1
|
Tunçel E, Tort S, Han S, Yücel Ç, Tırnaksız F. Development and optimization of hydrogel-forming microneedles fabricated with 3d-printed molds for enhanced dermal diclofenac sodium delivery: a comprehensive in vitro, ex vivo, and in vivo study. Drug Deliv Transl Res 2024:10.1007/s13346-024-01728-1. [PMID: 39455506 DOI: 10.1007/s13346-024-01728-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
With the developing manufacturing technologies, the use of 3D printers in microneedle production is becoming widespread. Hydrogel-forming microneedles (HFMs), a variant of microneedles, demonstrate distinctive features such as a high loading capacity and controlled drug release. In this study, the conical microneedle master molds with approximately 500 μm needle height and 250 μm base diameter were created using a Stereolithography (SLA) 3D printer and were utilized to fabricate composite HFMs containing diclofenac sodium. Using Box-Behnken Design, the effects of different polymers on swelling index and mechanical strength of the developed HFMs were evaluated. The optimum HFMs were selected according to experimental design results with the aim of the highest mechanical strength with varying swelling indexes, which was needed to use 20% Gantrez S97 and 0.1% (F22), 0.42% (F23), and 1% (F24) hyaluronic acid. The skin penetration and drug release properties of the optimum formulations were assessed. Ex vivo studies were conducted on formulations to determine drug penetration and accumulation. F24, which has the highest mechanical strength and optimized swelling index, achieved the highest drug accumulation in the skin tissue (17.70 ± 3.66%). All optimum HFMs were found to be non-cytotoxic by the MTT cell viability test (> 70% cell viability). In in vivo studies, the efficacy of the F24 was assessed for the treatment of xylene-induced ear edema by contrasting it to the conventional dosage form. It was revealed that HFMs might be an improved replacement for conventional dosage forms in terms of dermal diseases such as actinic keratosis.
Collapse
Affiliation(s)
- Emre Tunçel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Sevtap Han
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye
| | - Çiğdem Yücel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri, Türkiye
| | - Figen Tırnaksız
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Türkiye.
| |
Collapse
|
2
|
Mehta P, Sharma M, Devi M. Hydrogels: An overview of its classifications, properties, and applications. J Mech Behav Biomed Mater 2023; 147:106145. [PMID: 37797557 DOI: 10.1016/j.jmbbm.2023.106145] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
The review paper starts with the introduction to hydrogels along with broad literature survey covering different modes of synthesis including high energy radiation methods. After that, paper covered broad classification of the hydrogels depending upon the basis of their source of origin, method of synthesis, type of cross-linking present and ionic charges on bound groups. Another advanced category response triggered hydrogels, which includes pH, temperature, electro, and light and substrate responsive hydrogels was also studied. Presented paper summarises chemical structure, properties, and synthesis of different kinds of hydrogels. Main focus was given to the preparation super absorbents such as: Semi-interpenetrating networks (semi-IPNs), Interpenetrating networks (IPNs) and cross-linked binary graft copolymers (BGCPs). The weak mechanical properties and easy degradation limit the uses of bio-based -hydrogels in biomedical field. Their properties can be improved through different chemical and physical methods. These methods were also discussed in the current research paper. Also, it includes development of hydrogels as controlled drug delivery devices, as implants and biomaterials to replace malfunctioned body parts along with their use in several other applications listed in the literature. Literature survey on the application of hydrogels in different fields like biomedical, nano-biotechnology, tissue engineering, drug delivery and agriculture was also carried out.
Collapse
Affiliation(s)
- Preeti Mehta
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Monika Sharma
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| | - Meena Devi
- Department of Applied Sciences, CEC-Chandigarh Group of Colleges, Landran, Mohali, 140307, Punjab, India.
| |
Collapse
|
3
|
Alaayedi MH, Maraie NK. Lomustine's nanoemulsion as nose-to-brain drug delivery system for CNS tumor treatment. Saudi Pharm J 2023; 31:101692. [PMID: 37457367 PMCID: PMC10344812 DOI: 10.1016/j.jsps.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Nose-to-brain delivery allows the direct targeting of drug molecules bypassing the Blood Brain Barrier and systemic effect. Nanoemulsion is one of the novel strategies to deliver drug in this route due to its simplicity in manufacturing, long-term stability, and strong solubilization property for drug. The anticancer drug lomustine had poor oral bioavailability in addition to its serious side effect, therefore, developing more effective drug delivery with direct targeting towards the brain through intra-nasal administration applying nanoemulsion technology is a promising alternative. The work involved lomustine solubility screening in oils, surfactants and cosurfactants as well as emulsifier ratio (Smix) nanoemulsion area was identified using pseudo-ternary phase diagrams. Eighteen nanoemulsion formulas were produced for optimization, then characterized for droplet size, polydispersity index, zeta potential, entrapment efficiency, conductivity, transmittance, dilution, visual transparency, physical stability and in vitro release. The optimum NE formula showed droplet size, zeta potential, polydispersity index, entrapment efficiency, %transmittance, conductivity of 31.31 nm, -30.65 mV, 0.159, 98.12%, 99.08%, and 951 us/cm, respectively. The best formula released 100% lomustine within 15 min which is a promising potential drug delivery system that may deliver the drug quickly and directly to the brain as a safe and effective alternative to oral delivery.
Collapse
Affiliation(s)
- Maryam H. Alaayedi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Iraq
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Al-Farahidi University, Iraq
| |
Collapse
|
4
|
Ndenda J, Shaw S, Njagarah J. Shear induced fractionalized dispersion during Magnetic Drug Targeting in a permeable microvessel. Colloids Surf B Biointerfaces 2022; 221:113001. [DOI: 10.1016/j.colsurfb.2022.113001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 09/11/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
5
|
Monton C, Pichayakorn W, Suksaeree J. Design and optimization of process parameters of polyvinyl alcohol-graft-lactic acid films for transdermal drug delivery. AN ACAD BRAS CIENC 2021; 93:e20210721. [PMID: 34817040 DOI: 10.1590/0001-3765202120210721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022] Open
Abstract
The objective was to apply a simplex lattice design to determine the properties of polyvinyl alcohol-graft-lactic acid (PVA-g-LA) with different values for two independent variables: curing time (X1) and LA ratio (X2). Each independent variable was varied among three levels: -1, 0, and +1. Three coded levels were 120 min, 150 min, and 180 min for X1 and 2.5 g, 5 g, and 7.5 g for X2. Dependent variables of swelling behavior in various swelling media and thermal analysis parameters were monitored. The optimal formulation was selected based on the desirability value. The prediction was accurate, showing a low value of percent error. The morphology of the selected formulation with the highest desirability value showed a compact and dense film. Propranolol hydrochloride used as a model drug, was loaded into PVA-g-LA film. The propranolol hydrochloride content was 4.19 ± 1.05 mg/cm2. The cumulative release and permeation of drug were 61.94 ± 8.03% and 59.96 ± 6.61%, respectively. Thus, response surface methodology can be used as a tool to predict or optimize the process parameters for PVA-g-LA transdermal films in an accurate manner. PVA-g-LA could control the release and permeation of drug from the film layer.
Collapse
Affiliation(s)
- Chaowalit Monton
- Drug and Herbal Product Research and Development Center, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Wiwat Pichayakorn
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand
| | - Jirapornchai Suksaeree
- Department of Pharmaceutical Chemistry, College of Pharmacy, Rangsit University, Muang, Pathum Thani 12000, Thailand
| |
Collapse
|
6
|
Amiri MS, Mohammadzadeh V, Yazdi MET, Barani M, Rahdar A, Kyzas GZ. Plant-Based Gums and Mucilages Applications in Pharmacology and Nanomedicine: A Review. Molecules 2021; 26:1770. [PMID: 33809917 PMCID: PMC8004199 DOI: 10.3390/molecules26061770] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gums are carbohydrate biomolecules that have the potential to bind water and form gels. Gums are regularly linked with proteins and minerals in their construction. Gums have several forms, such as mucilage gums, seed gums, exudate gums, etc. Plant gums are one of the most important gums because of their bioavailability. Plant-derived gums have been used by humans since ancient times for numerous applications. The main features that make them appropriate for use in different applications are high stabilization, viscosity, adhesive property, emulsification action, and surface-active activity. In many pharmaceutical formulations, plant-based gums and mucilages are the key ingredients due to their bioavailability, widespread accessibility, non-toxicity, and reasonable prices. These compete with many polymeric materials for use as different pharmaceuticals in today's time and have created a significant achievement from being an excipient to innovative drug carriers. In particular, scientists and pharmacy industries around the world have been drawn to uncover the secret potential of plant-based gums and mucilages through a deeper understanding of their physicochemical characteristics and the development of safety profile information. This innovative unique class of drug products, useful in advanced drug delivery applications, gene therapy, and biosynthesis, has been developed by modification of plant-based gums and mucilages. In this review, both fundamental and novel medicinal aspects of plant-based gums and mucilages, along with their capacity for pharmacology and nanomedicine, were demonstrated.
Collapse
Affiliation(s)
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 917794-8954, Iran;
| | | | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
| | - George Z. Kyzas
- Department of Chemistry, International Hellenic University, 65404 Kavala, Greece
| |
Collapse
|
7
|
Sharma R, Rana V. Effect of carboxymethylation on rheological and drug release characteristics of Terminalia catappa gum. Carbohydr Polym 2017; 175:728-738. [PMID: 28917923 DOI: 10.1016/j.carbpol.2017.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/13/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
The carboxymethylation of galactomannans, arabinogalactans, arbinoxylan, etc is known to modify solubility, swelling index, rheological behaviour, powder characteristics, etc. Therefore, an attempt had been made to study the effect of carboxymethylation on Terminalia catappa (TC) gum. For this, modified Williamson synthesis reaction was utilized employing Quality by Design (QbD) approach. Grafting of carboxymethyl group on Terminalia catappa was confirmed by ATR-FTIR, H1NMR and DSC analyses. The rheological attributes revealed that the carboxymethylation of TC lowers the viscosity, enhance thermal stability (high activation energy), disentanglement was near to re-entanglement, and weak gelling characteristic. However, the soluble fluconazole loaded gel formulation of CMTC showed diffusion based kinetic model indicating good reservoir for effective application on skin/tissue surfaces.
Collapse
Affiliation(s)
- Radhika Sharma
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
| | - Vikas Rana
- Pharmaceutics Division, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
8
|
Hamed R, Al Baraghthi T, Sunoqrot S. Correlation between the viscoelastic properties of the gel layer of swollen HPMC matrix tablets and their in vitro drug release. Pharm Dev Technol 2016; 23:838-848. [PMID: 27808590 DOI: 10.1080/10837450.2016.1257022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Drug release from hydroxypropyl methylcellulose (HPMC) hydrophilic matrix tablets is controlled by drug diffusion through the gel layer of the matrix-forming polymer upon hydration, matrix erosion or combination of diffusion and erosion mechanisms. In this study, the relationship between viscoelastic properties of the gel layer of swollen intact matrix tablets and drug release was investigated. Two sets of quetiapine fumarate (QF) matrix tablets were prepared using the high viscosity grade HPMC K4M at low (70 mg/tablet) and high (170 mg/tablet) polymer concentrations. Viscoelastic studies using a controlled stress rheometer were performed on swollen matrices following hydration in the dissolution medium for predetermined time intervals. The gel layer of swollen tablets exhibited predominantly elastic behavior. Results from the in vitro release study showed that drug release was strongly influenced by the viscoelastic properties of the gel layer of K4M tablets, which was further corroborated by results from water uptake studies conducted on intact tablets. The results provide evidence that the viscoelastic properties of the gel layer can be exploited to guide the selection of an appropriate matrix-forming polymer, to better understand the rate of drug release from matrix tablets in vitro and to develop hydrophilic controlled-release formulations.
Collapse
Affiliation(s)
- Rania Hamed
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| | - Tamadur Al Baraghthi
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| | - Suhair Sunoqrot
- a Department of Pharmacy, Faculty of Pharmacy , Al-Zaytoonah University of Jordan , Amman , Jordan
| |
Collapse
|
9
|
T. VS, Henry LJK, Narra K, Lalduhsanga P, Kandasamy R. Design and development of Albizia stipulata gum based controlled-release matrix tablets in cancer therapeutics. Int J Biol Macromol 2016; 92:972-980. [DOI: 10.1016/j.ijbiomac.2016.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/24/2023]
|
10
|
Abstract
Owing to the high demand for fertilizer formulations that will exhaust the possibilities of nutrient use efficiency (NUE), regulate fertilizer consumption, and lessen agrophysicochemical properties and environmental adverse effects instigated by conventional nutrient supply to crops, this review recapitulates controlled release fertilizers (CRFs) as a cutting-edge and safe way to supply crops’ nutrients over the conventional ways. Essentially, CRFs entail fertilizer particles intercalated within excipients aiming at reducing the frequency of fertilizer application thereby abating potential adverse effects linked with conventional fertilizer use. Application of nanotechnology and materials engineering in agriculture particularly in the design of CRFs, the distinctions and classification of CRFs, and the economical, agronomical, and environmental aspects of CRFs has been revised putting into account the development and synthesis of CRFs, laboratory CRFs syntheses and testing, and both linear and sigmoid release features of CRF formulations. Methodical account on the mechanism of nutrient release centring on the empirical and mechanistic approaches of predicting nutrient release is given in view of selected mathematical models. Compositions and laboratory preparations of CRFs basing on in situ and graft polymerization are provided alongside the physical methods used in CRFs encapsulation, with an emphasis on the natural polymers, modified clays, and superabsorbent nanocomposite excipients.
Collapse
|
11
|
Sharma VK, Mazumder B, Nautiyal V. Rheological Characterization of Isabgol Husk, Gum Katira Hydrocolloids, and Their Blends. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2014; 2014:506591. [PMID: 26904636 PMCID: PMC4745528 DOI: 10.1155/2014/506591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/06/2014] [Accepted: 07/20/2014] [Indexed: 11/17/2022]
Abstract
The rheological parameters of Isabgol husk, gum katira, and their blends were determined in different media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4). The blend properties of Isabgol husk and gum katira were measured for four different percentage compositions in order to understand their compatibility in dispersion form such as 00 : 100, 25 : 50, 50 : 50, 75 : 25, and 100 : 00 in the gel strength of 1 mass%. The miscibility of blends was determined by calculating Isabgol husk-gum katira interaction parameters by Krigbaum and Wall equation. Other rheological properties were analyzed by Bingham, Power, Casson, Casson chocolate, and IPC paste analysis. The study revealed that the power flow index "p" was less than "1" in all concentrations of Isabgol husk, gum katira, and their blends dispersions indicating the shear-thinning (pseudoplastic) behavior. All blends followed pseudoplastic behavior at thermal conditions as 298.15, 313.15, and 333.15°K and in dispersion media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4). Moreover, the study indicated the applicability of these blends in the development of drug delivery systems and in industries, for example, ice-cream, paste, nutraceutical, and so forth.
Collapse
Affiliation(s)
- Vipin Kumar Sharma
- Department of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004, India
| | - Vinod Nautiyal
- Department of Pharmaceutical Sciences, Faculty of Medical Science & Health, Gurukul Kangri University, Haridwar, Uttarakhand 249404, India
| |
Collapse
|
12
|
Naturapolyceutics: The Science of Utilizing Natural Polymers for Drug Delivery. Polymers (Basel) 2014. [DOI: 10.3390/polym6051312] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
13
|
Sharma VK, Mazumdar B. Feasibility and characterization of gummy exudate of Cochlospermum religiosum as pharmaceutical excipient. INDUSTRIAL CROPS AND PRODUCTS 2013; 50:776-786. [DOI: 10.1016/j.indcrop.2013.08.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2023]
|
14
|
Odeniyi MA, Babalola AO, Ayorinde JO. Evaluation of Cedrela gum as a binder and bioadhesive component in ibuprofen tablet formulations. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000100011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The compressional, mechanical and bioadhesive properties of tablet formulations incorporating a new gum obtained from the incised trunk of the Cedrela odorata tree were evaluated and compared with those containing hydroxypropylmethylcellulose (HPMC). Compressional properties were evaluated using Hausner's ratio, Carr's Index, the angle of repose, and Heckel, Kawakita and Gurnham plots. Ibuprofen tablets were prepared using the wet granulation method. Bioadhesive studies were carried out using the rotating cylinder method in either phosphate buffer pH 6.8 or 0.1 M hydrochloric acid media. The gum is a low viscosity polymer (48 cPs), and Fourier transform infrared spectroscopy revealed the presence of a hydroxyl group. Py and Pk values, which are measures of plasticity, showed the gum to be significantly (p<0.05) more plastic than HPMC, and plasticity increased with polymer concentration. All tablet formulations were non-friable (<1.0%), and the formulations containing the gum had a higher crushing strength (130.95 N) than those containing HPMC (117.85 N) at 2.0% w/w binder. Formulations incorporating the gum were non-disintegrating and had a significantly longer drug release time than those containing HPMC. At the highest binder concentration, Cedrela gum formulations adhered to incised pig ileum longer than those containing HPMC. Cedrela gum exhibited better compressive, flow and binding properties than HPMC and is suitable as a bioadhesive and for sustained release of drugs.
Collapse
|
15
|
Giri TK, Kumar K, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. A novel and alternative approach to controlled release drug delivery system based on solid dispersion technique. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.bfopcu.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Meka VS, Nali SR, Songa AS, Kolapalli VRM. Characterization and in vitro drug release studies of a natural polysaccharide Terminalia catappa gum (Badam gum). AAPS PharmSciTech 2012; 13:1451-64. [PMID: 23090110 PMCID: PMC3513443 DOI: 10.1208/s12249-012-9873-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/05/2012] [Indexed: 11/30/2022] Open
Abstract
The main objective of the present study is the physicochemical characterization of naturally available Terminalia catappa gum (Badam gum [BG]) as a novel pharmaceutical excipient and its suitability in the development of gastroretentive floating drug delivery systems (GRFDDS) to retard the drug for 12 h when the dosage form is exposed to gastrointestinal fluids in the gastric environment. As BG was being explored for the first time for its pharmaceutical application, physicochemical, microbiological, rheological, and stability studies were carried out on this gum. In the present investigation, the physicochemical properties, such as micromeritic, rheological, melting point, moisture content, pH, swelling index, water absorption, and volatile acidity, were evaluated. The gum was characterized by scanning electron microscopy, differential scanning calorimetry (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Gastroretentive floating tablets of BG were prepared with the model drug propranolol HCl by direct compression methods. The prepared tablets were evaluated for all their physicochemical properties, in vitro buoyancy, in vitro drug release, and rate order kinetics. PBG 04 was selected as an optimized formulation based on its 12-h drug release and good buoyancy characteristics. The optimized formulation was characterized with FTIR, DSC, and PXRD studies, and no interaction between the drug and BG was found. Thus, the study confirmed that BG might be used in the gastroretentive drug delivery system as a release-retarding polymer.
Collapse
Affiliation(s)
- Venkata Srikanth Meka
- School of Pharmacy, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | | | | | | |
Collapse
|