1
|
Umehara K, Parrott N, Schindler E, Legras V, Meneses-Lorente G. PBPK Modeling of Entrectinib and Its Active Metabolite to Derive Dose Adjustments in Pediatric Populations Co-Administered with CYP3A4 Inhibitors. Clin Pharmacol Ther 2024; 116:1130-1140. [PMID: 39023380 DOI: 10.1002/cpt.3386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/29/2024] [Indexed: 07/20/2024]
Abstract
Physiologically based pharmacokinetic (PBPK) models of entrectinib and its equipotent metabolite, M5, were established in healthy adult subjects and extrapolated to pediatric patients to predict increases in steady-state systemic exposure on co-administration of strong and moderate CYP3A4 inhibitors (itraconazole at 5 mg/kg, erythromycin at 7.5-12.5 mg/kg and fluconazole at 3-12 mg/kg, respectively). Adult model establishment involved the optimization of fraction metabolized by CYP3A4 (0.92 for entrectinib and 0.98 for M5) using data from an itraconazole DDI study. This model captured well the exposure changes of entrectinib and M5 seen in adults co-administered with the strong CYP3A4 inducer rifampicin. In pediatrics, reasonable prediction of entrectinib and M5 pharmacokinetics in ≧2 year olds was achieved when using the default models for physiological development and enzyme ontogenies. However, a two to threefold misprediction of entrectinib and M5 exposures was seen in <2 year olds which may be due to missing mechanistic understanding of gut physiology and/or protein binding in very young children. Model predictions for ≧2 year olds showed that entrectinib AUC(0-t) was increased by approximately sevenfold and five to threefold by strong and high-moderate and low-moderate CYP3A4 inhibitors, respectively. Based on these victim DDI predictions, dose adjustments for entrectinib when given concomitantly with strong and moderate CYP3A4 inhibitors in pediatric subjects were recommended. These simulations informed the approved entrectinib label without the need for additional clinical pharmacology studies.
Collapse
Affiliation(s)
- Kenichi Umehara
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Neil Parrott
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Emilie Schindler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Valentin Legras
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Georgina Meneses-Lorente
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche Ltd., Basel, Switzerland
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Roche Products Ltd, Welwyn, UK
| |
Collapse
|
2
|
Parrott N. Food Effect in Pediatric Populations: Current Practice, Challenges, and Future Potential for Use of Physiologically Based Biopharmaceutics Modeling. J Clin Pharmacol 2024; 64:1044-1047. [PMID: 38717132 DOI: 10.1002/jcph.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 07/30/2024]
Affiliation(s)
- Neil Parrott
- Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| |
Collapse
|
3
|
Tunehag KR, George B, Samuels S, Vo K, Arya V, Abulwerdi G, Burckart GJ. Food-Drug Effects and Pediatric Drug Development Studies Submitted to the US Food and Drug Administration, 2012-2022. J Clin Pharmacol 2024; 64:697-703. [PMID: 38294346 DOI: 10.1002/jcph.2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Food effect (FE) studies characterize food-drug interactions that may alter the efficacy or safety of a drug, but these studies are not conducted in pediatric patients. Pediatric patients have substantial physiologic, anatomic, and dietary differences from adults, which may result in differences in their FE considerations. Therefore, the objective of this study was to identify oral drug products approved for use in pediatric patients aged <6 years with an FE observed in adults. Additional objectives were to summarize the therapeutic areas, pharmacokinetic effects, and labeling instructions that resulted from these studies. Publicly available data were searched for products studied in pediatric patients and approved for use by the United States Food and Drug Administration (FDA) from 2012 to 2022. Of the 102 oral drug products approved for use in patients aged <6 years, 43 recommended the consideration of food intake in the drug labeling. These included drug products recommended to be taken with food (n = 21, 49%) or without food (n = 14, 33%). Each of the 14 drug products recommended to be taken without food are approved for use in pediatric patients aged <2 years. The products approved for use in pediatric patients aged <2 years comprised the highest proportion with area under the plasma concentration-time curve extrapolated to infinity (AUCinf, n = 35, 75%) and maximum serum concentration (Cmax, n = 45, 80%) affected by food. Close monitoring is warranted during the postapproval period for products identified as having a significant FE in adults and that are approved for use in pediatric patients aged <6 years. Promising tools for predicting pediatric FE may include physiologically based pharmacokinetic absorption modeling.
Collapse
Affiliation(s)
- Kayla R Tunehag
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blessy George
- Office of New Drugs, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sherbet Samuels
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Karen Vo
- College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Vikram Arya
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gelareh Abulwerdi
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Gilbert J Burckart
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
4
|
Gasthuys E, Sandra L, Statelova M, Vertzoni M, Vermeulen A. The Use of Population Pharmacokinetics to Extrapolate Food Effects from Human Adults and Beagle Dogs to the Pediatric Population Illustrated with Paracetamol as a Test Case. Pharmaceuticals (Basel) 2023; 17:53. [PMID: 38256887 PMCID: PMC10818831 DOI: 10.3390/ph17010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
To date, food-drug interactions in the pediatric population remain understudied. The current food effect studies are mostly performed in adults and do not mimic the real-life situation in the pediatric population. Since the potential benefits of food effect studies performed in pediatrics should be counterbalanced with the burden that these studies pose to the patients, alternative research strategies should be evaluated. The present study aimed to evaluate whether population pharmacokinetics (popPK) using data in beagle dogs and human adults could reliably assess food effects relevant for the pediatric population. PopPK was utilized to understand the performance of paracetamol under different dosing conditions (when the participants were fasted, with a reference meal, and with infant formula) in human adults (n = 8) and beagle dogs (n = 6) by constructing models to derive the pharmacokinetic parameters and to evaluate the food effects in both species. A two-compartment model with a single input function for the absorption phase best described the profiles of paracetamol in the beagle dogs. In the human adults, a one-compartment model with a dual input function for the absorption phase best described the data. The simulated profiles for the different dosing conditions demonstrated that both the human adults' and beagle dogs' simulations were able to acceptably describe the plasma concentration-time profiles of paracetamol observed in a representative pediatric population, which opens up perspectives on pediatric-relevant food effect predictions. However, the obtained results should be carefully interpreted, since an accurate validation of these findings was not possible due to the scarcity of the literature on observed pediatric data.
Collapse
Affiliation(s)
- Elke Gasthuys
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.S.); (A.V.)
| | - Louis Sandra
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.S.); (A.V.)
| | - Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece; (M.S.); (M.V.)
- Analytical Research and Development, Global Drug Development, Novartis Pharma AG, Fabrikstrasse 2, 4056 Basel, Switzerland
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, 157 84 Athens, Greece; (M.S.); (M.V.)
| | - An Vermeulen
- Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; (L.S.); (A.V.)
- Clinical Pharmacology and Pharmacometrics, Janssen R&D, A Division of Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340 Beerse, Belgium
| |
Collapse
|
5
|
Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Usefulness of the Beagle Model in the Evaluation of Paracetamol and Ibuprofen Exposure after Oral Administration to Pediatric Populations: An Exploratory Study. Mol Pharm 2023. [PMID: 37125690 DOI: 10.1021/acs.molpharmaceut.2c00926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The present study aimed to explore the usefulness of beagle dogs in combination with physiologically based pharmacokinetic (PBPK) modeling in the evaluation of drug exposure after oral administration to pediatric populations at an early stage of pharmaceutical product development. An exploratory, single-dose, crossover bioavailability study in six beagles was performed. A paracetamol suspension and an ibuprofen suspension were coadministered in the fasted-state conditions, under reference-meal fed-state conditions, and under infant-formula fed-state conditions. PBPK models developed with GastroPlus v9.7 were used to inform the extrapolation of beagle data to human infants and children. Beagle-based simulation outcomes were compared with published human-adult-based simulations. For paracetamol, fasted-state conditions and reference-meal fed-state conditions in beagles appeared to provide adequate information for the applied scaling approach. Fasted-state and/or reference-meal fed-state conditions in beagles appeared suitable to simulate the performance of ibuprofen suspension in pediatric populations. Contrary to human-adult-based translations, extrapolations based on beagle data collected under infant-formula fed-state conditions appeared less useful for informing simulations of plasma levels in pediatric populations. Beagle data collected under fasted and/or reference-meal fed-state conditions appeared to be useful in the investigation of pediatric product performance of the two investigated highly permeable and highly soluble drugs in the upper small intestine. The suitability of the beagle as a preclinical model to understand pediatric drug product performance under different dosing conditions deserves further evaluation with a broader spectrum of drugs and drug products and comparisons with pediatric in vivo data.
Collapse
Affiliation(s)
- Marina Statelova
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - René Holm
- Drug Product Development, Janssen Research and Development, Johnson & Johnson, Beerse B-2340, Belgium
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense 5230, Denmark
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Christos Reppas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 84, Greece
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens 157 84, Greece
| |
Collapse
|
6
|
Funai Y, Takemura M, Inoue K, Shirasaka Y. Effect of Ingested Fluid Volume and Solution Osmolality on Intestinal Drug Absorption: Impact on Drug Interaction with Beverages. Eur J Pharm Sci 2022; 172:106136. [PMID: 35121020 DOI: 10.1016/j.ejps.2022.106136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/17/2022] [Accepted: 01/31/2022] [Indexed: 11/03/2022]
Abstract
It was recently shown that osmolality-dependent fluid movement is a significant factor causing the clinically observed apple juice (AJ)-atenolol interaction. Here we examined whether osmolality-dependent fluid movement may also explain the AJ volume dependence of the AJ-atenolol interaction. In Wistar rats, the luminal fluid volume after administration of different volumes of purified water (0.5 and 1.0 mL) gradually reduced to a similar steady-state level, while that after administration of different volumes of AJ (0.5 and 1.0 mL) increased and attained different apparent steady-state levels. It was hypothesized that osmolality-dependent fluid secretion would account for the volume dependence of the apparent steady-state. Indeed, the luminal concentration of FD-4, a non-permeable compound, after administration in AJ was attenuated depending upon the ingested volume, whereas that after administration in purified water was independent of the ingested fluid volume. An in vivo pharmacokinetic study in rats showed that co-administration of AJ and hyperosmotic solution (adjusted to the osmolality of AJ) with atenolol volume-dependently reduced the AUC and Cmax of atenolol significantly. These results show that osmolality-dependent variations in luminal fluid volume may indirectly influence the absorption characteristics of drugs, and can account for the observed volume dependence of beverage-drug interactions.
Collapse
Affiliation(s)
- Yuta Funai
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Miyuki Takemura
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsuhisa Inoue
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshiyuki Shirasaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, 920-1192, Japan.; School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
7
|
Guimarães M, Vertzoni M, Fotaki N. Performance Evaluation of Montelukast Pediatric Formulations: Part II - a PBPK Modelling Approach. AAPS J 2022; 24:27. [PMID: 35013803 PMCID: PMC8816611 DOI: 10.1208/s12248-021-00662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to build a physiologically based pharmacokinetic (PBPK) model coupled with age-appropriate in vitro dissolution data to describe drug performance in adults and pediatric patients. Montelukast sodium was chosen as a model drug. Two case studies were investigated: case study 1 focused on the description of formulation performance from adults to children; case study 2 focused on the description of the impact of medicine co-administration with vehicles on drug exposure in infants. The PBPK model for adults and pediatric patients was developed in Simcyp® v18.2 informed by age-appropriate in vitro dissolution results obtained in a previous study. Oral administration of montelukast was simulated with the ADAM™ model. For case study 1, the developed PBPK model accurately described montelukast exposure in adults and children populations after the administration of montelukast chewable tablets. Two-stage dissolution testing in simulated fasted gastric to intestinal conditions resulted in the best description of in vivo drug performance in adults and children. For case study 2, a good description of in vivo drug performance in infants after medicine co-administration with vehicles was achieved by incorporating in vitro drug dissolution (under simulated fasted gastric to fed intestinal conditions) into a fed state PBPK model with consideration of the in vivo dosing conditions (mixing of formulation with applesauce or formula). The case studies presented demonstrate how a PBPK absorption modelling strategy can facilitate the description of drug performance in the pediatric population to support decision-making and biopharmaceutics understanding during pediatric drug development.
Collapse
Affiliation(s)
- Mariana Guimarães
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Maria Vertzoni
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikoletta Fotaki
- Centre for Therapeutic Innovation, Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
8
|
Freerks L, Zielke C, Tarnow MJ, Arien T, Mackie C, Inghelbrecht S, Klein S. A Toolbox for Mimicking Gastrointestinal Conditions in Children: Simulated Paediatric Breakfast Media (SPBM) for Addressing the Variability of Gastric Contents After Typical Paediatric Breakfasts. J Pharm Sci 2021; 111:51-61. [PMID: 34019904 DOI: 10.1016/j.xphs.2021.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022]
Abstract
Since co-administration of dosage forms with food can impact drug exposure, food effect studies became an integral part of oral drug product development. Studies are usually performed in healthy adults and the dosage form is co-administered with a high-fat high-calorie standard breakfast meal to mimic worst-case dosing conditions. A corresponding study design for children is lacking but would be essential for a proper risk-assessment in this vulnerable patient group. To protect healthy children from unnecessary in vivo studies, it would be even more desirable to predict food effects based on other than in vivo studies in the target age group. In the present study, typical children's breakfasts in different parts of the world were identified, prepared and physicochemical properties were assessed. Subsequently, Simulated Paediatric Breakfast Media (SPBM) resembling breakfast composition and properties were designed and applied in in vitro dissolution experiments mimicking the initial composition of the postprandial stomach after breakfast ingestion. Study results indicate the impact of different simulated gastric conditions on drug release. SPBM enabled to better estimate the variability of in vivo drug release in fed dosing conditions and their use will aid in better assessing food effects in children in different parts of the world.
Collapse
Affiliation(s)
- Lisa Freerks
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Carolin Zielke
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Marie-Josefin Tarnow
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany
| | - Tina Arien
- Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | - Claire Mackie
- Janssen Pharmaceutica NV, Turnhoutseweg 30, B-2340 Beerse, Belgium
| | | | - Sandra Klein
- Department of Pharmacy, University of Greifswald, Institute of Biopharmaceutics and Pharmaceutical Technology, Center of Drug Absorption and Transport, 3 Felix Hausdorff Street, Greifswald 17489, Germany.
| |
Collapse
|
9
|
Khong YM, Liu J, Cook J, Purohit V, Thompson K, Mehrotra S, Cheung SYA, Hay JL, Fletcher EP, Wang J, Sachs HC, Zhu H, Siddiqui A, Cunningham L, Selen A. Harnessing formulation and clinical pharmacology knowledge for efficient pediatric drug development: Overview and discussions from M-CERSI pediatric formulation workshop 2019. Eur J Pharm Biopharm 2021; 164:66-74. [PMID: 33878434 DOI: 10.1016/j.ejpb.2021.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/11/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022]
Abstract
A pediatric formulation workshop entitled "Pediatric Formulations: Challenges of Today and Strategies for Tomorrow" was held to advance pediatric drug product development efforts in both pre-competitive and competitive environments. The workshop had four main sessions discussing key considerations of Formulation, Analytical, Clinical and Regulatory. This paper focuses on the clinical session of the workshop. It provides an overview of the discussion on the interconnection of pediatric formulation design and development, clinical development strategy and pediatric clinical pharmacology. The success of pediatric drug product development requires collaboration of multi-disciplinary teams across the pharmaceutical industry, consortiums, foundations, academia and global regulatory agencies. Early strategic planning is essential to ensure alignment among major stakeholders of different functional teams. Such an alignment is particularly critical in the collaboration between formulators and clinical pharmacology teams.
Collapse
Affiliation(s)
| | - Jing Liu
- Pfizer Inc, Groton, CT 06340, USA.
| | | | | | | | - Shailly Mehrotra
- Otsuka Pharmaceutical Development & Commercialization, Princeton, NJ 08540, USA
| | | | - Justin L Hay
- Medicines and Healthcare Products Regulatory Agency (MHRA), Canary Wharf, London E14 4PU, UK
| | | | - Jian Wang
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Hari Cheryl Sachs
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Hao Zhu
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Akhtar Siddiqui
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Lea Cunningham
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Arzu Selen
- U.S. Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| |
Collapse
|
10
|
Statelova M, Holm R, Fotaki N, Reppas C, Vertzoni M. Factors Affecting Successful Extrapolation of Ibuprofen Exposure from Adults to Pediatric Populations After Oral Administration of a Pediatric Aqueous Suspension. AAPS JOURNAL 2020; 22:146. [DOI: 10.1208/s12248-020-00522-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/06/2020] [Indexed: 12/17/2022]
|