1
|
Alwan OM, Jaafar IS. Development of synergistic antifungal in situ gel of miconazole nitrate loaded microemulsion as a novel approach to treat vaginal candidiasis. Sci Rep 2024; 14:23168. [PMID: 39369062 PMCID: PMC11455884 DOI: 10.1038/s41598-024-74021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024] Open
Abstract
Limited solubility is the main cause of the low local availability of anti-candidiasis drug, miconazole nitrate (MN). The study's objective was to develop and characterize microemulsion (ME) based temperature-triggered in situ gel of MN for intravaginal administration to enhance local availability and antifungal activity. The solubility of MN was initially studied in different oils, surfactants, and co-surfactants. Then, pseudo-ternary phase diagrams were constructed to select the best ratio of various components. The ME formulations were characterized by thermodynamic study, droplet size, polydispersity index (PDI), viscosity, and in-vitro antifungal mean inhibition zone (MIZ). Selected MEs were incorporated into different in situ gel bases using a combination of two thermosensitive polymers (poloxamer (PLX) 407 and 188), with 0.6% of hydroxypropyl methylcellulose (HPMC K4M) and gellan gum (GG) as mucoadhesive polymer. ME-based gels (MG) were investigated for gelation temperature, gelation time, viscosity, spreadability, mucoadhesive strength, in vitro release profile, and MIZ test. Furthermore, the optimum MG was assessed for in vivo animal irritation test and FESEM investigation. Tea tree oil, lavender oil, tween 80, and propylene glycol (PG) were chosen for ME preparation for the optimal formulation; formulation ME7 and ME10 were chosen. After incorporation of the selected formulation into a mixture of P407 and P188 (18:2% w/w) with 0.6% mucoadhesive polymer, the resultant MG formulation (MG1) revealed optimum gelation temperature (33 ± 0.01℃) and appropriate viscosity with enhanced sustained release (98%) and retention through sheep vaginal mucosa, MG1 exhibited a better MIZ compared to the 2% MN gel formulation and the marketed MN product, and no rabbit vagina irritation. In conclusion, the miconazole nitrate-loaded MG-based formula sustained the duration of action and better antifungal activity than the marketed miconazole nitrate formulation.
Collapse
Affiliation(s)
- Omar M Alwan
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq.
| | - Iman S Jaafar
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
2
|
Kakade P, Patravale V, Patil A, Disouza J. Formulation development of nanostructured lipid carrier-based nanogels encapsulating tacrolimus for sustained therapy of psoriasis. Int J Pharm 2024; 660:124172. [PMID: 38679243 DOI: 10.1016/j.ijpharm.2024.124172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
The goal of this study was to formulate tacrolimus nanogel based on nanostructured lipid carrier (NLC) in order to improve the efficacy, aesthetic, and patient compliance for the treatment of psoriasis. The microemulsion method was used to create phase diagrams and NLCs were prepared using points obtained from the microemulsion region and characterized. The gelling agent carbopol was used to develop an NLC-based nanogel. The pH, drug assay, viscosity, spreadability, and in vitro release of the nanogel, were evaluated. Ex vivo cytotoxicity of the formulation was assessed in murine fibroblast cells. Oxazolone and imiquimod models of psoriasis were used to assess the effectiveness of the nanogel. The NLCs exhibited a submicron particle size of 320 ± 10 nm, a low polydispersity index (<0.3), and a zeta potential of -19.4 mV. Morphological analysis revealed spherical nanoparticles with an encapsulation efficiency of 60 ± 3 %. The nanogel maintained a pH of 6.0 ± 0.5 and possessed a remarkable drug content of 99.73 ± 1.4 %. It exhibited pseudoplastic flow behaviour, ensuring easy spreadability, and demonstrated sustained drug release exceeding 90 % over a 24-hr period. Ex vivo cytotoxicity assessments revealed that the nanogel was safe because no cell death was induced. Nanogel resolved psoriatic blisters, was non-irritating and improved skin elasticity. The favorable properties, safety profile, and remarkable efficacy show the potential of the nanogel as a patient-friendly and effective therapeutic option for psoriasis treatment.
Collapse
Affiliation(s)
- Pratik Kakade
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, N.P. Marg, Matunga, Mumbai 400019, India.
| | - Ajit Patil
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal- Panhala, District-Kolhapur 416113, India
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal- Panhala, District-Kolhapur 416113, India
| |
Collapse
|
3
|
Arpa MD, Çağlar EŞ, Güreşçi D, Sipahi H, Üstündağ Okur N. Novel Microemulsion Containing Benzocaine and Fusidic Acid Simultaneously: Formulation, Characterization, and In Vitro Evaluation for Wound Healing. AAPS PharmSciTech 2024; 25:53. [PMID: 38443698 DOI: 10.1208/s12249-024-02762-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Modern drug carrier technologies, such as microemulsions with small droplet sizes and high surface areas, improve the ability of low water solubility active ingredients to permeate and localize. The goal of this study was to create microemulsion formulations for wound healing that contained both fusidic acid (FA), an antibacterial agent, and benzocaine (BNZ), a local anesthetic. Studies on characterization were carried out, including viscosity, droplet size, and zeta potential. The drug-loaded microemulsion had a stable structure with -3.014 ± 1.265 mV of zeta potential and 19.388 ± 0.480 nm of droplet size. In both in vitro release and ex vivo permeability studies, the microemulsion was compared with Fucidin cream and oily BNZ solution. According to the drug release studies, BNZ release from the microemulsion and the BNZ solution showed a similar profile (p > 0.05), while FA release from the microemulsion had a higher drug release compared to Fucidin cream (p < 0.001). The microemulsion presented lower drug permeation (p > 0.05) for both active ingredients, on the other hand, provided higher drug accumulation compared to the control preparations. Moreover, according to the results of in vitro wound healing activity, the microemulsion indicated a dose-dependent wound healing potential with the highest wound healing activity at the highest concentrations. To the best of our knowledge, this developed BNZ- and FA-loaded microemulsion would be a promising candidate to create new opportunities for wound healing thanks to present the active ingredients, which have low water solubility, in a single formulation and achieved higher accumulation than control preparations.
Collapse
Affiliation(s)
- Muhammet Davut Arpa
- Department of Pharmaceutical Technology, School of Pharmacy, Istanbul Medipol University, 34815, Istanbul, Turkey
| | - Emre Şefik Çağlar
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey
| | - Dilara Güreşçi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, 34755, Istanbul, Turkey
| | - Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, 34668, Istanbul, Turkey.
| |
Collapse
|
4
|
Kabil MF, Badary OA, Bier F, Mousa SA, El-Sherbiny IM. A comprehensive review on lipid nanocarrier systems for cancer treatment: fabrication, future prospects and clinical trials. J Liposome Res 2024; 34:135-177. [PMID: 37144339 DOI: 10.1080/08982104.2023.2204372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 04/02/2023] [Indexed: 05/06/2023]
Abstract
Over the last few decades, cancer has been considered a clinical challenge, being among the leading causes of mortality all over the world. Although many treatment approaches have been developed for cancer, chemotherapy is still the most utilized in the clinical setting. However, the available chemotherapeutics-based treatments have several caveats including their lack of specificity, adverse effects as well as cancer relapse and metastasis which mainly explains the low survival rate of patients. Lipid nanoparticles (LNPs) have been utilized as promising nanocarrier systems for chemotherapeutics to overcome the challenges of the currently applied therapeutic strategies for cancer treatment. Loading chemotherapeutic agent(s) into LNPs improves drug delivery at different aspects including specific targeting of tumours, and enhancing the bioavailability of drugs at the tumour site through selective release of their payload, thus reducing their undesired side effects on healthy cells. This review article delineates an overview of the clinical challenges in many cancer treatments as well as depicts the role of LNPs in achieving optimal therapeutic outcomes. Moreover, the review contains a comprehensive description of the many LNPs categories used as nanocarriers in cancer treatment to date, as well as the potential of LNPs for future applications in other areas of medicine and research.
Collapse
Affiliation(s)
- Mohamed Fawzi Kabil
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| | - Osama A Badary
- Clinical Pharmacy Department, Faculty of Pharmacy, The British University in Egypt, El-Shorouk City, Egypt
| | - Frank Bier
- AG Molekulare Bioanalytik und Bioelektronik, Institut für Biochemie und Biologie, Universität Potsdam Karl-Liebknecht-Straße 24/25, Potsdam (OT Golm), Germany
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, USA
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
5
|
Garg S, Chawla M, Dixit M, Sharma A, Singh M, Singh V, Ahmad SF, Attia SM. Mapping the psoriasis research landscape: A comprehensive bibliometric analysis from 2012-2023. Int J Immunopathol Pharmacol 2024; 38:3946320241290341. [PMID: 39393083 PMCID: PMC11492216 DOI: 10.1177/03946320241290341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/22/2024] [Indexed: 10/13/2024] Open
Abstract
An extensive investigation explores the complex terrain of psoriasis, a persistent inflammatory dermatological disorder that impacts between 1% and 3% of the worldwide populace. Acknowledging the intricate interplay between environmental, genetic, and immunological influences on the etiology of psoriasis, the study utilizes sophisticated bibliometric techniques to investigate patterns, gaps in knowledge, and emergent trends within the field. The study utilizes advanced bibliometric techniques to analyze patterns, gaps in knowledge, and emerging trends in the field while acknowledging the intricate interplay between environmental, genetic, and immune-related influences on the etiology of psoriasis. An examination of 18,765 documents from December 2012 to December 2023 was conducted using machine learning techniques and the Scopus database. The explanation for conducting analysis is rooted in its capacity to provide significant perspectives on the dynamic progression of psoriasis research. The study facilitates the identification of significant subject areas, exposes patterns in publication trends, emphasizes influential authors and journals, and outlines the worldwide contributions to the field. The study demonstrates a steady and progressive increase in publications, with significant contributions from the Journal of the American Academy of Dermatology, the British Journal of Dermatology, and the Journal of the European Academy of Dermatology and Venereology. Prominent scholars in research output, such as the United States, China, and Germany, as well as authors including Feldman, Wu, Griffiths, Puig, and Reich K., are identified. Biochemistry, genetics, and molecular biology come to the forefront as esteemed fields that make substantial contributions to the study of psoriasis alongside medicine. This research highlights the interdisciplinary aspects of psoriasis by uncovering knowledge hubs and international collaborations between authors and organizations. The findings highlight the global reach of research on psoriasis and the importance of international cooperation.
Collapse
Affiliation(s)
- Sneha Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Muskan Chawla
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Muskan Dixit
- Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
| | - Arushal Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh-11451, Saudi Arabia
| |
Collapse
|
6
|
Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev 2023; 36:e0008823. [PMID: 38032192 PMCID: PMC10732062 DOI: 10.1128/cmr.00088-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Tuberculosis (TB) is a major global health problem and the second most prevalent infectious killer after COVID-19. It is caused by Mycobacterium tuberculosis (Mtb) and has become increasingly challenging to treat due to drug resistance. The World Health Organization declared TB a global health emergency in 1993. Drug resistance in TB is driven by mutations in the bacterial genome that can be influenced by prolonged drug exposure and poor patient adherence. The development of drug-resistant forms of TB, such as multidrug resistant, extensively drug resistant, and totally drug resistant, poses significant therapeutic challenges. Researchers are exploring new drugs and novel drug delivery systems, such as nanotechnology-based therapies, to combat drug resistance. Nanodrug delivery offers targeted and precise drug delivery, improves treatment efficacy, and reduces adverse effects. Along with nanoscale drug delivery, a new generation of antibiotics with potent therapeutic efficacy, drug repurposing, and new treatment regimens (combinations) that can tackle the problem of drug resistance in a shorter duration could be promising therapies in clinical settings. However, the clinical translation of nanomedicines faces challenges such as safety, large-scale production, regulatory frameworks, and intellectual property issues. In this review, we present the current status, most recent findings, challenges, and limiting barriers to the use of emulsions and nanoparticles against drug-resistant TB.
Collapse
Affiliation(s)
- Simpal Kumar Suman
- School of Bio Sciences & Technology (SBST), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Natarajan Chandrasekaran
- Centre for Nano Biotechnology (CNBT), Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C. George Priya Doss
- Laboratory for Integrative Genomics, Department of Integrative Biology, School of Bio Sciences & Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Leanpolchareanchai J, Teeranachaideekul V. Topical Microemulsions: Skin Irritation Potential and Anti-Inflammatory Effects of Herbal Substances. Pharmaceuticals (Basel) 2023; 16:999. [PMID: 37513911 PMCID: PMC10384732 DOI: 10.3390/ph16070999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Microemulsions (MEs) have gained prominence as effective drug delivery systems owing to their optical transparency, low viscosity, and thermodynamic stability. MEs, when stabilized with surfactants and/or co-surfactants, exhibit enhanced drug solubilization, prolonged shelf life, and simple preparation methods. This review examines the various types of MEs, explores different preparation techniques, and investigates characterization approaches. Plant extracts and bioactive compounds are well established for their utilization as active ingredients in the pharmaceutical and cosmetic industries. Being derived from natural sources, they serve as preferable alternatives to synthetic chemicals. Furthermore, they have demonstrated a wide range of therapeutic effects, including anti-inflammatory, antimicrobial, and antioxidant activities. However, the topical application of plant extracts and bioactive compounds has certain limitations, such as low skin absorption and stability. To overcome these challenges, the utilization of MEs enables enhanced skin absorption, thereby making them a valuable mode of administration. However, considering the significant surfactant content in MEs, this review evaluates the potential skin irritation caused by MEs containing herbal substances. Additionally, the review explores the topical application of MEs specifically for herbal substances, with an emphasis on their anti-inflammatory properties.
Collapse
|
8
|
Design and Characterization of Lipid-Surfactant-Based Systems for Enhancing Topical Anti-Inflammatory Activity of Ursolic Acid. Pharmaceutics 2023; 15:pharmaceutics15020366. [PMID: 36839688 PMCID: PMC9960079 DOI: 10.3390/pharmaceutics15020366] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Skin inflammation is a symptom of many skin diseases, such as eczema, psoriasis, and dermatitis, which cause rashes, redness, heat, or blistering. The use of natural products with anti-inflammatory properties has gained importance in treating these symptoms. Ursolic acid (UA), a promising natural compound that is used to treat skin diseases, exhibits low aqueous solubility, resulting in poor absorption and low bioavailability. Designing topical formulations focuses on providing adequate delivery via application to the skin surface. The aim of this study was to formulate and characterize lipid-surfactant-based systems for the delivery of UA. Microemulsions and liquid crystalline systems (LCs) were characterized by polarized light microscopy (PLM), rheology techniques, and textural and bioadhesive assays. PLM supported the self-assembly of these systems and elucidated their formation. Rheologic examination revealed pseudoplastic and thixotropic behavior appropriate, and assays confirmed the ability of these formulations to adhere to the skin. In vivo studies were performed, and inflammation induced by croton oil was assessed for response to microemulsions and LCs. UA anti-inflammatory activities of ~60% and 50% were demonstrated by two microemulsions and 40% and 35% by two LCs, respectively. These data support the continued development of colloidal systems to deliver UA to ameliorate skin inflammation.
Collapse
|
9
|
Decrypting the Potential of Nanotechnology-Based Approaches as Cutting-Edge for Management of Hyperpigmentation Disorder. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010220. [PMID: 36615414 PMCID: PMC9822493 DOI: 10.3390/molecules28010220] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.
Collapse
|
10
|
Alam A, Mustafa G, Agrawal GP, Hashmi S, Khan RA, Aba Alkhayl FF, Ullah Z, Ali MS, Elkirdasy AF, Khan S. A microemulsion-based gel of isotretinoin and erythromycin estolate for the management of acne. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Anicescu MC, Dinu-Pîrvu CE, Talianu MT, Ghica MV, Anuța V, Prisada RM, Nicoară AC, Popa L. Insights from a Box-Behnken Optimization Study of Microemulsions with Salicylic Acid for Acne Therapy. Pharmaceutics 2022; 14:174. [PMID: 35057071 PMCID: PMC8778434 DOI: 10.3390/pharmaceutics14010174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022] Open
Abstract
The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box-Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability-with a reduced mechanical work-and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.
Collapse
Affiliation(s)
- Maria-Cristina Anicescu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Valentina Anuța
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Răzvan-Mihai Prisada
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| | - Anca Cecilia Nicoară
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-C.A.); (C.-E.D.-P.); (M.-T.T.); (V.A.); (R.-M.P.); (L.P.)
| |
Collapse
|
12
|
Balhaddad AA, Xia Y, Lan Y, Mokeem L, Ibrahim MS, Weir MD, Xu HHK, Melo MAS. Magnetic-Responsive Photosensitizer Nanoplatform for Optimized Inactivation of Dental Caries-Related Biofilms: Technology Development and Proof of Principle. ACS NANO 2021; 15:19888-19904. [PMID: 34878250 DOI: 10.1021/acsnano.1c07397] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conventional antibiotic therapies for biofilm-trigged oral diseases are becoming less efficient due to the emergence of antibiotic-resistant bacterial strains. Antimicrobial photodynamic therapy (aPDT) is hampered by restricted access to bacterial communities embedded within the dense extracellular matrix of mature biofilms. Herein, a versatile photosensitizer nanoplatform (named MagTBO) was designed to overcome this obstacle by integrating toluidine-blue ortho (TBO) photosensitizer and superparamagnetic iron oxide nanoparticles (SPIONs) via a microemulsion method. In this study, we reported the preparation, characterization, and application of MagTBO for aPDT. In the presence of an external magnetic field, the MagTBO microemulsion can be driven and penetrate deep sites inside the biofilms, resulting in an improved photodynamic disinfection effect compared to using TBO alone. Besides, the obtained MagTBO microemulsions revealed excellent water solubility and stability over time, enhanced the aPDT performance against S. mutans and saliva-derived multispecies biofilms, and improved the TBO's biocompatibility. Such results demonstrate a proof-of-principle for using microemulsion as a delivery vehicle and magnetic field as a navigation approach to intensify the antibacterial action of currently available photosensitizers, leading to efficient modulation of pathogenic oral biofilms.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Restorative Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Yang Xia
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, 1700 East Cold Spring Lane, Baltimore, Maryland 21251, United States
| | - Lamia Mokeem
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Maria S Ibrahim
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Department of Preventive Dental Sciences, Imam Abdulrahman Bin Faisal University, College of Dentistry, Dammam 31441, Saudi Arabia
| | - Michael D Weir
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Hockin H K Xu
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Biomaterials & Tissue Engineering Division, Dept. of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne S Melo
- Dental Biomedical Sciences Ph.D. Program, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Operative Dentistry, Dept. of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
13
|
Singh S, Sharma N, Behl T, Sarkar BC, Saha HR, Garg K, Singh SK, Arora S, Amran MS, Abdellatif AAH, Bilgrami AL, Ashraf GM, Rahman MS. Promising Strategies of Colloidal Drug Delivery-Based Approaches in Psoriasis Management. Pharmaceutics 2021; 13:pharmaceutics13111978. [PMID: 34834393 PMCID: PMC8623849 DOI: 10.3390/pharmaceutics13111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriasis is a chronic inflammatory autoimmune disorder that moderately affects social and interpersonal relationships. Conventional treatments for psoriasis have certain problems, such as poor drug penetration through the skin, hyper-pigmentation, and a burning sensation on normal and diseased skin. Colloidal drug delivery systems overcome the pitfalls of conventional approaches for psoriasis therapeutics and have improved patient safety parameters, compliance, and superior effectiveness. They also entail reduced toxicity. This comprehensive review’s topics include the pathogenesis of psoriasis, causes and types of psoriasis, conventional treatment alternatives for psoriasis, the need for colloidal drug delivery systems, and recent studies in colloidal drug delivery systems for the treatment of psoriasis. This review briefly describes colloidal drug delivery approaches, such as emulsion systems—i.e., multiple emulsion, microemulsion, and nano-emulsion; vesicular systems—i.e., liposomes, ethosomes, noisomes, and transferosomes; and particulate systems—i.e., solid lipid nanoparticles, solid lipid microparticles, nano-structured lipid carriers, dendrimers, nanocrystals, polymeric nanoparticles, and gold nanoparticles. The review was compiled through an extensive search of the literature through the PubMed, Google Scholar, and ScienceDirect databases. A survey of literature revealed seven formulations based upon emulsion systems, six vesicular drug delivery systems, and fourteen particulate systems reported for antipsoriatic drugs. Based on the literature studies of colloidal approaches for psoriasis management carried out in recent years, it has been concluded that colloidal pharmaceutical formulations could be investigated broadly and have a broad scope for effective management of many skin disorders in the coming decades.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Neelam Sharma
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| | - Bidhan Chandra Sarkar
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Hasi Rani Saha
- Department of Biochemistry, Primeasia University, 12- Kemal Ataturk Avenue, HBR Tower Banani C/A, Dhaka 1213, Bangladesh; (B.C.S.); (H.R.S.)
| | - Kanika Garg
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Supriya Kamari Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Sandeep Arora
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (S.S.); (N.S.); (K.G.); (S.K.S.); (S.A.)
| | - Md. Shah Amran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Shahbag, Dhaka 1000, Bangladesh;
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Anwar L. Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Entomology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Md. Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal 8200, Bangladesh
- Correspondence: (T.B.); (M.S.R.); Tel.: +88-017-2006-1803 (M.S.R.)
| |
Collapse
|
14
|
Development of ketorolac tromethamine loaded microemulsion for topical delivery using D-optimal experimental approach: Characterization and evaluation of analgesic and anti-inflammatory efficacy. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Abstract
Salicylates have a long history of use for pain relief. Salicylic acid and methyl salicylate are among the widely used topical salicylates namely for keratolytic and anti-inflammatory actions, respectively. The current review summarises both passive and active strategies, including emerging technologies employed to enhance skin permeation of these two salicylate compounds. The formulation design of topical salicylic acid targets the drug retention in and on the skin based on the different indications including keratolytic, antibacterial and photoprotective actions, while the investigations of topical delivery strategies for methyl salicylate are limited. The pharmacokinetics and metabolisms of both salicylate compounds are discussed. The current overview and future perspectives of the topical delivery strategies are also highlighted for translational considerations of formulation designs.
Collapse
|
16
|
Scomoroscenco C, Teodorescu M, Raducan A, Stan M, Voicu SN, Trica B, Ninciuleanu CM, Nistor CL, Mihaescu CI, Petcu C, Cinteza LO. Novel Gel Microemulsion as Topical Drug Delivery System for Curcumin in Dermatocosmetics. Pharmaceutics 2021; 13:pharmaceutics13040505. [PMID: 33916981 PMCID: PMC8067601 DOI: 10.3390/pharmaceutics13040505] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 02/07/2023] Open
Abstract
Gel microemulsion combines the advantages of the microemulsion, which can encapsulate, protect and deliver large quantities of active ingredients, and the gel, which is so appreciated in the cosmetic industry. This study aimed to develop and characterize new gel microemulsions suitable for topical cosmetic applications, using grape seed oil as the oily phase, which is often employed in pharmaceuticals, especially in cosmetics. The optimized microemulsion was formulated using Tween 80 and Plurol® Diisostearique CG as a surfactant mix and ethanol as a co-solvent. Three different water-soluble polymers were selected in order to increase the viscosity of the microemulsion: Carbopol® 980 NF, chitosan, and sodium hyaluronate salt. All used ingredients are safe, biocompatible and biodegradable. Curcumin was chosen as a model drug. The obtained systems were physico-chemically characterized by means of electrical conductivity, dynamic light scattering, polarized microscopy and rheometric measurements. Evaluation of the cytotoxicity was accomplished by MTT assay. In the final phase of the study, the release behavior of Curcumin from the optimized microemulsion and two gel microemulsions was evaluated. Additionally, mathematical models were applied to establish the kinetic release mechanism. The obtained gel microemulsions could be effective systems for incorporation and controlled release of the hydrophobic active ingredients.
Collapse
Affiliation(s)
- Cristina Scomoroscenco
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 010737 Bucharest, Romania;
| | - Mircea Teodorescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 010737 Bucharest, Romania;
| | - Adina Raducan
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania;
| | - Miruna Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania; (M.S.); (S.N.V.)
| | - Sorina Nicoleta Voicu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, ICUB-Research Institute of the University of Bucharest, University of Bucharest, 050095 Bucharest, Romania; (M.S.); (S.N.V.)
| | - Bodgan Trica
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Claudia Mihaela Ninciuleanu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Cristina Lavinia Nistor
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Catalin Ionut Mihaescu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
| | - Cristian Petcu
- Polymer Department, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, 202 Spl. Independentei, 060021 Bucharest, Romania; (C.S.); (B.T.); (C.M.N.); (C.L.N.); (C.I.M.)
- Correspondence: (C.P.); (L.O.C.)
| | - Ludmila Otilia Cinteza
- Physical Chemistry Department, University of Bucharest, 030018 Bucharest, Romania;
- Correspondence: (C.P.); (L.O.C.)
| |
Collapse
|
17
|
Mahran A, Ismail S, Allam AA. Development of Triamcinolone Acetonide-Loaded Microemulsion as a Prospective Ophthalmic Delivery System for Treatment of Uveitis: In Vitro and In Vivo Evaluation. Pharmaceutics 2021; 13:444. [PMID: 33805986 PMCID: PMC8064451 DOI: 10.3390/pharmaceutics13040444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 01/15/2023] Open
Abstract
Treatment of uveitis (i.e., inflammation of the uvea) is challenging due to lack of convenient ophthalmic dosage forms. This work is aimed to determine the efficiency of triamcinolone acetonide (TA)-loaded microemulsion as an ophthalmic delivery system for the treatment of uveitis. Water titration method was used to construct different pseudo-ternary phase diagrams. Twelve microemulsion formulations were prepared using oleic acid, Cremophor EL, and propylene glycol. Among all tested formulations, Formulation F3, composed of oil: surfactant-co-surfactant (1:1): water (15:35:50% w/w, respectively), was found to be stable and showed acceptable pH, viscosity, conductivity, droplet size (211 ± 1.4 nm), and zeta potential (-25 ± 1.7 mV) and almost complete in vitro drug release within 24 h. The in vivo performance of the optimized formulation was evaluated in experimentally uveitis-induced rabbit model and compared with a commercial TA suspension (i.e., Kenacort®-A) either topically or by subconjunctival injection. Ocular inflammation was evaluated by clinical examination, white blood cell count, protein content measurement, and histopathological examination. The developed TA-loaded microemulsion showed superior therapeutic efficiency in the treatment of uveitis with high patient compliance compared to commercial suspension. Hence, it could be considered as a potential ocular treatment option in controlling of uveitis.
Collapse
Affiliation(s)
- Alaa Mahran
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
| | - Sayed Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
| | - Ayat A. Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (A.M.); (S.I.)
- Department of Pharmaceutics, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut 71515, Egypt
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| |
Collapse
|
18
|
Abdelmonem R, Elhabal SF, Abdelmalak NS, El-Nabarawi MA, Teaima MH. Formulation and Characterization of Acetazolamide/Carvedilol Niosomal Gel for Glaucoma Treatment: In Vitro, and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13020221. [PMID: 33562785 PMCID: PMC7915822 DOI: 10.3390/pharmaceutics13020221] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 11/18/2022] Open
Abstract
Acetazolamide (ACZ) is a diuretic used in glaucoma treatment; it has many side effects. Carvedilol (CAR) is a non-cardioselective beta-blocker used in the treatment of elevated intraocular pressure; it is subjected to the first-pass metabolism and causes fluids accumulation leading to edema. This study focuses on overcoming previous side effects by using a topical formula of a combination of the two previous drugs. Sixty formulations of niosomes containing Span 20, Span 60, Tween 20, and Tween 60 with two different ratios were prepared and characterized. Formulation with the lowest particle size (416.30 ± 0.23), the highest zeta potential (72.04 ± 0.43 mv), and the highest apparent coefficient of corneal permeability (0.02 ± 0.29 cm/h) were selected. The selected formula was incorporated into the gel using factorial design 23. Niosomes (acetazolamide/carvedilol) consisting of Span 60 and cholesterol in the molar ratio (7:6), HMPC, and carbopol with two different ratios were used. The selected formula was subjected to an in vivo study of intraocular pressure in ocular hypertensive rabbits for 60 h. The sustained gel formula of the combination decreased (IOP) to normal after 1 h and sustained efficacy for 4 days. Histological analysis of rabbit eyeballs treated with the selected formula showed improvement in glaucomatous eye retinal atrophy.
Collapse
Affiliation(s)
- Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmacy, Misr University for Science and Technology (MUST), 6th of October City, Giza 12566, Egypt;
| | - Sammar F. Elhabal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Mokattam, Cairo 11571, Egypt
- Correspondence: ; Tel.: +20-010-088-56536
| | - Nevine S. Abdelmalak
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
- Department of Pharmaceutics and Industrial Pharmacy, School of Pharmacy, Newgiza University (NGU), Km 22 Cairo-Alex Road, Giza 12256, Egypt
| | - Mohamed A. El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
| | - Mahmoud H. Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt; (N.S.A.); (M.A.E.-N.); (M.H.T.)
| |
Collapse
|
19
|
Hatem S, El Hoffy NM, Elezaby RS, Nasr M, Kamel AO, Elkheshen SA. Background and different treatment modalities for melasma: Conventional and nanotechnology-based approaches. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Špaglová M, Čuchorová M, Šimunková V, Matúšová D, Čierna M, Starýchová L, Bauerová K. Possibilities of the microemulsion use as indomethacin solubilizer and its effect on in vitro and ex vivo drug permeation from dermal gels in comparison with transcutol ®. Drug Dev Ind Pharm 2020; 46:1468-1476. [PMID: 32715801 DOI: 10.1080/03639045.2020.1802483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Transcutol® is a perfect solubilizer and an effective permeation enhancer of many active substances commonly used in cosmetics. Microemulsions due to the content of surfactant and co-surfactant could be also considered as chemical permeation enhancers that may support transdermal delivery of poorly water- soluble drugs. The purpose of this study was to investigate the effect of Transcutol® and potential microemulsions on diffusion of poorly soluble indomethacin through an artificial membrane and excised rat skin. METHODS After drug solubilization in different enhancers, drug was dispersed in sodium alginate or carbopol gel used as dermal basis. For characterization of the microemulsions, the basic physico-chemical properties were determined. In vitro as well as ex vivo drug release was determined by vertical Franz cells. RESULTS Enhancing effect of the examined microemulsions was observed only in carbopol gel. There was an increase in cumulative drug amount released through synthetic membrane by 37.7-39.8% from the microemulsion formulation and 90.6% from Transcutol® formulation within 6 h compared to the control samples. The differences between the permeation curves with or without the content of the enhancers were statistically significant (p < .05). Pearson correlation coefficients indicate a very high degree of dependence (r > 0.9) between in vitro and ex vivo drug release from all dermal vehicles used. CONCLUSION It can be stated that Transcutol® is the best solubilizer and also penetration enhancer from the examined, and therefore it seems to be effective excipient/solubilizer in topical IND formulation.
Collapse
Affiliation(s)
- Miroslava Špaglová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Mária Čuchorová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Veronika Šimunková
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Desana Matúšová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | - Martina Čierna
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia
| | | | - Katarína Bauerová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia.,Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
21
|
Payyal SP, Rompicherla NC, Sathyanarayana SD, Shriram RG, Vadakkepushpakath AN. Microemulsion Based Gel of Sulconazole Nitrate for Topical Application. Turk J Pharm Sci 2020; 17:259-264. [PMID: 32636702 DOI: 10.4274/tjps.galenos.2019.75537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/17/2019] [Indexed: 12/01/2022]
Abstract
Objectives Sulconazole is a broad spectrum antifungal agent of the imidazole class used against dermatophytes and other fungi to treat skin infections. The aim of the present work was to formulate and evaluate a microemulsion-based topical sulconazole gel. Materials and Methods Microemulsion formulation of sulconazole nitrate was prepared by using oil, surfactant, cosurfactant and water at different ratios. This was then subjected to clarity and particle size analysis, a centrifugation test, a dilution test, and freeze thawing. Results The zeta potential of formulation F1 was -41.3 and stable. The pH of the microemulsion formulation was within the range of pH of skin. F1 showed a higher percentage amount of drug as compared with the other formulations. The viscosity showed that F1 was optimum. The freezing and thawing results showed there was no phase separation and the formulation was stable. In vitro drug release showed that the drug release from the microemulsion of F1 was higher when compared to the other formulations. It revealed F1 had the highest drug content of 95.88±0.3% and % cumulative drug release was 88.75% release in 8 h. The in vivo skin irritation study on rats confirmed that formulation was nontoxic and nonirritant. Conclusion The present study confirmed the safety of the formulated sulconazole loaded microemulsion gel for topical application.
Collapse
Affiliation(s)
- Sumedha Prashanth Payyal
- Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Department of Pharmaceutics, Mangaluru, Karnataka, India
| | - Narayana Charyulu Rompicherla
- Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Department of Pharmaceutics, Mangaluru, Karnataka, India
| | - Sandeep Divate Sathyanarayana
- Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Department of Pharmaceutics, Mangaluru, Karnataka, India
| | - Ravi Gundadka Shriram
- Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Department of Pharmaceutics, Mangaluru, Karnataka, India
| | - Anoop Narayanan Vadakkepushpakath
- Nitte Gulabi Shetty Memorial Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Department of Pharmaceutics, Mangaluru, Karnataka, India
| |
Collapse
|
22
|
Xu B, Liu T. Travoprost loaded microemulsion soaked contact lenses: Improved drug uptake, release kinetics and physical properties. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101792] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Gharbavi M, Manjili HK, Amani J, Sharafi A, Danafar H. In vivo and in vitro biocompatibility study of novel microemulsion hybridized with bovine serum albumin as nanocarrier for drug delivery. Heliyon 2019; 5:e01858. [PMID: 31198875 PMCID: PMC6556858 DOI: 10.1016/j.heliyon.2019.e01858] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 11/24/2022] Open
Abstract
The present study aimed to synthesize triacetin-microemulsion (T-ME) and T-ME hybridized with bovine serum albumin nanoparticles (T-BSA-ME) having narrow particle size distribution and versatile carrier systems as a novel microemulsion system. The suggested ME system was characterized by Fourier Transform Infrared spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Atomic Force Microscopy (AFM). The physicochemical properties of microemulsion system including particle size, PDI and ζ-potential, refractive index, Conductivity, %Transmittance, pH, and rheological behavior were also evaluated. In vivo biocompatibility was done using Median Lethal Dose (LD 50) calculated and trialed to evaluate the acute toxicity. In Addition, hemolysis and leukocyte proliferation assay were characterized to evaluate in-vitro biocompatibility of the suggested MEs systems. Moreover, cytotoxicity of MEs systems was also investigated on HFF-2 and HEK-293 cells. The presence of BSA NPs as a macromolecular biomaterial hybridized with T-ME reduced the cytotoxicity. The properties of the suggested MEs system proposed the T-ME hybridized with BSA-NPs as a promising candidate for co-delivery and multifunctional biomedicine applications.
Collapse
Affiliation(s)
- Mahmoud Gharbavi
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamidreza Kheiri Manjili
- Pharmaceutical Nanotechnology Department, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Cancer Gene Therapy Research Center, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
24
|
Colombo S, Harmankaya N, Water JJ, Bohr A. Exploring the potential for rosacea therapeutics of siRNA dispersion in topical emulsions. Exp Dermatol 2019; 28:261-269. [DOI: 10.1111/exd.13881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/10/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023]
Affiliation(s)
| | - Necati Harmankaya
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | | | - Adam Bohr
- Umbed Pharmaceuticals; Frederiksberg Denmark
- Department of Pharmacy; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
25
|
Biomedical applications of microemulsion through dermal and transdermal route. Biomed Pharmacother 2018; 108:1477-1494. [PMID: 30372850 DOI: 10.1016/j.biopha.2018.10.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022] Open
Abstract
Microemulsions are thermodynamically stable, transparent, colloidal drug carrier system extensively used by the scientists for effective drug delivery across the skin. It is a spontaneous isotropic mixture of lipophilic and hydrophilic substances stabilized by suitable surfactant and co-surfactant. The easy fabrication, long-term stability, enhanced solubilization, biocompatibility, skin-friendly appearance and affinity for both the hydrophilic and lipophilic drug substances make it superior for skin drug delivery over the other carrier systems. The topical administration of most of the active compounds is impaired by limited skin permeability due to the presence of skin barriers. In this sequence, the microemulsion represents a cost-effective and convenient drug carrier system which successfully delivers the drug to and across the skin. In the present review work, we compiled various attempts made in last 20 years, utilizing the microemulsion for dermal and transdermal delivery of various drugs. The review emphasizes the potency of microemulsion for topical and transdermal drug delivery and its effect on drug permeability.
Collapse
|
26
|
Peralta-Rodríguez RD, Flores-Villaseñor SE, Ramirez-Contreras JC, de Araujo DR, Rodrigues T. Formation, Stability and Cytotoxicity of Precursor Microemulsions to Prepare Core-Shell Polymeric Nanoparticles for Pharmaceutical Applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/masy.201600129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- René D. Peralta-Rodríguez
- Polimerization Processes Departament, Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna No. 140 Saltillo Coahuila México
| | - Sergio E. Flores-Villaseñor
- Polimerization Processes Departament, Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna No. 140 Saltillo Coahuila México
| | - Jorge C. Ramirez-Contreras
- Polimerization Processes Departament, Centro de Investigación en Química Aplicada (CIQA); Blvd. Enrique Reyna No. 140 Saltillo Coahuila México
| | - Daniele Ribeiro de Araujo
- Universidade Federal Do ABC, Centro de Ciências Naturais e Humanas; Av. dos Estados 5001 Santo André SP Brasil
| | - Tiago Rodrigues
- Universidade Federal Do ABC, Centro de Ciências Naturais e Humanas; Av. dos Estados 5001 Santo André SP Brasil
| |
Collapse
|
27
|
Das B, Sen SO, Maji R, Nayak AK, Sen KK. Transferosomal gel for transdermal delivery of risperidone: Formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
28
|
Sharma G, Devi N, Thakur K, Jain A, Katare OP. Lanolin-based organogel of salicylic acid: evidences of better dermatokinetic profile in imiquimod-induced keratolytic therapy in BALB/c mice model. Drug Deliv Transl Res 2017; 8:398-413. [DOI: 10.1007/s13346-017-0364-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Xu S, Ni Z, Ma L, Zheng X. Control ofAlternariaRot of Cherry Tomatoes by Food-GradeLaurus NobilisEssential Oil Microemulsion. J Food Saf 2016. [DOI: 10.1111/jfs.12286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shixiang Xu
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Fuli Institute for Food Science, College of Biosystems Engineering and Food Science, Zhejiang University; Hangzhou 310058 China
| | - Zhendan Ni
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Fuli Institute for Food Science, College of Biosystems Engineering and Food Science, Zhejiang University; Hangzhou 310058 China
| | - Luyao Ma
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Fuli Institute for Food Science, College of Biosystems Engineering and Food Science, Zhejiang University; Hangzhou 310058 China
| | - Xiaodong Zheng
- Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Center for Food Technology and Equipment, Fuli Institute for Food Science, College of Biosystems Engineering and Food Science, Zhejiang University; Hangzhou 310058 China
| |
Collapse
|
30
|
Kumar N, Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur J Pharm Sci 2015; 67:97-112. [DOI: 10.1016/j.ejps.2014.10.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 09/03/2014] [Accepted: 10/17/2014] [Indexed: 11/26/2022]
|
31
|
In Vitro Intestinal Permeability Studies and Pharmacokinetic Evaluation of Famotidine Microemulsion for Oral Delivery. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:452051. [PMID: 27379272 PMCID: PMC4897392 DOI: 10.1155/2014/452051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/18/2022]
Abstract
The absolute bioavailability of famotidine after oral administration is about 40-45% and absorbance only in the initial part of small intestine may be due to low intestinal permeability. Hence, an olive oil based microemulsion formulation with Tween-80 as surfactant and PEG-400 as cosurfactant was developed by using water titration method with the aim of enhancing the intestinal permeability as well as oral bioavailability. In vitro drug permeation in intestine after 8 h for all formulations varied from 30.42% to 78.39% and most of the formulations showed enhanced permeation compared to pure drug (48.92%). Famotidine microemulsion exhibited the higher absorption and C max achieved from the optimized famotidine formulation (456.20 ng·h/ml) was higher than the standard (126.80 ng·h/mL). It was found that AUC0-24 h obtained from the optimized famotidine test formulation (3023.5 ng·h/mL) was significantly higher than the standard famotidine (1663.3 ng·h/mL). F-1 demonstrated a longer (6 h) T max compared with standard drug (2 h) and sustained the release of drug over 24 h. The bioavailability of F-1 formulation was about 1.8-fold higher than that of standard drug. This enhanced bioavailability of famotidine loaded in microemulsion system might be due to increased intestinal permeability.
Collapse
|
32
|
Malakar J, Nayak AK, Basu A. Ondansetron HCl Microemulsions for Transdermal Delivery: Formulation and In Vitro Skin Permeation. ISRN PHARMACEUTICS 2012; 2012:428396. [PMID: 22779009 PMCID: PMC3388345 DOI: 10.5402/2012/428396] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/06/2012] [Indexed: 11/23/2022]
Abstract
Ondansetron HCl delivery through oral route suffers due to its low bioavailability due to first-pass metabolism. Therefore, the microemulsion-based transdermal delivery may be a better substitute for it. The pseudoternary phase diagrams were constructed to determine compositions of microemulsions, and ondansetron HCl microemulsions for transdermal delivery were developed using isopropyl myristate or oleic acid as the oil phase, Tween 80 as the surfactant, and isopropyl alcohol as the cosurfactant evaluated for in vitro skin permeation through excised porcine skin. The in vitro skin permeation from these formulated microemulsions was sustained over 24 hours. The microemulsion F-8 (contained 10% of isopropyl myristate as oil phase, 8% of aqueous phase, and 82% of surfactant phase containing Tween 80 and isopropyl alcohol, 3 : 1) showed the highest permeation flux of 0.284 ± 0.003 μg/cm(2)/hour. All these microemulsions followed the Korsmeyer-Peppas model (R(2) = 0.971 to 0.998) with non-Fickian, "anomalous" mechanism over a period of 24 hours.
Collapse
Affiliation(s)
- Jadupati Malakar
- Department of Pharmaceutics, Bengal College of Pharmaceutical Science and Research, Durgapur 713212, India
| | | | | |
Collapse
|
33
|
Solanki SS, Sarkar B, Dhanwani RK. Microemulsion drug delivery system: for bioavailability enhancement of ampelopsin. ISRN PHARMACEUTICS 2012; 2012:108164. [PMID: 22830055 PMCID: PMC3399350 DOI: 10.5402/2012/108164] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 04/26/2012] [Indexed: 11/23/2022]
Abstract
Ampelopsin, one of the most common flavonoids, reported to possess numerous pharmacological activities and shows poor aqueous solubility. The purpose of this study was to enhance the dissolution rate and bioavailability of this drug by developing a novel delivery system that is microemulsion (ME) and to study the effect of microemulsion (ME) on the oral bioavailability of ampelopsin. Capmul MCM-based ME formulation with Cremophor EL as surfactant and Transcutol as cosurfactant was developed for oral delivery of ampelopsin. Optimised ME was evaluated for its transparency, viscosity, percentage assay and so forth. Solubilisation capacity of the ME system was also determined. The prepared ME was compared with the pure drug solution and commercially available tablet for in vitro drug release. The optimised ME formulation containing ampelopsin, Capmul MCM (5.5%), Cremophor EL (25%), Transcutol P (8.5%), and distilled water showed higher in vitro drug release, as compared to plain drug suspension and the suspension of commercially available tablet. These results demonstrate the potential use of ME for improving the bioavailability of poor water soluble compounds, such as ampelopsin.
Collapse
Affiliation(s)
- Shailendra Singh Solanki
- Department of Pharmaceutics, College of Pharmacy, IPS Academy, Rajendra Nagar, Indore 452012, India
| | | | | |
Collapse
|
34
|
Badawi A, Sakran W, Ramadan M, El-Mancy S. Improvement of the microbiological activity of topical ketoconazole using microemulsion systems. J Drug Deliv Sci Technol 2012. [DOI: 10.1016/s1773-2247(12)50083-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|