1
|
Kim SY, Park SY, Lee JH, Kim N, Oh HN, Yoo SY, Lee DS, Lee JC. Therapeutic Potential of Mangosteen Pericarp Extract-Loaded Liposomes against Superficial Skin Infection Caused by Staphylococcus pseudintermedius in a Murine Model. Antibiotics (Basel) 2024; 13:612. [PMID: 39061294 PMCID: PMC11274295 DOI: 10.3390/antibiotics13070612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
α-mangostin (α-MG) demonstrates antibacterial activity against Staphylococcus species. Therefore, this study aimed to explore the antibacterial activity of α-MG-rich mangosteen pericarp extract (MPE)-loaded liposomes against Staphylococcus isolates from companion animal skin diseases in vitro and evaluated their therapeutic potential in a murine model of superficial skin infection caused by S. pseudintermedius. α-MG-rich extract was purified from mangosteen pericarp and then complexed with γ-cyclodextrin (γ-CD), forming the inclusion complexes. Nanoliposomes containing MPE and γ-CD complexes were prepared by adding lecithin and casein. Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of MPE-loaded liposomes were determined using agar dilution and broth microdilution methods. The therapeutic potential of MPE-loaded liposomes was evaluated in vivo on tape-stripped skin lesions infected with S. pseudintermedius. Purified MPE and MPE-loaded liposomes contained 402.43 mg/g and 18.18 mg/g α-MG, respectively. MPE-loaded liposomes showed antibacterial activity against clinical Staphylococcus isolates in vitro but did not show antibacterial activity against Gram-negative bacterial isolates. MPE-loaded liposomes demonstrated consistent MICs and MBCs against Staphylococcus isolates. These liposomes significantly reduced bacterial numbers and lesional sizes in a superficial skin infection model. Moreover, they reconstructed the epidermal barrier in skin lesions. The therapeutic concentrations of MPE-loaded liposomes did not induce cytotoxicity in canine progenitor epidermal keratinocyte cells. In conclusion, MPE-loaded liposomes hold promise for the development of a prospective topical formulation to treat superficial pyoderma in companion animals.
Collapse
Affiliation(s)
- Seong-Yeop Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Jung-Hwa Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Nayeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
| | - Ha-Na Oh
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - So-Young Yoo
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Dae-Sung Lee
- Medi Bio Lab Co., Ltd., Seoul 08389, Republic of Korea; (H.-N.O.); (S.-Y.Y.); (D.-S.L.)
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea; (S.-Y.K.); (S.-Y.P.); (J.-H.L.); (N.K.)
- Untreatable Infectious Disease Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
2
|
Li Y, Huang H, Gu C, Huang W, Chen X, Lu X, You A, Ye S, Zhong J, Zhao Y, Yan Y, Li C. Film-forming polymer solutions containing cholesterol myristate and berberine mediate pressure ulcer repair via the Wnt/β-catenin pathway. Wound Repair Regen 2024; 32:279-291. [PMID: 38353052 DOI: 10.1111/wrr.13158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 01/02/2024] [Accepted: 01/16/2024] [Indexed: 05/23/2024]
Abstract
Pressure ulcer (PU) is a worldwide problem that is difficult to address because of the related inflammatory response, local hypoxia, and repeated ischaemia/reperfusion, causing great suffering and financial burden to patients. Traditional Chinese medicine turtle plate powder can treat skin trauma, but its composition is complex and inconvenient to use. Here, we combined cholesterol myristate (S8) with berberine (BBR), with anti-inflammatory and antibacterial effects, as a drug and used hydroxypropyl methylcellulose and polyvinylpyrrolidone K30 as carriers to construct a novel film-forming polymeric solution (S8 + BBR FFPS), comprehensively study its reparative effect on PU and explore the potential mechanism in rat PU models. The results showed that S8 + BBR FFPS inhibits excessive inflammatory response, promotes re-epithelialization, and promotes hair follicle growth during the healing process of PU, which may be related to the activation of the Wnt/β-catenin signalling pathway by S8 + BBR FFPS to mediate hair follicle stem cell proliferation and maintain skin homeostasis. Therefore, S8 + BBR FFPS may be a potential candidate for the treatment of chronic skin injury, and its association with the Wnt/β-catenin signalling pathway may provide new ideas to guide the design of biomaterial-based wound dressings for chronic wound repair.
Collapse
Affiliation(s)
- Yu Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haiting Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuijin Gu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenyi Huang
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianxian Chen
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoting Lu
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Aijia You
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sen Ye
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jun Zhong
- Research Center of Integrative Medicine, School Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- College of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yao Zhao
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Yan
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chun Li
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
3
|
Yahyazadeh R, Rahimi VB, Yahyazadeh A, Askari VR. A Mechanistic Review on Protective Effects of Mangosteen and its Xanthones Against Hazardous Materials and Toxins. Curr Neuropharmacol 2024; 22:1986-2015. [PMID: 38486389 PMCID: PMC11333789 DOI: 10.2174/1570159x22666240212142655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2024] Open
Abstract
Due to its pharmacological properties, α-Mangostin, mainly found in Garcinia mangostana (G. mangostana) L. (Mangosteen, queen of fruits), treats wounds, skin infections, and many other disorders. In fact, α-Mangostin and other xanthonoid, including β-Mangostin and γ-Mangostin, are found in G. mangostana, which have various advantages, namely neuroprotective, anti-proliferative, antinociceptive, antioxidant, pro-apoptotic, anti-obesity, anti-inflammatory, and hypoglycemic through multiple signaling mechanisms, for instance, extracellular signal-regulated kinase1/2 (ERK 1/2), mitogenactivated Protein kinase (MAPK), nuclear factor-kappa B (NF-kB), transforming growth factor beta1 (TGF-β1) and AMP-activated protein kinase (AMPK). This review presents comprehensive information on Mangosteen's pharmacological and antitoxic aspects and its xanthones against various natural and chemical toxins. Because of the insufficient clinical study, we hope the current research can benefit from performing clinical and preclinical studies against different toxic agents.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
The Potential of α-Mangostin from Garcinia mangostana as an Effective Antimicrobial Agent-A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11060717. [PMID: 35740124 PMCID: PMC9219858 DOI: 10.3390/antibiotics11060717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022] Open
Abstract
This systematic review aims to evaluate the antimicrobial activity of α-mangostin derived from Garcinia mangostana against different microbes. A literature search was performed using PubMed and Science Direct until March 2022. The research question was developed based on a PICO (Population, Intervention, Control and Outcomes) model. In this study, the population of interest was microbes, α-mangostin extracted from Garcinia mangostana was used as exposure while antibiotics were used as control, followed by the outcome which is determined by the antimicrobial activity of α-mangostin against studied microbes. Two reviewers independently performed the comprehensive literature search following the predetermined inclusion and exclusion criteria. A methodological quality assessment was carried out using a scoring protocol and the risk of bias in the studies was analyzed. Reward screening was performed among the selected articles to perform a meta-analysis based on the pre-determined criteria. Case groups where α-mangostin extracted from Garcinia mangostana was incorporated were compared to groups using different antibiotics or antiseptic agents (control) to evaluate their effectiveness. A total of 30 studies were included; they were heterogeneous in their study design and the risk of bias was moderate. The results showed a reduction in microbial counts after the incorporation of α-mangostin, which resulted in better disinfection and effectiveness against multiple microbes. Additionally, the meta-analysis result revealed no significant difference (p > 0.05) in their effectiveness when α-mangostin was compared to commercially available antibiotics. α-mangostin worked effectively against the tested microbes and was shown to have inhibitory effects on microbes with antibiotic resistance.
Collapse
|
5
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
6
|
Optimization of plant compositions of Trisattakula to maximize antibacterial activity and formulation development of film-forming polymeric solution containing Nigella sativa ethanolic extract. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00546-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Wunnoo S, Bilhman S, Amnuaikit T, Ontong JC, Singh S, Auepemkiate S, Voravuthikunchai SP. Rhodomyrtone as a New Natural Antibiotic Isolated from Rhodomyrtus tomentosa Leaf Extract: A Clinical Application in the Management of Acne Vulgaris. Antibiotics (Basel) 2021; 10:antibiotics10020108. [PMID: 33499400 PMCID: PMC7912151 DOI: 10.3390/antibiotics10020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/05/2022] Open
Abstract
Rhodomyrtone, a plant-derived principal compound isolated from Rhodomyrtus tomentosa (Myrtaceae) leaf extract, was assessed as a potential natural alternative for the treatment of acne vulgaris. The clinical efficacy of a 1% liposomal encapsulated rhodomyrtone serum was compared with a marketed 1% clindamycin gel. In a randomized and double-blind controlled clinical trial, 60 volunteers with mild to moderate acne severity were assigned to two groups: rhodomyrtone serum and clindamycin gel. The volunteers were instructed to apply the samples to acne lesions on their faces twice daily. A significant reduction in the total numbers of acne lesions was demonstrated in both treatment groups between week 2 and 8 (p < 0.05). Significant differences in acne numbers compared with the baseline were evidenced at week 2 onwards (p < 0.05). At the end of the clinical trial, the total inflamed acne counts in the 1% rhodomyrtone serum group were significantly reduced by 36.36%, comparable to 34.70% in the clindamycin-treated group (p < 0.05). Furthermore, a commercial prototype was developed, and a clinical assessment of 45 volunteers was performed. After application of the commercial prototype for 1 week, 68.89% and 28.89% of volunteers demonstrated complete and improved inflammatory acne, respectively. All of the subjects presented no signs of irritation or side effects during the treatment. Most of the volunteers (71.11%) indicated that they were very satisfied. Rhodomyrtone serum was demonstrated to be effective and safe for the treatment of inflammatory acne lesions.
Collapse
Affiliation(s)
- Suttiwan Wunnoo
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Siwaporn Bilhman
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Thanaporn Amnuaikit
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Julalak C. Ontong
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Sudarshan Singh
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
| | - Sauvarat Auepemkiate
- Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (S.W.); (S.B.); (J.C.O.); (S.S.)
- Correspondence: ; Tel.: +66-7428-8321
| |
Collapse
|
8
|
Gunter NV, Teh SS, Lim YM, Mah SH. Natural Xanthones and Skin Inflammatory Diseases: Multitargeting Mechanisms of Action and Potential Application. Front Pharmacol 2020; 11:594202. [PMID: 33424605 PMCID: PMC7793909 DOI: 10.3389/fphar.2020.594202] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of skin inflammatory diseases such as atopic dermatitis, acne, psoriasis, and skin cancers generally involve the generation of oxidative stress and chronic inflammation. Exposure of the skin to external aggressors such as ultraviolet (UV) radiation and xenobiotics induces the generation of reactive oxygen species (ROS) which subsequently activates immune responses and causes immunological aberrations. Hence, antioxidant and anti-inflammatory agents were considered to be potential compounds to treat skin inflammatory diseases. A prime example of such compounds is xanthone (xanthene-9-one), a class of natural compounds that possess a wide range of biological activities including antioxidant, anti-inflammatory, antimicrobial, cytotoxic, and chemotherapeutic effects. Many studies reported various mechanisms of action by xanthones for the treatment of skin inflammatory diseases. These mechanisms of action commonly involve the modulation of various pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor α (TNF-α), as well as anti-inflammatory cytokines such as IL-10. Other mechanisms of action include the regulation of NF-κB and MAPK signaling pathways, besides immune cell recruitment via modulation of chemokines, activation, and infiltration. Moreover, disease-specific activity contributed by xanthones, such as antibacterial action against Propionibacterium acnes and Staphylococcus epidermidis for acne treatment, and numerous cytotoxic mechanisms involving pro-apoptotic and anti-metastatic effects for skin cancer treatment have been extensively elucidated. Furthermore, xanthones have been reported to modulate pathways responsible for mediating oxidative stress and inflammation such as PPAR, nuclear factor erythroid 2-related factor and prostaglandin cascades. These pathways were also implicated in skin inflammatory diseases. Xanthones including the prenylated α-mangostin (2) and γ-mangostin (3), glucosylated mangiferin (4) and the caged xanthone gambogic acid (8) are potential lead compounds to be further developed into pharmaceutical agents for the treatment of skin inflammatory diseases. Future studies on the structure-activity relationships, molecular mechanisms, and applications of xanthones for the treatment of skin inflammatory diseases are thus highly recommended.
Collapse
Affiliation(s)
| | - Soek Sin Teh
- Engineering and Processing Division, Energy and Environment Unit, Malaysian Palm Oil Board, Kajang, Malaysia
| | - Yang Mooi Lim
- Centre for Cancer Research, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia.,Department of Pre-Clinical Sciences, Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Kajang, Malaysia
| | - Siau Hui Mah
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia.,Centre for Drug Discovery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
9
|
Application of film-forming solution as a transdermal delivery system of piperine-rich herbal mixture extract for anti-inflammation. Heliyon 2020; 6:e04139. [PMID: 32551384 PMCID: PMC7292918 DOI: 10.1016/j.heliyon.2020.e04139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/05/2020] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
Piperine-rich herbal mixture (PHM) used in this study is a traditional Thai medicine that contains 21 oriental herbs. It is called "Sahastara remedy" and is officially included in the Thai National List of Essential Medicine since A.D. 2011. PHM has been used orally to relieve muscle and bone pains. It contains Piper nigrum fruits as a major constituent and also Piper retrofractum fruits, PHM thus has anti-inflammatory activities that mostly come from the bioactivities of piperine consisting of these pepper fruits. Unfortunately, PHM usually causes gastrointestinal side effects. Consequently, a topical product containing an alcoholic extract of PHM (PHM-E), i.e., film-forming solution (FFS) was developed to overcome this drawback. The aims of this study were to investigate the anti-inflammatory activity of PHM-E, to evaluate physicochemical properties and the anti-inflammatory activity of FFS containing PHM-E (PHM-E FFS). Anti-inflammatory activities of PHM-E were investigated in the RAW 264.7 cells. Physicochemical properties, in vitro toxicities and anti-inflammatory activities of PHM-E FFS including its dry film (PHM-E film) were determined. PHM-E showed anti-inflammatory activities with dose dependent manners via inhibition of nitric oxide and prostaglandin E2 production by the RAW 264.7 cells and promotion of the cell phenotype polarization from M1 to M2. PHM-E FFS had low viscosity and exhibited the Newtonian behavior. It provided elastic PHM-E film with low tensile strength. The release profile of piperine from PHM-E film followed a zero-kinetic model. PHM-E FFS demonstrated compatibility with the skin cells, minimal ocular irritant when accidentally splashing into the eye and moderate-to-high potency for inhibition of inflammatory symptoms in the rats. PHM-E FFS thus had potential for use in the further clinical study to investigate its efficacy and safety in patients.
Collapse
|
10
|
Preparation and evaluation of film forming polymeric dispersion containing Centella asiatica extract for skin application. ADVANCES IN TRADITIONAL MEDICINE 2020. [DOI: 10.1007/s13596-020-00451-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Ngo HV, Tran PHL, Lee BJ, Tran TTD. Development of film-forming gel containing nanoparticles for transdermal drug delivery. NANOTECHNOLOGY 2019; 30:415102. [PMID: 31261146 DOI: 10.1088/1361-6528/ab2e29] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Despite several studies on film-forming systems with the advantages of both the film and the hydrogel, there are still no effective systems for fast film formation with a high level of control over permeability. In this study, a film-forming system for the delivery of nanomedicine, termed a film-forming nanogel (FFN), was produced and investigated for the first time to meet this need. The objective of this research was to study a new generation of film-forming hydrogels (FFHs) loaded with curcumin nanoparticles (CUR-GNPs) for transdermal applications. FFHs were prepared by employing zein and HPMC 4000 as film-forming polymers. Meanwhile, CUR-GNPs were obtained by sonoprecipitation. The film-forming time, particle characteristics and FFN drug release profile were assessed. The optimized FFH had a smooth surface and a fast drying time of 6 min and 4.5 min in vitro and ex vivo, respectively. Additionally, high, sustained drug permeation from the FFN was observed after 24 h. The FFH containing CUR-GNPs showed potential for application in transdermal drug delivery with a fast film-forming time, uniform particle dispersion and high, sustained drug permeation.
Collapse
Affiliation(s)
- Hai V Ngo
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | | | | | | |
Collapse
|
12
|
Asasutjarit R, Meesomboon T, Adulheem P, Kittiwisut S, Sookdee P, Samosornsuk W, Fuongfuchat A. Physicochemical properties of alpha-mangostin loaded nanomeulsions prepared by ultrasonication technique. Heliyon 2019; 5:e02465. [PMID: 31538120 PMCID: PMC6745438 DOI: 10.1016/j.heliyon.2019.e02465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/10/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Hypothesis Alpha-mangostin (AMG) is a natural compound possessing strong antibacterial activity. Because of its poor water solubility, the formulations of AMG usually require high concentrations of solubilizers leading limitation for using in some clinical applications. Thus, the novel formulation of topical nanoemulsion (NE) containing AMG (AMG-NE) with optimal content of the oil phase and surfactants was developed. Experiments AMG was extracted, purified and used as an active ingredient of AMG-NE. Blank NEs (NEs without AMG) with varying in contents of the oil phase and surfactants and AMG-NE were prepared by the ultrasonication technique. They were investigated their physicochemical properties including antibacterial activity against Staphyloccocus aureus and Propionibacterium acnes (which is recently renamed as Cutibacterium acnes). Findings Blank NEs and AMG-NE had droplet size in a range of nanometer and negative value of zeta potential. The droplet size, polydispersity index and zeta potential of blank NEs were affected by formulation compositions and sonication intensities. AMG could be loaded into a representative Blank NE at a maximum concentration of 0.2% w/w and did not cause significant changes in physicochemical properties. AMG-NE showed the antibacterial activity against Staphyloccocus aureus and Propionibacterium acnes without toxicity to the skin cells. Therefore, AMG-NE had potential for using in a clinical study to investigate its efficacy and safety in patients.
Collapse
Affiliation(s)
- Rathapon Asasutjarit
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Tunradee Meesomboon
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Pheeraphong Adulheem
- Novel Drug Delivery Systems Development Center, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Siriporn Kittiwisut
- Medical Chemistry and Natural Products Research Unit, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Thammasat University, Pathum Thani, 12120, Thailand
| | - Papawee Sookdee
- Department of Applied Thai Traditional Medicine, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, 75000, Thailand
| | - Worada Samosornsuk
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani, 12120, Thailand
| | - Asira Fuongfuchat
- National Metal and Materials Technology Center, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, 12120, Thailand
| |
Collapse
|
13
|
Soleymani S, Farzaei MH, Zargaran A, Niknam S, Rahimi R. Promising plant-derived secondary metabolites for treatment of acne vulgaris: a mechanistic review. Arch Dermatol Res 2019; 312:5-23. [DOI: 10.1007/s00403-019-01968-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/13/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
14
|
Tran TTD, Tran PHL. Controlled Release Film Forming Systems in Drug Delivery: The Potential for Efficient Drug Delivery. Pharmaceutics 2019; 11:E290. [PMID: 31226748 PMCID: PMC6630634 DOI: 10.3390/pharmaceutics11060290] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/30/2022] Open
Abstract
Despite many available approaches for transdermal drug delivery, patient compliance and drug targeting at the desired concentration are still concerns for effective therapies. Precise and efficient film-forming systems provide great potential for controlling drug delivery through the skin with the combined advantages of films and hydrogels. The associated disadvantages of both systems (films and hydrogels) will be overcome in film-forming systems. Different strategies have been designed to control drug release through the skin, including changes to film-forming polymers, plasticizers, additives or even model drugs in formulations. In the current review, we aim to discuss the recent advances in film-forming systems to provide the principles and review the methods of these systems as applied to controlled drug release. Advances in the design of film-forming systems open a new generation of these systems.
Collapse
Affiliation(s)
- Thao T D Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | | |
Collapse
|
15
|
A glimpse in critical attributes to design cutaneous film forming systems based on ammonium methacrylate. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Tousian Shandiz H, Razavi BM, Hosseinzadeh H. Review of Garcinia mangostana and its Xanthones in Metabolic Syndrome and Related Complications. Phytother Res 2017; 31:1173-1182. [PMID: 28656594 DOI: 10.1002/ptr.5862] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/07/2017] [Accepted: 06/09/2017] [Indexed: 12/31/2022]
Abstract
Metabolic syndrome is coexistence of abdominal obesity, hyperglycemia, hyperlipidemia and hypertension that causes cardiovascular diseases, diabetes and their complications, low quality and short lifespan. Garcinia mangostana and its xanthones such as α-mangostin have been shown desirable effects such as anti-obesity, anti-hyperglycemic, anti-dyslipidemia, anti-diabetic and antiinflammatory effects in experimental studies. Various databases such as PubMed, Scopus and Web of Science with keywords of 'Garcinia mangostana', 'mangosteen', 'α-mangostin', 'metabolic syndrome', 'hypoglycemic', 'antihyperglicemic', 'antidiabetic', 'hypotensive', 'antihypertensive', 'atherosclerosis', 'arteriosclerosis' and 'hyperlipidemia' have been investigated in this search without publication time limitation. This study reviewed all pharmacological effects and molecular pathways of G. mangostana and its xanthones in the management of metabolic syndrome and its complications in in-vitro and in-vivo studies. Based on these studies, mangosteen and its xanthones have good potential to design human studies for controlling and modification of metabolic syndrome and its related disorders such as obesity, disrupted lipid profile, diabetes and its complications. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
17
|
Franceschelli S, Pesce M, Ferrone A, Patruno A, Pasqualone L, Carlucci G, Ferrone V, Carlucci M, de Lutiis MA, Grilli A, Felaco M, Speranza L. A Novel Biological Role of α-Mangostin in Modulating Inflammatory Response Through the Activation of SIRT-1 Signaling Pathway. J Cell Physiol 2016; 231:2439-51. [DOI: 10.1002/jcp.25348] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 02/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Sara Franceschelli
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Mirko Pesce
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Alessio Ferrone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Antonia Patruno
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Livia Pasqualone
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | | | | | - Maura Carlucci
- Department of Pharmacy; University G. D'Annunzio; Chieti Italy
| | - Maria Anna de Lutiis
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Alfredo Grilli
- Medicine and Health Science School University G. D'Annunzio; Chieti Italy
| | - Mario Felaco
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| | - Lorenza Speranza
- Department of Medicine and Science of Aging; University G. D'Annunzio; Chieti Italy
| |
Collapse
|
18
|
Kim DW, Kim KS, Seo YG, Lee BJ, Park YJ, Youn YS, Kim JO, Yong CS, Jin SG, Choi HG. Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing. Int J Pharm 2015; 495:67-74. [DOI: 10.1016/j.ijpharm.2015.08.082] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 08/26/2015] [Indexed: 11/29/2022]
|
19
|
Neuroprotective therapeutics from botanicals and phytochemicals against Huntington's disease and related neurodegenerative disorders. J Herb Med 2015. [DOI: 10.1016/j.hermed.2015.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Cilurzo F, Selmin F, Gennari CGM, Montanari L, Minghetti P. Application of methyl methacrylate copolymers to the development of transdermal or loco-regional drug delivery systems. Expert Opin Drug Deliv 2014; 11:1033-45. [DOI: 10.1517/17425247.2014.912630] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|