1
|
Fan J, Toth I, Stephenson RJ. Recent Scientific Advancements towards a Vaccine against Group A Streptococcus. Vaccines (Basel) 2024; 12:272. [PMID: 38543906 PMCID: PMC10974072 DOI: 10.3390/vaccines12030272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 11/12/2024] Open
Abstract
Group A Streptococcus (GAS), or Streptococcus pyogenes, is a gram-positive bacterium that extensively colonises within the human host. GAS is responsible for causing a range of human infections, such as pharyngitis, impetigo, scarlet fever, septicemia, and necrotising fasciitis. GAS pathogens have the potential to elicit fatal autoimmune sequelae diseases (including rheumatic fever and rheumatic heart diseases) due to recurrent GAS infections, leading to high morbidity and mortality of young children and the elderly worldwide. Antibiotic drugs are the primary method of controlling and treating the early stages of GAS infection; however, the recent identification of clinical GAS isolates with reduced sensitivity to penicillin-adjunctive antibiotics and increasing macrolide resistance is an increasing threat. Vaccination is credited as the most successful medical intervention against infectious diseases since it was discovered by Edward Jenner in 1796. Immunisation with an inactive/live-attenuated whole pathogen or selective pathogen-derived antigens induces a potent adaptive immunity and protection against infectious diseases. Although no GAS vaccines have been approved for the market following more than 100 years of GAS vaccine development, the understanding of GAS pathogenesis and transmission has significantly increased, providing detailed insight into the primary pathogenic proteins, and enhancing GAS vaccine design. This review highlights recent advances in GAS vaccine development, providing detailed data from preclinical and clinical studies across the globe for potential GAS vaccine candidates. Furthermore, the challenges and future perspectives on the development of GAS vaccines are also described.
Collapse
Affiliation(s)
- Jingyi Fan
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.F.); (I.T.)
| |
Collapse
|
2
|
Troese MJ, Burlet E, Cunningham MW, Alvarez K, Bentley R, Thomas N, Carwell S, Morefield GL. Group A Streptococcus Vaccine Targeting the Erythrogenic Toxins SpeA and SpeB Is Safe and Immunogenic in Rabbits and Does Not Induce Antibodies Associated with Autoimmunity. Vaccines (Basel) 2023; 11:1504. [PMID: 37766180 PMCID: PMC10534881 DOI: 10.3390/vaccines11091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Group A streptococcus (GAS) is a global pathogen associated with significant morbidity and mortality for which there is currently no licensed vaccine. Vaccine development has been slow, mostly due to safety concerns regarding streptococcal antigens associated with autoimmunity and related complications. For a GAS vaccine to be safe, it must be ensured that the antigens used in the vaccine do not elicit an antibody response that can cross-react with host tissues. In this study, we evaluated the safety of our GAS vaccine candidate called VaxiStrep in New Zealand White rabbits. VaxiStrep is a recombinant fusion protein comprised of streptococcal pyrogenic exotoxin A (SpeA) and exotoxin B (SpeB), also known as erythrogenic toxins, adsorbed to an aluminum adjuvant. The vaccine elicited a robust immune response against the two toxins in the rabbits without any adverse events or toxicity. No signs of autoimmune pathology were detected in the rabbits' brains, hearts, and kidneys via immunohistochemistry, and serum antibodies did not cross-react with cardiac or neuronal tissue proteins associated with rheumatic heart disease or Sydenham chorea (SC). This study further confirms that VaxiStrep does not elicit autoantibodies and is safe to be tested in a first-in-human trial.
Collapse
Affiliation(s)
| | | | - Madeleine W. Cunningham
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kathy Alvarez
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Rebecca Bentley
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | |
Collapse
|
3
|
Dooley LM, Ahmad TB, Pandey M, Good MF, Kotiw M. Rheumatic heart disease: A review of the current status of global research activity. Autoimmun Rev 2020; 20:102740. [PMID: 33333234 DOI: 10.1016/j.autrev.2020.102740] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 01/17/2023]
Abstract
Rheumatic heart disease (RHD) is a serious and long-term consequence of acute rheumatic fever (ARF), an autoimmune sequela of a mucosal infection by Streptococcus pyogenes (Group A Streptococcus, Strep A). The pathogenesis of ARF and RHD is complex and not fully understood but involves host and bacterial factors, molecular mimicry, and aberrant host innate and adaptive immune responses that result in loss of self-tolerance and subsequent cross-reactivity with host tissues. RHD is entirely preventable yet claims an estimated 320 000 lives annually. The major burden of disease is carried by developing nations and Indigenous populations within developed nations, including Australia. This review will focus on the epidemiology, pathogenesis and treatment of ARF and RHD in Australia, where: streptococcal pyoderma, rather than streptococcal pharyngitis, and Group C and Group G Streptococcus, have been implicated as antecedents to ARF; the rates of RHD in remote Indigenous communities are persistently among the highest in the world; government register-based programs coordinate disease screening and delivery of prophylaxis with variable success; and researchers are making significant progress in the development of a broad-spectrum vaccine against Strep A.
Collapse
Affiliation(s)
- Leanne M Dooley
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Tarek B Ahmad
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael F Good
- The Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia.
| | - Michael Kotiw
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba, Queensland, Australia; Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland, Australia.
| |
Collapse
|
4
|
Volzke J, Schultz D, Kordt M, Müller M, Bergmann W, Methling K, Kreikemeyer B, Müller-Hilke B. Inflammatory Joint Disease Is a Risk Factor for Streptococcal Sepsis and Septic Arthritis in Mice. Front Immunol 2020; 11:579475. [PMID: 33117382 PMCID: PMC7576673 DOI: 10.3389/fimmu.2020.579475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Septic arthritis is a medical emergency associated with high morbidity and mortality, yet hardly any novel advances exist for its clinical management. Despite septic arthritis being a global health burden, experimental data uncovering its etiopathogenesis remain scarce. In particular, any interplay between septic arthritis and preceding joint diseases are unknown as is the contribution of the synovial membrane to the onset of inflammation. Using C57BL/6 mice as a model to study sepsis, we discovered that Group A Streptococcus (GAS) – an important pathogen causing septic arthritis - was able to invade the articular microenvironment. Bacterial invasion resulted in the infiltration of immune cells and detrimental inflammation. In vitro infected fibroblast-like synoviocytes induced the expression of chemokines (Ccl2, Cxcl2), inflammatory cytokines (Tnf, Il6), and integrin ligands (ICAM-1, VCAM-1). Apart from orchestrating immune cell attraction and retention, synoviocytes also upregulated mediators impacting on bone remodeling (Rankl) and cartilage integrity (Mmp13). Using collagen-induced arthritis in DBA/1 × B10.Q F1 mice, we could show that an inflammatory joint disease exacerbated subsequent septic arthritis which was associated with an excessive release of cytokines and eicosanoids. Importantly, the severity of joint inflammation controlled the extent of bone erosions during septic arthritis. In order to ameliorate septic arthritis, our results suggest that targeting synoviocytes might be a promising approach when treating patients with inflammatory joint disease for sepsis.
Collapse
Affiliation(s)
- Johann Volzke
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center Rostock, Rostock, Germany
| | - Daniel Schultz
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Marcel Kordt
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center Rostock, Rostock, Germany
| | - Michael Müller
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center Rostock, Rostock, Germany
| | - Wendy Bergmann
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center Rostock, Rostock, Germany
| | - Karen Methling
- Institute of Biochemistry, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, University Medical Center Rostock, Rostock, Germany
| | | |
Collapse
|
5
|
Active and passive immunizations with HtsA, a streptococcal heme transporter protein, protect mice from subcutaneous group A Streptococcus infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 53:87-93. [PMID: 29807723 DOI: 10.1016/j.jmii.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND/PURPOSE HtsA (Streptococcus heme transporter A) is the lipoprotein component of the streptococcal heme ABC transporter (HtsABC). The aim of this study is to investigate whether the HtsA protein has immunoprotective effect against group A Streptococcus (GAS) infection in mice. METHODS The HtsA protein was purified by sequential chromatography on Ni-sepharose, DEAE-sepharose and Phenyl-sepharose, CD-1 mice were actively immunized with ALUM (control) or HtsA/ALUM, and passively immunized with control or anti-HtsA serum. Mice were challenged with GAS after immunization, and the survival rate, skin lesion size and systemic GAS dissemination were determined. RESULTS The HtsA gene was cloned, and the recombinant protein HtsA was successfully purified. HtsA has a strong antigenicity, and active immunization with the HtsA protein significantly protected mice against lethal subcutaneous GAS infection, inhibited invasion of the skin by GAS, and reduced GAS systemic dissemination in blood and organs. In addition, passive immunization with anti-HtsA serum also significantly protected mice against subcutaneous GAS infection, and inhibited invasion of the skin by GAS. CONCLUSION The results showed that both active and passive immunization with the HtsA protein protected mice against subcutaneous GAS infection, suggesting that HtsA may be a candidate of GAS vaccine to protect against GAS infection.
Collapse
|
6
|
Affiliation(s)
- Monika L Dietrich
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA
| | - Russell W Steele
- Department of Pediatrics, Ochsner Health Center for Children, New Orleans, LA.,University of Queensland School of Medicine, Ochsner Clinical School, New Orleans, LA
| |
Collapse
|
7
|
WHO/IVI global stakeholder consultation on group A Streptococcus vaccine development: Report from a meeting held on 12–13 December 2016. Vaccine 2018; 36:3397-3405. [DOI: 10.1016/j.vaccine.2018.02.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/02/2018] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
|
8
|
Strangvac: A recombinant fusion protein vaccine that protects against strangles, caused by Streptococcus equi. Vaccine 2018; 36:1484-1490. [DOI: 10.1016/j.vaccine.2018.01.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/13/2023]
|