer stem cells, glucose and lipid metabolism, invasion, metastasis, hypoxia, and angiogenesis; inducing apoptosis and autophagy cell death, and enhancing the immune defense. Thus, bitter melon may serve as a promising cancer preventive and therapeutic agent.
Collapse
Affiliation(s)
- Subhayan Sur
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
- Cancer Center, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| |
Collapse
|
37
|
Jang YG, Ko EB, Choi KC. Gallic acid, a phenolic acid, hinders the progression of prostate cancer by inhibition of histone deacetylase 1 and 2 expression. J Nutr Biochem 2020; 84:108444. [PMID: 32615369 DOI: 10.1016/j.jnutbio.2020.108444] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Gallic acid (GA) is known to possess diverse biological activities, including anticancer. Histone deacetylase (HDACs) are controlled by tumor suppressor gene transcription and are overexpressed in various tumors, resulting in tumor development, progression and poor prognosis. This study aims to demonstrate the effect of GA on inhibition of prostate cancer (PCa) progression by modulating the expression of HDAC1 and 2 in PCa cells. To prove our research rationale, we used diverse experimental methods. GA decreased the cell viability of only PCa cell lines and not normal cells (contrary to another HDAC inhibitor, suberoylanilide hydroxamic acid) and also inhibited colony and tumor spheroid formation. Exposure to GA decreased the mitochondrial membrane potential (ΔΨm), increased the number of apoptotic cells and induced DNA fragmentation. Western blot analysis revealed down-regulated expression of HDAC1 and 2, leading to up-regulation of acetyl-p53 expression at the protein level, subsequent to down-regulating the expression of cell-cycle-related genes, i.e., proliferating cell nuclear antigen (PCNA), Cyclin D1 and E1, up-regulating the expression of cell cycle arrest gene p21 and regulating the expression of apoptosis intrinsic pathway-related genes, such as Bax, Bcl-2, cleaved Caspase-3 and poly (ADP-ribose) polymerase 1 in both PCa cell lines. Furthermore, oral administration of GA for 8 weeks on PC-3 cells-derived tumor xenograft mice model decreases the tumor size, damages the tumor structure and down-regulates the expression of HDAC1 and 2 and PCNA in tumor mass, as confirmed by histological analysis. These results indicated that GA may hinder the PCa progression by inhibiting HDAC1 and 2 expression, thereby demonstrating the potential of GA to be used as HDACs inhibitor and anti-PCa therapeutics.
Collapse
Affiliation(s)
- Yin-Gi Jang
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Eul-Bee Ko
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
38
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
39
|
Khan H, Belwal T, Efferth T, Farooqi AA, Sanches-Silva A, Vacca RA, Nabavi SF, Khan F, Prasad Devkota H, Barreca D, Sureda A, Tejada S, Dacrema M, Daglia M, Suntar İ, Xu S, Ullah H, Battino M, Giampieri F, Nabavi SM. Targeting epigenetics in cancer: therapeutic potential of flavonoids. Crit Rev Food Sci Nutr 2020; 61:1616-1639. [PMID: 32478608 DOI: 10.1080/10408398.2020.1763910] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Irrespective of sex and age, cancer is the leading cause of mortality around the globe. Therapeutic incompliance, unwanted effects, and economic burdens imparted by cancer treatments, are primary health challenges. The heritable features in gene expression that are propagated through cell division and contribute to cellular identity without a change in DNA sequence are considered epigenetic characteristics and agents that could interfere with these features and are regarded as potential therapeutic targets. The genetic modification accounts for the recurrence and uncontrolled changes in the physiology of cancer cells. This review focuses on plant-derived flavonoids as a therapeutic tool for cancer, attributed to their ability for epigenetic regulation of cancer pathogenesis. The epigenetic mechanisms of various classes of flavonoids including flavonols, flavones, isoflavones, flavanones, flavan-3-ols, and anthocyanidins, such as cyanidin, delphinidin, and pelargonidin, are discussed. The outstanding results of preclinical studies encourage researchers to design several clinical trials on various flavonoids to ascertain their clinical strength in the treatment of different cancers. The results of such studies will define the clinical fate of these agents in future.
Collapse
Affiliation(s)
- Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Ammad Ahmad Farooqi
- Laboratory for Translational Oncology and Personalized Medicine, Rashid Latif Medical College, Lahore, Pakistan
| | - Ana Sanches-Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Porto, Portugal.,Center for Study in Animal Science (CECA), ICETA, University of Porto, Porto, Portugal
| | - Rosa Anna Vacca
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Council of Research, Bari, Italy
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Fazlullah Khan
- Department of Toxicology and Pharmacology, The Institute of Pharmaceutical Sciences (TIPS), School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Tejada
- Laboratory of neurophysiology, Biology Department, Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition), University of the Balearic Islands, Palma de Mallorca, Spain
| | - Marco Dacrema
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Pavia, Italy
| | - İpek Suntar
- Deparment of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara, Turkey
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, New York, USA
| | - Hammad Ullah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - Francesca Giampieri
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo Campus, Vigo, Spain.,Department of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy.,College of Food Science and Technology, Northwest University, Xi'an, Shaanxi, China
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Fakhri S, Khodamorady M, Naseri M, Farzaei MH, Khan H. The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacol Res 2020; 159:104895. [PMID: 32422342 DOI: 10.1016/j.phrs.2020.104895] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/13/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022]
Abstract
Cancer cells underlie the dysregulated metabolism of carbohydrate, lipid and protein and thereby, employ interconnected cross-linked signaling pathways to supply adequate energy for growth and related biosynthetic procedures. In the present study, a comprehensive review of cancer metabolism and anthocyanin's effect was conducted using the existing electronic databases, including Medline, PubMed, Scopus, and Web of Science, as well as related articles in the field. Such keywords as "cancer", and "cancer metabolism" in the title/abstract/keyword and all the "anthocyanins" in the whole text were used. Data were collected without time restriction until February 2020. The results indicated the involvement of several signaling pathways, including inflammatory PI3K/Akt/mTOR pathway, Bax/Bcl-2/caspases as apoptosis modulators, and NF-κB/Nrf2 as oxidative stress mediators in the cancer dysregulated metabolism. Compelling studies have shown that targeting these pathways, as critical hallmarks of cancer, plays a critical role in combating cancer dysregulated metabolism. The complexity of cancer metabolism signaling pathways, along with toxicity, high costs, and resistance to conventional drugs urge the need to investigate novel multi-target agents. Increasing evidence has introduced plant-derived secondary metabolites as hopeful anticancer candidates which target multiple dysregulated cross-linked pathways of cancer metabolism. Amongst these metabolites, anthocyanins have demonstrated positive anticancer effects by targeting inflammation, oxidative stress, and apoptotic signaling pathways. The current study revealed the cross-linked signaling pathways of cancer metabolism, as well as the promising pharmacological mechanisms of anthocyanins in targeting the aforementioned signaling mediators. To overcome the pharmacokinetic limitations of anthocyanins in cancer treatment, their interactions with gut microbiota and the need to develop related nano-formulations were also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Minoo Khodamorady
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67149-67346, Iran.
| | - Maryam Naseri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
41
|
Li S, Kuo HCD, Yin R, Wu R, Liu X, Wang L, Hudlikar R, Peter RM, Kong AN. Epigenetics/epigenomics of triterpenoids in cancer prevention and in health. Biochem Pharmacol 2020; 175:113890. [PMID: 32119837 PMCID: PMC7174132 DOI: 10.1016/j.bcp.2020.113890] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/26/2020] [Indexed: 12/24/2022]
Abstract
Triterpenoids are a powerful group of phytochemicals derived from plant foods and herbs. Many reports have shown that they possess chemopreventive and chemotherapeutic effects not only in cell lines and animal models but also in clinical trials. Because epigenetic changes could potentially occur in the early stages of carcinogenesis preceding genetic mutations, epigenetics are considered promising targets in early interventions against cancer using epigenetic bioactive substances. The biological properties of triterpenoids in cancer prevention and in health have multiple mechanisms, including antioxidant and anti-inflammatory activities, cell cycle regulation, as well as epigenetic/epigenomic regulation. In this review, we will discuss and summarize the latest advances in the study of the pharmacological effects of triterpenoids in cancer chemoprevention and in health, including the epigenetic machinery.
Collapse
Affiliation(s)
- Shanyi Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Hsiao-Chen Dina Kuo
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ran Yin
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Xia Liu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Lujing Wang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rasika Hudlikar
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Rebecca Mary Peter
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
42
|
Ashraf MA. Phytochemicals as Potential Anticancer Drugs: Time to Ponder Nature's Bounty. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8602879. [PMID: 32076618 PMCID: PMC7013350 DOI: 10.1155/2020/8602879] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Medicinal plants have been used from the beginning of human civilization, which is mostly evident from the ancient script and traditional herbal medicine recipe. Despite the historically enriched demonstration about the use of plant as therapeutics, the pharmaceutical industries lack interest on phytochemical research compared with synthetic drug. Mostly, the absence of information about plant-based medicinal therapeutics is responsible to draw the attention of researchers to think about natural products as potential drug for detrimental diseases, such as cancer. This review will cover about clinically successful plant-based anticancer drugs and underappreciated, but potential, drugs to bridge the information gap between plant biologists and clinical researchers. Additionally, unprecedented advancement of synthetic chemistry, omics study to pin point the target genes/proteins, and efficient drug delivery system have made it easier for researchers to develop a phytochemical as an efficient anticancer drug.
Collapse
|
43
|
Hazafa A, Rehman KU, Jahan N, Jabeen Z. The Role of Polyphenol (Flavonoids) Compounds in the Treatment of Cancer Cells. Nutr Cancer 2020; 72:386-397. [PMID: 31287738 DOI: 10.1080/01635581.2019.1637006] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer remains a second leading cause of deaths and major public health problem. It occurs due to extensive DNA damage caused by ultraviolet radiations, ionizing radiations, environmental agents, therapeutic agents, etc. Among all cancers, the most frequently diagnosed cancers are lung (12.7%), breast (10.9%), colorectal (9.7%), and gastric cancer (7.81%). Natural compounds are most favorable against cancer on the count of their anti-cancerous ability, easy to avail and efficient. Among natural compounds, polyphenols (flavonoids, catechin, hesperetin, flavones, quercetin, phenolic acids, ellagic acid, lignans, stilbenes, etc.) represent a large and diverse group used in the prevention and treatment of cancer. Natural flavonoids are derived from different plant sources and from various medicinal plants including Petroselinum crispum, Apium graveolens, Flemingia vestita, Phyllanthus emblica, etc. Natural flavonoids possess antioxidant, anti-inflammation, as well as anti-cancerous activities through multiple pathways, they induce apoptosis in breast, colorectal, and prostate cancers, lower the nucleoside diphosphate kinase-B activity in lung, bladder and colon cancers, inhibit cell-proliferation and cell cycle arrest by suppressing the NF-kB pathway in various cancers, etc. The current review summarized the anticancer activities of natural polyphenols and their mechanisms of action.
Collapse
Affiliation(s)
- Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Khalil-Ur- Rehman
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Nazish Jahan
- Department of Chemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zara Jabeen
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
44
|
Ramírez-Alarcón K, Sánchez-Agurto Á, Lamperti L, Martorell M. Epigenetics, Maternal Diet and Metabolic Programming. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874196701907010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background:
The maternal environment influences embryonic and fetal life. Nutritional deficits or excesses alter the trajectory of fetus/offspring’s development. The concept of “developmental programming” and “developmental origins of health and disease” consists of the idea that maternal diet may remodel the genome and lead to epigenetic changes. These changes are induced during early life, permanently altering the phenotype in the posterior adult stage, favoring the development of metabolic diseases such as obesity, dyslipidemia, hypertension, hyperinsulinemia, and metabolic syndrome. In this review, it is aimed to overview epigenetics, maternal diet and metabolic programming factors and determine which of these might affect future generations.
Scope and Approach:
Nutrients interfere with the epigenome by influencing the supply and use of methyl groups through DNA transmethylation and demethylation mechanisms. They also influence the remodeling of chromatin and arginine or lysine residues at the N-terminal tails of histone, thus altering miRNA expression. Fats, proteins, B vitamins and folates act as important cofactors in methylation processes. The metabolism of carbon in the methyl groups of choline, folic acid and methionine to S-Adenosyl Methionine (SAM), acts as methyl donors to methyl DNA, RNA, and proteins. B-complex vitamins are important since they act as coenzymes during this process.
Key Findings and Conclusion:
Nutrients, during pregnancy, potentially influence susceptibility to diseases in adulthood. Additionally, the deficit or excess of nutrients alter the epigenetic machinery, affecting genes and influencing the genome of the offspring and therefore, predisposing the development of chronic diseases in adults.
Collapse
|
45
|
Alhassan SO, Atawodi SEO. Chemopreventive effect of dietary inclusion with Crassocephalum rubens (Juss ex Jacq) leaf on N-methyl-N-nitrosourea (MNU)-induced colorectal carcinogenesis in Wistar rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
46
|
Singh VK, Arora D, Ansari MI, Sharma PK. Phytochemicals based chemopreventive and chemotherapeutic strategies and modern technologies to overcome limitations for better clinical applications. Phytother Res 2019; 33:3064-3089. [DOI: 10.1002/ptr.6508] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Vipendra Kumar Singh
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Deepika Arora
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Material and Measurement LaboratoryNational Institute of Standards and Technology Gaithersburg 20899 Maryland USA
| | - Mohammad Imran Ansari
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| | - Pradeep Kumar Sharma
- Environmental Carcinogenesis Laboratory, Food, Drug and Chemical Toxicology GroupCSIR‐Indian Institute of Toxicology Research Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad‐ 201002 India
| |
Collapse
|
47
|
Wang LX, Shi YL, Zhang LJ, Wang KR, Xiang LP, Cai ZY, Lu JL, Ye JH, Liang YR, Zheng XQ. Inhibitory Effects of (-)-Epigallocatechin-3-gallate on Esophageal Cancer. Molecules 2019; 24:molecules24050954. [PMID: 30857144 PMCID: PMC6429180 DOI: 10.3390/molecules24050954] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/24/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023] Open
Abstract
There is epidemiological evidence showing that drinking green tea can lower the risk of esophageal cancer (EC). The effect is mainly attributed to tea polyphenols and their most abundant component, (−)-epigallocatechin-3-gallate (EGCG). The possible mechanisms of tumorigenesis inhibition of EGCG include its suppressive effects on cancer cell proliferation, angiogenesis, DNA methylation, metastasis and oxidant stress. EGCG modulates multiple signal transduction and metabolic signaling pathways involving in EC. A synergistic effect was also observed when EGCG was used in combination with other treatment methods.
Collapse
Affiliation(s)
- Liu-Xiang Wang
- China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Zhengzhou 450008, Henan, China.
| | - Yun-Long Shi
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Long-Jie Zhang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Kai-Rong Wang
- Ningbo Huangjinyun Tea Science and Technology Co. Ltd., Yuyao 315412, China.
| | - Li-Ping Xiang
- National Tea and Tea Product Quality Supervision and Inspection Center (Guizhou), Zunyi 563100, China.
| | - Zhuo-Yu Cai
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
48
|
Carlos-Reyes Á, López-González JS, Meneses-Flores M, Gallardo-Rincón D, Ruíz-García E, Marchat LA, Astudillo-de la Vega H, Hernández de la Cruz ON, López-Camarillo C. Dietary Compounds as Epigenetic Modulating Agents in Cancer. Front Genet 2019; 10:79. [PMID: 30881375 PMCID: PMC6406035 DOI: 10.3389/fgene.2019.00079] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/28/2019] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms control gene expression during normal development and their aberrant regulation may lead to human diseases including cancer. Natural phytochemicals can largely modulate mammalian epigenome through regulation of mechanisms and proteins responsible for chromatin remodeling. Phytochemicals are mainly contained in fruits, seeds, and vegetables as well as in foods supplements. These compounds act as powerful cellular antioxidants and anti-carcinogens agents. Several dietary compounds such as catechins, curcumin, genistein, quercetin and resveratrol, among others, exhibit potent anti-tumor activities through the reversion of epigenetic alterations associated to oncogenes activation and inactivation of tumor suppressor genes. In this review, we summarized the actual knowledge about the role of dietary phytochemicals in the restoration of aberrant epigenetic alterations found in cancer cells with a particular focus on DNA methylation and histone modifications. Furthermore, we discussed the mechanisms by which these natural compounds modulate gene expression at epigenetic level and described their molecular targets in diverse types of cancer. Modulation of epigenetic activities by phytochemicals will allow the discovery of novel biomarkers for cancer prevention, and highlights its potential as an alternative therapeutic approach in cancer.
Collapse
Affiliation(s)
- Ángeles Carlos-Reyes
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - José Sullivan López-González
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Manuel Meneses-Flores
- Laboratorio de Cáncer de Pulmón, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Dolores Gallardo-Rincón
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Erika Ruíz-García
- Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Laurence A. Marchat
- Programa en Biomedicina Molecular y Red de Biotecnología, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Horacio Astudillo-de la Vega
- Laboratorio de Investigación Traslacional en Cáncer y Terapia Celular, Hospital de Oncología, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City, Mexico
| |
Collapse
|
49
|
Selected Office Based Anticancer Treatment Strategies. JOURNAL OF ONCOLOGY 2019; 2019:7462513. [PMID: 30766601 PMCID: PMC6350558 DOI: 10.1155/2019/7462513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/06/2019] [Indexed: 12/16/2022]
Abstract
Over the years, the treatment of patients with cancer has varied widely as much because of recent advancements in science and medicine as the philosophies that belie their use. This paper briefly describes many of the prevailing approaches in use today with an attempt to offer some perspective of how to apply these disparate methodologies so that they may be more effectively integrated, resulting in consistently better clinical responses.
Collapse
|
50
|
Bayat S, Mansoori Derakhshan S, Mansoori Derakhshan N, Shekari Khaniani M, Alivand MR. Downregulation of HDAC2 and HDAC3 via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells. J Cell Biochem 2019; 120:9172-9180. [PMID: 30618185 DOI: 10.1002/jcb.28193] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common malignancy in the world with the highest rate of morbidity and mortality. Due to the several side effects of chemotherapy and radiotherapy, recent studies have focused on the use of herbal medicines. Epidemiological reports have shown the inverse relationship between breast cancer risk and intake of olive. Oleuropein (OLE) is a polyphenolic compound in virgin olive oil with antineoplastic properties and it is well tolerated by humans. Recent reports have shown that OLE has effects on the control of cancer by modulating epigenetics, such as histone deacetylase (HDAC) inhibition. However, the epigenetic mechanisms of OLE anticancer properties are yet to be properly investigated. Therefore, this study aimed to determine the therapeutic effects of OLE through the modulation of histone deacetylase 2 (HDAC2) and histone deacetylase 3 (HDAC3) expression in breast cancer cell line. MCF-7 cells were tested with and without OLE, and also the cell viability, apoptosis, and migration were examined. HDAC2 and HDAC3 expression genes were assessed by quantitative real-time polymerase chain reaction. It was found that OLE decreased the expression of both HDAC2 and HDAC3 (P < 0.05), induced apoptosis and retarded cell migration and cell invasion in a dose-dependent manner (P < 0.05). These results showed that OLE is a potential therapeutic and preventive agent for breast cancer.
Collapse
Affiliation(s)
- Sahar Bayat
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Mansoori Derakhshan
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Shekari Khaniani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alivand
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|