1
|
Fonseca EG, Araújo-Ferreira AP, Berger M, Castro Coimbra-Campos LM, Silva Filha R, de Souza Cordeiro LM, Campos MR, Oliveira LBF, Caliari MV, Leite Diniz LR, Alves F, Martins AS, Peruchetti DB, Ribeiro Vieira MA. Preconditioning by Moderate-Intensity Exercise Prevents Gentamicin-Induced Acute Kidney Injury. Int J Sports Med 2024; 45:884-896. [PMID: 39029513 DOI: 10.1055/a-2342-2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
A strict correlation among proximal tubule epithelial cell dysfunction, proteinuria, and modulation of the Renin-Angiotensin System and Kalikrein-Kinin System are crucial factors in the pathogenesis of Acute Kidney Injury (AKI). In this study, we investigated the potential protective effect of preconditioning by moderate-intensity aerobic exercise on gentamicin-induced AKI. Male Wistar rats were submitted to a moderate-intensity treadmill exercise protocol for 8 weeks, and then injected with 80 mg/kg/day s.c. gentamicin for 5 consecutive days. Four groups were generated: 1) NT+SAL (control); 2) NT+AKI (non-trained with AKI); 3) T+SAL (trained); and 4) T+AKI (trained with AKI). The NT+AKI group presented: 1) impairment in glomerular function parameters; 2) increased fractional excretion of Na + , K + , and water; 4) proteinuria and increased urinary γ-glutamyl transferase activity (a marker of tubular injury) accompanied by acute tubular necrosis; 5) an increased renal angiotensin-converting enzyme and bradykinin B1 receptor mRNA expression. Interestingly, the preconditioning by moderate-intensity aerobic exercise attenuated all alterations observed in gentamicin-induced AKI (T+AKI group). Taken together, our results show that the preconditioning by moderate-intensity aerobic exercise ameliorates the development of gentamicin-induced AKI. Our findings help to expand the current knowledge regarding the effect of physical exercise on kidneys during physiological and pathological conditions.
Collapse
Affiliation(s)
- Esdras Guedes Fonseca
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Markus Berger
- Hospital das Clinicas, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Roberta Silva Filha
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Mariana Rodrigues Campos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Fabiana Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Almir Souza Martins
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Diogo Barros Peruchetti
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
- INCT-NanoBiofar, Belo Horizonte, Brazil
| | | |
Collapse
|
2
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ahmed MU, Li J, Zhou Q(T. Tobramycin Reduces Pulmonary Toxicity of Polymyxin B via Inhibiting the Megalin-Mediated Drug Uptake in the Human Lung Epithelial Cells. Pharmaceutics 2024; 16:389. [PMID: 38543283 PMCID: PMC10975719 DOI: 10.3390/pharmaceutics16030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 04/01/2024] Open
Abstract
Accumulation of polymyxins in the lung epithelial cells can lead to increased mitochondrial oxidative stress and pulmonary toxicity. Aminoglycosides and polymyxins are used, via intravenous and pulmonary delivery, against multidrug-resistant Gram-negative pathogens. Our recent in vitro and animal studies demonstrated that the co-administration of polymyxins with aminoglycosides decreases polymyxin-induced pulmonary toxicity. The aim of this study was to investigate the in vitro transport and uptake of polymyxin B and tobramycin in human lung epithelial Calu-3 cells and the mechanism of reduced pulmonary toxicity resulting from this combination. Transport, intracellular localization, and accumulation of polymyxin B and tobramycin were investigated using doses of 30 mg/L polymyxin B, 70 mg/L tobramycin, and the combination of both. Adding tobramycin significantly (p < 0.05) decreased the polymyxin B-induced cytotoxicity in Calu-3 cells. The combination treatment significantly reduced the transport and uptake of polymyxin B and tobramycin in Calu-3 cells, compared to each drug alone, which supported the reduced pulmonary toxicity. We hypothesized that cellular uptake of polymyxin B and tobramycin shared a common transporter, megalin. We further investigated the megalin expression of Calu-3 cells using confocal microscopy and evaluated megalin activity using a megalin substrate, FITC-BSA, and a megalin inhibitor, sodium maleate. Both polymyxin B and tobramycin significantly inhibited FITC-BSA uptake by Calu-3 cells in a concentration-dependent manner. Sodium maleate substantially inhibited polymyxin B and tobramycin transport and cellular accumulation in the Calu-3 cell monolayer. Our study demonstrated that the significantly reduced uptake of polymyxin B and tobramycin in Calu-3 cells is attributed to the mechanism of action that determines that polymyxin B and tobramycin share a common transporter, megalin.
Collapse
Affiliation(s)
- Maizbha Uddin Ahmed
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jian Li
- Monash Biomedicine Discovery Institute, Infection Program and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Qi (Tony) Zhou
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Hsieh CY, Tsai CY, Chou YF, Hsu CJ, Wu HP, Wu CC. Otoprotection against aminoglycoside- and cisplatin-induced ototoxicity focusing on the upstream drug uptake pathway. J Chin Med Assoc 2024; 87:17-24. [PMID: 37962398 DOI: 10.1097/jcma.0000000000001023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2023] Open
Abstract
Aminoglycoside- and cisplatin-induced ototoxicity, which is a significant issue owing to the widespread use of these drugs in clinical practice, involves the entry of aminoglycosides and cisplatin into the endolymph and hair cells via specific channels or transporters, followed by reactive oxygen species (ROS) generation and hair cells apoptosis. Current strategies focalize primarily on interference with downstream ROS effects; however, recent evidence has demonstrated that inhibiting the uptake of aminoglycosides and cisplatin by hair cells is another promising strategy for tackling the upstream drug uptake pathway. With advances in structural biology, the conformations of certain aminoglycoside and cisplatin channels and transporters, such as the mechanoelectrical transduction channel and organic cation transporter-2, have been largely elucidated. These channels and transporters may become potential targets for the introduction of new otoprotective strategies. This review focuses on the strategies for inhibiting ototoxic drugs uptake by auditory hair cells and provides potential targets for recent developments in the field of otoprotection. Molecular dynamics (MD) simulations of these proteins could help identify the molecules that inhibit the uptake of aminoglycosides and cisplatin by hair cells. Integrating upstream drug uptake pathway targets and MD simulations may help dissect molecular mechanisms and develop novel otoprotective strategies for aminoglycoside- and cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Cheng-Yu Hsieh
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Cheng-Yu Tsai
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Yi-Fan Chou
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chuan-Jen Hsu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Hung-Pin Wu
- Department of Otolaryngology Head and Neck Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan, ROC
- School of Medicine, Tzu Chi University, Hualien, Taiwan, ROC
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan, ROC
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu, Taiwan, ROC
| |
Collapse
|
5
|
Chen X, Chu C, Doebis C, Xiong Y, Cao Y, Krämer BK, von Baehr V, Hocher B. Vitamin D status and its association with parathyroid hormone in 23,134 outpatients. J Steroid Biochem Mol Biol 2022; 220:106101. [PMID: 35351538 DOI: 10.1016/j.jsbmb.2022.106101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
In vitro studies indicate that 25-hydroxyvitamin D3 (25(OH)D3) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) inhibits the synthesis of parathyroid hormone (PTH). The degree of PTH inhibition in humans by circulating 25(OH)D and 1,25(OH)2D may be different. Moreover, age and sex as well as confounding factors like calcium and phosphate may likewise affect the relationship between vitamin D and PTH in humans. However, this was not done so far in adequately powered studies. We investigated the relationship between 25(OH)D as well as 1,25(OH)2D and intact parathyroid hormone (iPTH) in 23,134 outpatients (age mean: 59.81 years) from the Berlin-Brandenburg area of Germany with normal serum creatinine considering confounding factors like age, sex, calcium and phosphate. 25(OH)D and iPTH were inversely correlated (r = -0.17, p < 0.0001). The inverse linear correlation was observed over the entire spectrum of 25(OH)D concentrations - from low 25(OH)D concentrations to very high 25(OH)D concentrations. Multiple linear regression analysis revealed that this correlation was independent of age, sex, creatinine, calcium and phosphate (unstandardized coefficients B: -0.16, p < 0.0001). However, 1,25(OH)2D was only positively associated with iPTH in women (r = 0.05, p = 0.033) and in the subgroup of patients with lower 25(OH)D (25(OH)D< 40 ng/ml) (r = 0.09, p < 0.0001), which was also presented in multiple linear regression analysis (unstandardized coefficients B: 0.20, p = 0.001). Circulating 1,25(OH)2D does not contribute substantially to the regulation of PTH in middle aged and vitamin D sufficient outpatients from the Berlin-Brandenburg area of Germany with normal kidney function. Presumably, serum 25(OH)D that is converted to 1,25(OH)2D after uptake in the parathyroid chief cells plays the critical role.
Collapse
Affiliation(s)
- Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Chang Chu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Cornelia Doebis
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Yingquan Xiong
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Yaochen Cao
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Department of Nephrology, Charité - Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Bernhard K Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany
| | - Volker von Baehr
- Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Germany; Institute of Medical Diagnostics, IMD Berlin-Potsdam, Berlin, Germany; Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|
6
|
Abduljalil K, Ning J, Pansari A, Pan X, Jamei M. Prediction of Maternal and Fetoplacental Concentrations of Cefazolin, Cefuroxime and Amoxicillin during Pregnancy using bottom-up Physiologically based Pharmacokinetic Models. Drug Metab Dispos 2022; 50:386-400. [DOI: 10.1124/dmd.121.000711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
|
7
|
Cooke LDF, Tumbarello DA, Harvey NC, Sethi JK, Lewis RM, Cleal JK. Endocytosis in the placenta: An undervalued mediator of placental transfer. Placenta 2021; 113:67-73. [PMID: 33994009 DOI: 10.1016/j.placenta.2021.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
Endocytosis is an essential mechanism for cellular uptake in many human tissues. A range of endocytic mechanisms occur including clathrin-dependent and -independent mechanisms. However, the role of endocytosis in the placenta and the spatial localisation of individual mechanisms is not well understood. The two principal cell layers that comprise the placental barrier to maternal-fetal transfer are the syncytiotrophoblast and fetal capillary endothelium. Endocytic uptake into the syncytiotrophoblast has been demonstrated for physiological maternal molecules such as transferrin-bound iron and low density lipoprotein (LDL) and may play an important role in the uptake of several other micronutrients, serum proteins, and therapeutics at both major placental cell barriers. These mechanisms may also mediate placental uptake of some viruses and nanoparticles. This review introduces the mechanisms of cargo-specific endocytosis and what is known about their localisation in the placenta, focussing predominantly on the syncytiotrophoblast. A fuller understanding of placental endocytosis is necessary to explain both fetal nutrition and the properties of the placental barrier. Characterising placental endocytic mechanisms and their regulation may allow us to identify their role in pregnancy pathologies and provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Laura D F Cooke
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - David A Tumbarello
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Highfield Campus, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jaswinder K Sethi
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Rohan M Lewis
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Jane K Cleal
- The Institute of Developmental Sciences, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
8
|
Moraes ACN, Freire DS, Habibi H, Lowe J, Magalhães VF. Cylindrospermopsin impairs tubular transport function in kidney cells LLC-PK1. Toxicol Lett 2021; 344:26-33. [PMID: 33689780 DOI: 10.1016/j.toxlet.2021.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/03/2023]
Abstract
Cylindrospermopsin (CYN) has been involved in cases of poisoning in humans following ingestion. Studies have demonstrated that the kidney is the most affected organ. CYN exposure leads to low-molecular-weight proteinuria and increased excretions of the tubular enzymes in mice, suggesting the damage caused by CYN is mainly tubular. However, the mechanism involved in CYN nephrotoxicity remains unknown. Thus, in order to evaluate the effects of CYN exposure (0.1, 0.5 and 1.0 μg/mL) on tubular renal cells LLC-PK1 distinct mechanisms were analyzed by assessing cell death using flow cytometry, albumin uptake by fluorescence analysis, Na+/K+-ATPase activity by a colorimetric method, RT-qPCR of genes related to tubular transport and function as well as internalization of CYN by ELISA. In this study, CYN was found to induce necrosis in all concentrations. CYN also decreased albumin uptake as well as downregulated megalin and dab2 expression, both proteins involved in albumin endocytosis process. Moreover, CYN appears to be internalized by renal tubular cells through a receptor-mediated endocytosis. Finally, the present study demonstrates that CYN is responsible for disrupting tubular cell transport and function in LLC-PK1 cells.
Collapse
Affiliation(s)
- A C N Moraes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - D S Freire
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - H Habibi
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - J Lowe
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - V F Magalhães
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Alfaifi AA, Heyder RS, Bielski ER, Almuqbil RM, Kavdia M, Gerk PM, da Rocha SRP. Megalin-targeting liposomes for placental drug delivery. J Control Release 2020; 324:366-378. [PMID: 32461116 PMCID: PMC8247794 DOI: 10.1016/j.jconrel.2020.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 05/09/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022]
Abstract
Every year, complications during pregnancy affect more than 26 million women. Some of those diseases are associated with significant morbidity and mortality, as is the case of preeclampsia, the main cause of maternal deaths globally. The ability to improve the delivery of drugs to the placenta upon administration to the mother may offer new opportunities in the treatment of diseases of pregnancy. The objective of this study was to develop megalin-targeting liposome nanocarriers for placental drug delivery. Megalin is a transmembrane protein involved in clathrin-mediated endocytic processes, and is expressed in the syncytiotrophoblast (SynT), an epithelial layer at maternal-fetal interface. Targeting megalin thus offers an opportunity for the liposomes to hitchhike into the SynT, thus enriching the concentration of any associated therapeutic cargo in the placental tissue. PEGylated (2 KDa) lipids were modified with gentamicin (GM), a substrate to megalin receptors as we have shown in earlier studies, and used to prepare placental-targeting liposomes. The ability of the targeting liposomes to enhance accumulation of a fluorescence probe was assessed in an in vivo placental model - timed-pregnant Balb/c mice at gestational day (GD) 18.5. The targeting liposomes containing 10 mol% GM-modified lipids increased the accumulation of the conjugated fluorescence probe in the placenta with a total accumulation of 2.8% of the initial dose, which corresponds to a 94 fold increase in accumulation compared to the free probe (p < .0001), and 2-4 fold accumulation compared to the non-targeting control liposomes (p < .0001), as measured by both tissue extraction assay and ex vivo imaging. Furthermore, confocal images of placental SynT cross-sections show a 3-fold increase of the targeting liposomes compared with the non-targeting liposomes. The rate and extent of uptake of a fluorescent probe encapsulated within targeting liposomes was also probed in an in vitro model of the human placental barrier (polarized BeWo monolayers) using flow cytometry. Targeting liposomes containing 5 mol% GM-modified lipids enhanced the uptake of the probe by 1.5 fold compared to the non-targeting control. An increase to 10 mol% of the modified lipid resulted in further enhancement in uptake, which was 2 fold greater compared to control. In a competition assay, inhibition of the megalin receptors resulted in a significant reduction in uptake of the fluorescence probe encapsulated in GM-modified liposomes compared to the uptake without free inhibitor (p < .0001), implicating the involvement of megalin receptor in the internalization of the liposomes. Taken together, these results demonstrate that megalin-targeted liposomes may offer an opportunity to enhance the delivery of therapeutics to the placenta for the treatment of diseases of pregnancy.
Collapse
Affiliation(s)
- Ali A Alfaifi
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America; Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rodrigo S Heyder
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Elizabeth R Bielski
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Rashed M Almuqbil
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, MI, United States of America
| | - Phillip M Gerk
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Sandro R P da Rocha
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America; Center for Pharmaceutical Engineering and Sciences - School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States of America.
| |
Collapse
|
10
|
Scavenger Receptor Class B Member 1 Independent Uptake of Transthyretin by Cultured Hepatocytes Is Regulated by High Density Lipoprotein. J Lipids 2019; 2019:7317639. [PMID: 31316837 PMCID: PMC6604410 DOI: 10.1155/2019/7317639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormone (thyroxine, T4) is essential for the normal function of all cell types and is carried in serum bound to several proteins including transthyretin. Recently, evidence has emerged of alternate pathways for hormone entry into cells that are dependent on hormone binding proteins. Transthyretin and transthyretin bound T4 are endocytosed by placental trophoblasts through the high-density lipoprotein receptor, Scavenger Receptor Class B Type 1 (SR-B1). High density lipoprotein (HDL) affects the expression and function of SR-B1 in trophoblast cells. SR-B1 is also expressed in hepatocytes and we sought to determine if hepatocyte SR-B1 was involved in transthyretin or transthyretin-T4 uptake and whether uptake was affected by HDL. Transthyretin and transthyretin-T4 uptake by hepatocytes is not dependent on SR-B1. HDL treatment reduced SR-B1 expression. However, pretreatment of hepatocytes with HDL increased uptake of transthyretin-T4. Knockdown of SR-B1 expression using siRNA also increased transthyretin-T4 uptake. Coaddition of HDL to transthyretin uptake experiments blocked both transthyretin and transthyretin-T4 uptake. Hepatocyte uptake of transthyretin-T4 uptake is influenced by, but is not dependent on, SR-B1 expression. HDL also decreases transthyretin-T4 uptake and therefore diet or drugs may interfere with this process. This suggests that multiple lipoprotein receptors may be involved in the regulation of uptake of transthyretin-T4 in a cell-type specific manner. Further study is required to understand this important process.
Collapse
|
11
|
The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharm Res 2018; 35:71. [DOI: 10.1007/s11095-017-2286-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022]
|
12
|
In Vivo siRNA Delivery and Rebound of Renal LRP2 in Mice. JOURNAL OF DRUG DELIVERY 2017; 2017:4070793. [PMID: 29410918 PMCID: PMC5750491 DOI: 10.1155/2017/4070793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/26/2017] [Accepted: 11/20/2017] [Indexed: 11/30/2022]
Abstract
siRNA stabilized for in vivo applications is filtered and reabsorbed in the renal proximal tubule (PT), reducing mRNA expression transiently. Prior siRNA efforts have successfully prevented upregulation of mRNA in response to injury. We proposed reducing constitutive gene and protein expression of LRP2 (megalin) in order to understand its molecular regulation in mice. Using siRNA targeting mouse LRP2 (siLRP2), reduction of LRP2 mRNA expression was compared to scrambled siRNA (siSCR) in mouse PT cells. Mice received siLRP2 administration optimized for dose, administration site, carrier solution, administration frequency, and administration duration. Kidney cortex was collected upon sacrifice. Renal gene and protein expression were compared by qRT-PCR, immunoblot, and immunohistochemistry (IHC). Compared to siSCR, siLRP2 reduced mRNA expression in PT cells to 16.6% ± 0.6%. In mouse kidney cortex, siLRP2 reduced mRNA expression to 74.8 ± 6.3% 3 h and 70.1 ± 6.3% 6 h after administration. mRNA expression rebounded at 12 h (160.6 ± 11.2%). No megalin renal protein expression reduction was observed by immunoblot or IHC, even after serial twice daily dosing for 3.5 days. Megalin is a constitutively expressed protein. Although LRP2 renal mRNA expression reduction was achieved, siRNA remains a costly and inefficient intervention to reduce in vivo megalin protein expression.
Collapse
|
13
|
Shah M, Bourner L, Ali S, Al-Enazy S, Rytting E. Cytotoxicity of Endocytosis and Efflux Inhibitors in the BeWo Cell Line. JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL 2017; 17. [PMID: 29214230 PMCID: PMC5714556 DOI: 10.9734/jpri/2017/34606] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Aims The purpose of this study was to determine the cell viability and cytotoxicity of various endocytosis and efflux inhibitors which can be used to determine transport and uptake mechanisms in the BeWo (b30 clone) human placental trophoblast cell line. Ethanol and dimethylsulfoxide (DMSO) were also studied since they are often used as cosolvents for administration of these inhibitors. Methodology The water-soluble tetrazolium-1 (WST-1) assay was used to quantify cell viability and the lactate dehydrogenase (LDH) assay was used to determine cytotoxicity. Results By the WST-1 assay, reduced cell viability was observed following 4 hours of exposure to chlorpromazine (10 μg/mL), colchicine (1 mM), filipin (3 μg/mL), gentamicin (2 mM), GF120918 (1 μM), methyl-β-cyclodextrin (5 mM), and verapamil (100 μM). By the LDH assay, however, no cytotoxicity was observed after 4 hours of exposure to the aforementioned compounds. Amiloride (500 μM), ethanol (up to 0.1% v/v), and DMSO (up to 0.1% v/v) did not reduce cell viability nor induce cytotoxicity. Conclusion This information is valuable when selecting potential inhibitors of endocytosis and efflux and the selection of time points for mechanistic studies.
Collapse
Affiliation(s)
- Mansi Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Luke Bourner
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Shariq Ali
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Sanaalarab Al-Enazy
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| | - Erik Rytting
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Kamper M, Mittermayer F, Cabuk R, Gelles K, Ellinger I, Hermann M. Estrogen-enhanced apical and basolateral secretion of apolipoprotein B-100 by polarized trophoblast-derived BeWo cells. Biochimie 2017; 138:116-123. [PMID: 28487135 DOI: 10.1016/j.biochi.2017.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/05/2017] [Indexed: 11/30/2022]
Abstract
Cholesterol is an important nutrient for fetal development and transplacental transport occurs at all stages of human pregnancy. Furthermore, cholesterol is required for membrane building as well as steroid hormone synthesis. Therefore, all placental cell types require cholesterol for proper function. In human term placenta, the syncytiotrophoblast (STB) faces the maternal circulation. Uptake of maternal-derived cholesterol at the apical membrane of the STB is well understood, but the route by which cholesterol exits at the basal side for subsequent transfer across the fetal endothelial cells (FEC) or to other placental cell types remains not well characterized. Our aim was to provide evidence for basal secretion of apolipoprotein B-100 (apoB) containing lipoproteins. Furthermore, we investigated the placental localization of apolipoprotein receptors (LRP2, LDLR and LRP1) to identify cell targets of lipoprotein particles secreted in a polarized fashion by the STB. In trophoblast-derived BeWo cells grown on permeable filter supports, we demonstrate by immunoprecipitation apical as well as basolateral apoB secretion, which was significantly upregulated by estrogen-treatment for 24 or 48 h. Furthermore, we showed by immunofluorescence microscopy apoB and microsomal triglyceride transfer protein subunits localization in the STB and placental stromal cells in situ. All investigated receptors were detected by RT-qPCR and western blot in BeWo cells, but only expression of LRP2 was estrogen-inducible. In situ, the multi-ligand receptor LRP2 was expressed exclusively in the cytotrophoblast (CTB), the STB precursor cell type. LDLR and LRP1 localized to trophoblasts as well as stromal cells in situ. In summary, basal apoB secretion by BeWo cells supports the concept of basal lipoprotein particle secretion by placental STB. These lipoprotein particles may serve as cholesterol source for STB precursor cells, the CTBs, as well as all stromal cells of the chorionic villi including FECs, which were herein demonstrated to express apoB receptors, LRP2 and LDLR, respectively.
Collapse
Affiliation(s)
- Miriam Kamper
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Florian Mittermayer
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| | - Rosalinda Cabuk
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Katharina Gelles
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| | - Marcela Hermann
- Department of Medical Biochemistry, Max F. Perutz Laboratories (MFPL), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Oroojalian F, Rezayan AH, Shier WT, Abnous K, Ramezani M. Megalin-targeted enhanced transfection efficiency in cultured human HK-2 renal tubular proximal cells using aminoglycoside-carboxyalkyl- polyethylenimine -containing nanoplexes. Int J Pharm 2017; 523:102-120. [DOI: 10.1016/j.ijpharm.2017.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/11/2017] [Accepted: 03/13/2017] [Indexed: 01/09/2023]
|
16
|
Briffa JF, O'Dowd R, Moritz KM, Romano T, Jedwab LR, McAinch AJ, Hryciw DH, Wlodek ME. Uteroplacental insufficiency reduces rat plasma leptin concentrations and alters placental leptin transporters: ameliorated with enhanced milk intake and nutrition. J Physiol 2017; 595:3389-3407. [PMID: 28369926 DOI: 10.1113/jp273825] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/08/2017] [Indexed: 12/13/2022] Open
Abstract
KEY POINTS Uteroplacental insufficiency compromises maternal mammary development, milk production and pup organ development; this is ameliorated by cross-fostering, which improves pup growth and organ development and prevents adult diseases in growth-restricted (Restricted) offspring by enhancing postnatal nutrition. Leptin is transported to the fetus from the mother by the placenta; we report reduced plasma leptin concentrations in Restricted fetuses associated with sex-specific alterations in placental leptin transporter expression. Pup plasma leptin concentrations were also reduced during suckling, which may suggest reduced milk leptin transport or leptin reabsorption. Mothers suckled by Restricted pups had impaired mammary development and changes in milk fatty acid composition with no alterations in milk leptin; cross-fostering restored pup plasma leptin concentrations, which may be correlated to improved milk composition and intake. Increased plasma leptin and altered milk fatty acid composition in Restricted pups suckling mothers with normal lactation may improve postnatal growth and prevent adult diseases. ABSTRACT Uteroplacental insufficiency reduces birth weight and adversely affects fetal organ development, increasing adult disease risk. Cross-fostering improves postnatal nutrition and restores these deficits. Mothers with growth-restricted pups have compromised milk production and composition; however, the impact cross-fostering has on milk production and composition is unknown. Plasma leptin concentrations peak during the completion of organogenesis, which occurs postnatally in rats. Leptin is transferred to the fetus via the placenta and to the pup via the lactating mammary gland. This study investigated the effect of uteroplacental insufficiency on pup plasma leptin concentrations and placental leptin transporters. We additionally examined whether cross-fostering improves mammary development, milk composition and pup plasma leptin concentrations. Fetal growth restriction was induced by bilateral uterine vessel ligation surgery on gestation day 18 in Wistar Kyoto rats (termed uteroplacental insufficiency surgery mothers). Growth-restricted (Restricted) fetuses had reduced plasma leptin concentrations, persisting throughout lactation, and sex-specific alterations in placental leptin transporters. Mothers suckled by Restricted pups had impaired mammary development, altered milk fatty acid composition and increased plasma leptin concentrations, despite no changes in milk leptin. Milk intake was reduced in Restricted pups suckling uteroplacental insufficiency surgery mothers compared to Restricted pups suckling sham-operated mothers. Cross-fostering Restricted pups onto a sham-operated mother improved postnatal growth and restored plasma leptin concentrations compared to Restricted pups suckling uteroplacental insufficiency surgery mothers. Uteroplacental insufficiency alters leptin homeostasis. This is ameliorated with cross-fostering and enhanced milk fatty acid composition and consumption, which may protect the pups from developing adverse health conditions in adulthood.
Collapse
Affiliation(s)
- Jessica F Briffa
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Rachael O'Dowd
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Karen M Moritz
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Tania Romano
- Department of Human Biosciences, LaTrobe University, Bundoora, VIC, 3083, Australia
| | - Lisa R Jedwab
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Andrew J McAinch
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, St Albans, VIC, 3021, Australia
| | - Deanne H Hryciw
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| | - Mary E Wlodek
- Department of Physiology, The University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|