1
|
Mathiesen DS, Lund A, Holst JJ, Knop FK, Lutz TA, Bagger JI. THERAPY OF ENDOCRINE DISEASE: Amylin and calcitonin - physiology and pharmacology. Eur J Endocrinol 2022; 186:R93-R111. [PMID: 35353712 DOI: 10.1530/eje-21-1261] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/30/2022] [Indexed: 11/08/2022]
Abstract
Type 2 diabetes is a common manifestation of metabolic dysfunction due to obesity and constitutes a major burden for modern health care systems, in concert with the alarming rise in obesity worldwide. In recent years, several successful pharmacotherapies improving glucose metabolism have emerged and some of these also promote weight loss, thus, ameliorating insulin resistance. However, the progressive nature of type 2 diabetes is not halted by these new anti-diabetic pharmacotherapies. Therefore, novel therapies promoting weight loss further and delaying diabetes progression are needed. Amylin, a beta cell hormone, has satiating properties and also delays gastric emptying and inhibits postprandial glucagon secretion with the net result of reducing postprandial glucose excursions. Amylin acts through the six amylin receptors, which share the core component with the calcitonin receptor. Calcitonin, derived from thyroid C cells, is best known for its role in humane calcium metabolism, where it inhibits osteoclasts and reduces circulating calcium. However, calcitonin, particularly of salmon origin, has also been shown to affect insulin sensitivity, reduce the gastric emptying rate and promote satiation. Preclinical trials with agents targeting the calcitonin receptor and the amylin receptors, show improvements in several parameters of glucose metabolism including insulin sensitivity and some of these agents are currently undergoing clinical trials. Here, we review the physiological and pharmacological effects of amylin and calcitonin and discuss the future potential of amylin and calcitonin-based treatments for patients with type 2 diabetes and obesity.
Collapse
Affiliation(s)
- David S Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Lutz
- Institute of Veterinary Physiology, Vetsuisse-Faculty, University of Zurich, Zurich, Switzerland
| | - Jonatan I Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Department of Medicine, Gentofte and Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
| |
Collapse
|
2
|
Mediators of Amylin Action in Metabolic Control. J Clin Med 2022; 11:jcm11082207. [PMID: 35456307 PMCID: PMC9025724 DOI: 10.3390/jcm11082207] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023] Open
Abstract
Amylin (also called islet amyloid polypeptide (IAPP)) is a pancreatic beta-cell hormone that is co-secreted with insulin in response to nutrient stimuli. The last 35 years of intensive research have shown that amylin exerts important physiological effects on metabolic control. Most importantly, amylin is a physiological control of meal-ending satiation, and it limits the rate of gastric emptying and reduces the secretion of pancreatic glucagon, in particular in postprandial states. The physiological effects of amylin and its analogs are mediated by direct brain activation, with the caudal hindbrain playing the most prominent role. The clarification of the structure of amylin receptors, consisting of the calcitonin core receptor plus receptor-activity modifying proteins, aided in the development of amylin analogs with a broad pharmacological profile. The general interest in amylin physiology and pharmacology was boosted by the finding that amylin is a sensitizer to the catabolic actions of leptin. Today, amylin derived analogs are considered to be among the most promising approaches for the pharmacotherapy against obesity. At least in conjunction with insulin, amylin analogs are also considered important treatment options in diabetic patients, so that new drugs may soon be added to the only currently approved compound pramlintide (Symlin®). This review provides a brief summary of the physiology of amylin’s mode of actions and its role in the control of the metabolism, in particular energy intake and glucose metabolism.
Collapse
|
3
|
Lima LMTR, Araújo TS, Almeida MDS. Unambiguous characterization of
PEGylation
site on human amylin by two‐dimensional nuclear magnetic resonance spectroscopy. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luís Maurício T. R. Lima
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Laboratório de Macromoléculas (LAMAC/DIMAV) Instituto Nacional de Metrologia, Qualidade e Tecnologia (INMETRO) Duque de Caxias RJ Brazil
| | - Talita Stelling Araújo
- Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Marcius da Silva Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Protein Advanced Biochemistry, CENABIO, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
4
|
Fletcher MM, Keov P, Truong TT, Mennen G, Hick CA, Zhao P, Furness SGB, Kruse T, Clausen TR, Wootten D, Sexton PM. AM833 Is a Novel Agonist of Calcitonin Family G Protein-Coupled Receptors: Pharmacological Comparison with Six Selective and Nonselective Agonists. J Pharmacol Exp Ther 2021; 377:417-440. [PMID: 33727283 DOI: 10.1124/jpet.121.000567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/11/2021] [Indexed: 07/25/2024] Open
Abstract
Obesity and associated comorbidities are a major health burden, and novel therapeutics to help treat obesity are urgently needed. There is increasing evidence that targeting the amylin receptors (AMYRs), heterodimers of the calcitonin G protein-coupled receptor (CTR) and receptor activity-modifying proteins, improves weight control and has the potential to act additively with other treatments such as glucagon-like peptide-1 receptor agonists. Recent data indicate that AMYR agonists, which can also independently activate the CTR, may have improved efficacy for treating obesity, even though selective activation of CTRs is not efficacious. AM833 (cagrilintide) is a novel lipidated amylin analog that is undergoing clinical trials as a nonselective AMYR and CTR agonist. In the current study, we have investigated the pharmacology of AM833 across 25 endpoints and compared this peptide with AMYR selective and nonselective lipidated analogs (AM1213 and AM1784), and the clinically used peptide agonists pramlintide (AMYR selective) and salmon CT (nonselective). We also profiled human CT and rat amylin as prototypical selective agonists of CTR and AMYRs, respectively. Our results demonstrate that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation. SIGNIFICANCE STATEMENT: AM833 is a novel nonselective agonist of calcitonin family receptors that has demonstrated efficacy for the treatment of obesity in phase 2 clinical trials. This study demonstrates that AM833 has a unique pharmacological profile across diverse measures of receptor binding, activation, and regulation when compared with other selective and nonselective calcitonin receptor and amylin receptor agonists. The present data provide mechanistic insight into the actions of AM833.
Collapse
Affiliation(s)
- Madeleine M Fletcher
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Peter Keov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Tin T Truong
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Grace Mennen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Caroline A Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Peishen Zhao
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Sebastian G B Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Thomas Kruse
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Trine R Clausen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (M.M.F., P.K., T.T.T., G.M., C.A.H., P.Z., S.G.B.F., D.W., P.M.S.); Research and Development, Novo Nordisk, Denmark (T.K., T.R.C.); and ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia (D.W., P.M.S.)
| |
Collapse
|
5
|
Giansanti M, De Gabrieli A, Prete SP, Ottone T, Divona MD, Karimi T, Ciccarone F, Voso MT, Graziani G, Faraoni I. Poly(ADP-Ribose) Polymerase Inhibitors for Arsenic Trioxide-Resistant Acute Promyelocytic Leukemia: Synergistic In Vitro Antitumor Effects with Hypomethylating Agents or High-Dose Vitamin C. J Pharmacol Exp Ther 2021; 377:385-397. [PMID: 33820831 DOI: 10.1124/jpet.121.000537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Arsenic trioxide (ATO) is an anticancer agent used for the treatment ofacute promyelocytic leukemia (APL). However, 5%-10% of patients fail to respond or experience disease relapse. Based on poly(ADP-ribose) polymerase (PARP) 1 involvement in the processing of DNA demethylation, here we have tested the in vitro susceptibility of ATO-resistant clones (derived from the human APL cell line NB4) to PARP inhibitors (PARPi) in combination with hypomethylating agents (azacitidine and decitabine) or high-dose vitamin C (ascorbate), which induces 5-hydroxymethylcytosine (5hmC)-mediated DNA demethylation. ATO-sensitive and -resistant APL cell clones were generated and initially analyzed for their susceptibility to five clinically used PARPi (olaparib, niraparib, rucaparib, veliparib, and talazoparib). The obtained PARPi IC50 values were far below (olaparib and niraparib), within the range (talazoparib), or above (rucaparib and veliparib) the C max reported in patients, likely as a result of differences in the mechanisms of their cytotoxic activity. ATO-resistant APL cells were also susceptible to clinically relevant concentrations of azacitidine and decitabine and to high-dose ascorbate. Interestingly, the combination of these agents with olaparib, niraparib, or talazoparib resulted in synergistic antitumor activity. In combination with ascorbate, PARPi increased the ascorbate-mediated induction of 5hmC, which likely resulted in stalled DNA repair and cytotoxicity. Talazoparib was the most effective PARPi in synergizing with ascorbate, in accordance with its marked ability to trap PARP1 at damaged DNA. These findings suggest that ATO and PARPi have nonoverlapping resistance mechanisms and support further investigation on PARPi combination with hypomethylating agents or high-dose ascorbate for relapsed/ATO-refractory APL, especially in frail patients. SIGNIFICANCE STATEMENT: This study found that poly(ADP-ribose) inhibitors (PARPi) show activity as single agents against human acute promyelocytic leukemia cells resistant to arsenic trioxide at clinically relevant concentrations. Furthermore, PARPi enhance the in vitro efficacy of azacitidine, decitabine, and high-dose vitamin C, all agents that alter DNA methylation. In combination with vitamin C, PARPi increase the levels of 5-hydroxymethylcytosine, likely as a result of altered processing of the oxidized intermediates associated with DNA demethylation.
Collapse
Affiliation(s)
- Manuela Giansanti
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Antonio De Gabrieli
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Salvatore Pasquale Prete
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Tiziana Ottone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Domenica Divona
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Terry Karimi
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Fabio Ciccarone
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Maria Teresa Voso
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Grazia Graziani
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| | - Isabella Faraoni
- Pharmacology Section, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy (M.G., A.D.G., S.P.P., T.K., G.G., I.F.); Department of Physiology and Pharmacology "V. Erspamer," Sapienza University of Rome, Rome, Italy (M.G.); Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy (T.O., M.D., M.T.V.); Unit of Neuro-Oncohematology, Santa Lucia Foundation-IRCCS, Rome, Italy (T.O., M.T.V.); and IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy (F.C.)
| |
Collapse
|
6
|
Mathiesen DS, Lund A, Vilsbøll T, Knop FK, Bagger JI. Amylin and Calcitonin: Potential Therapeutic Strategies to Reduce Body Weight and Liver Fat. Front Endocrinol (Lausanne) 2021; 11:617400. [PMID: 33488526 PMCID: PMC7819850 DOI: 10.3389/fendo.2020.617400] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
The hormones amylin and calcitonin interact with receptors within the same family to exert their effects on the human organism. Calcitonin, derived from thyroid C cells, is known for its inhibitory effect on osteoclasts. Calcitonin of mammalian origin promotes insulin sensitivity, while the more potent calcitonin extracted from salmon additionally inhibits gastric emptying, promotes gallbladder relaxation, increases energy expenditure and induces satiety as well as weight loss. Amylin, derived from pancreatic beta cells, regulates plasma glucose by delaying gastric emptying after meal ingestion, and modulates glucagon secretion and central satiety signals in the brain. Thus, both hormones seem to have metabolic effects of relevance in the context of non-alcoholic fatty liver disease (NAFLD) and other metabolic diseases. In rats, studies with dual amylin and calcitonin receptor agonists have demonstrated robust body weight loss, improved glucose tolerance and a decreased deposition of fat in liver tissue beyond what is observed after a body weight loss. The translational aspects of these preclinical data currently remain unknown. Here, we describe the physiology, pathophysiology, and pharmacological effects of amylin and calcitonin and review preclinical and clinical findings alluding to the future potential of amylin and calcitonin-based drugs for the treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- David S. Mathiesen
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Asger Lund
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Filip K. Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonatan I. Bagger
- Center for Clinical Metabolic Research, Gentofte Hospital, Hellerup, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Foll CL, Lutz TA. Systemic and Central Amylin, Amylin Receptor Signaling, and Their Physiological and Pathophysiological Roles in Metabolism. Compr Physiol 2020; 10:811-837. [PMID: 32941692 DOI: 10.1002/cphy.c190034] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article in the Neural and Endocrine Section of Comprehensive Physiology discusses the physiology and pathophysiology of the pancreatic hormone amylin. Shortly after its discovery in 1986, amylin has been shown to reduce food intake as a satiation signal to limit meal size. Amylin also affects food reward, sensitizes the brain to the catabolic actions of leptin, and may also play a prominent role in the development of certain brain areas that are involved in metabolic control. Amylin may act at different sites in the brain in addition to the area postrema (AP) in the caudal hindbrain. In particular, the sensitizing effect of amylin on leptin action may depend on a direct interaction in the hypothalamus. The concept of central pathways mediating amylin action became more complex after the discovery that amylin is also synthesized in certain hypothalamic areas but the interaction between central and peripheral amylin signaling remains currently unexplored. Amylin may also play a dominant pathophysiological role that is associated with the aggregation of monomeric amylin into larger, cytotoxic molecular entities. This aggregation in certain species may contribute to the development of type 2 diabetes mellitus but also cardiovascular disease. Amylin receptor pharmacology is complex because several distinct amylin receptor subtypes have been described, because other neuropeptides [e.g., calcitonin gene-related peptide (CGRP)] can also bind to amylin receptors, and because some components of the functional amylin receptor are also used for other G-protein coupled receptor (GPCR) systems. © 2020 American Physiological Society. Compr Physiol 10:811-837, 2020.
Collapse
Affiliation(s)
- Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Maikawa CL, Smith AAA, Zou L, Roth GA, Gale EC, Stapleton LM, Baker SW, Mann JL, Yu AC, Correa S, Grosskopf AK, Liong CS, Meis CM, Chan D, Troxell M, Maahs DM, Buckingham BA, Webber MJ, Appel EA. A co-formulation of supramolecularly stabilized insulin and pramlintide enhances mealtime glucagon suppression in diabetic pigs. Nat Biomed Eng 2020; 4:507-517. [PMID: 32393892 PMCID: PMC7274092 DOI: 10.1038/s41551-020-0555-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Treatment of patients with diabetes with insulin and pramlintide (an amylin analogue) is more effective than treatment with insulin only. However, because mixtures of insulin and pramlintide are unstable and have to be injected separately, amylin analogues are only used by 1.5% of people with diabetes needing rapid-acting insulin. Here, we show that the supramolecular modification of insulin and pramlintide with cucurbit[7]uril-conjugated polyethylene glycol improves the pharmacokinetics of the dual-hormone therapy and enhances postprandial glucagon suppression in diabetic pigs. The co-formulation is stable for over 100 h at 37 °C under continuous agitation, whereas commercial formulations of insulin analogues aggregate after 10 h under similar conditions. In diabetic rats, the administration of the stabilized co-formulation increased the area-of-overlap ratio of the pharmacokinetic curves of pramlintide and insulin from 0.4 ± 0.2 to 0.7 ± 0.1 (mean ± s.d.) for the separate administration of the hormones. The co-administration of supramolecularly stabilized insulin and pramlintide better mimics the endogenous kinetics of co-secreted insulin and amylin, and holds promise as a dual-hormone replacement therapy.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Department of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Gillie A Roth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Emily C Gale
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | | | - Sam W Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Anthony C Yu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Santiago Correa
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | - Celine S Liong
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Doreen Chan
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Megan Troxell
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - David M Maahs
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, USA
- Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Bruce A Buckingham
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, USA
- Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
- Department of Pediatrics (Endocrinology), Stanford University, Stanford, CA, USA.
- Diabetes Research Center, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Maikawa CL, Smith AAA, Zou L, Meis CM, Mann JL, Webber MJ, Appel EA. Stable Monomeric Insulin Formulations Enabled by Supramolecular PEGylation of Insulin Analogues. ADVANCED THERAPEUTICS 2020; 3:1900094. [PMID: 32190729 PMCID: PMC7079736 DOI: 10.1002/adtp.201900094] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Current "fast-acting" insulin analogues contain amino acid modifications meant to inhibit dimer formation and shift the equilibrium of association states toward the monomeric state. However, the insulin monomer is highly unstable and current formulation techniques require insulin to primarily exist as hexamers to prevent aggregation into inactive and immunogenic amyloids. Insulin formulation excipients have thus been traditionally selected to promote insulin association into the hexameric form to enhance formulation stability. This study exploits a novel excipient for the supramolecular PEGylation of insulin analogues, including aspart and lispro, to enhance the stability and maximize the prevalence of insulin monomers in formulation. Using multiple techniques, it is demonstrated that judicious choice of formulation excipients (tonicity agents and parenteral preservatives) enables insulin analogue formulations with 70-80% monomer and supramolecular PEGylation imbued stability under stressed aging for over 100 h without altering the insulin association state. Comparatively, commercial "fast-acting" formulations contain less than 1% monomer and remain stable for only 10 h under the same stressed aging conditions. This simple and effective formulation approach shows promise for next-generation ultrafast insulin formulations with a short duration of action that can reduce the risk of post-prandial hypoglycemia in the treatment of diabetes.
Collapse
Affiliation(s)
- Caitlin L Maikawa
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Anton A A Smith
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Lei Zou
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Catherine M Meis
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Joseph L Mann
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Webber
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Eric A Appel
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
10
|
Rose F, Bloom S, Tan T. Novel approaches to anti-obesity drug discovery with gut hormones over the past 10 years. Expert Opin Drug Discov 2019; 14:1151-1159. [DOI: 10.1080/17460441.2019.1646243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Frances Rose
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Stephen Bloom
- Department of Investigative Medicine, Imperial College London, London, UK
| | - Tricia Tan
- Department of Investigative Medicine, Imperial College London, London, UK
| |
Collapse
|
11
|
Sinésia C, do Nascimento CVMF, Lacativa PGS, Lima LMTR. Physico-chemical stability of co-formulation of PEGylated human amylin with insulin. Pharm Dev Technol 2019; 24:975-981. [PMID: 31124388 DOI: 10.1080/10837450.2019.1621896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since the discovery of amylin no combined formulation with insulin has been made available. Amylin or its triple proline analog pramlintide are not compatible in solution with insulin. The drug candidate hAmy-PEG5k is a novel monoPEGylated amylin derivative with improved physicochemical properties and retained similar pharmacological activity compared to free amylin and pramlintide. We have investigated the short- and long-term physicochemical compatibility of hAmy-PEG5k co-formulated with slow-acting human insulin analogs glargine or detemir. While human amylin promptly aggregates over a large range of pH, and both free and in the presence of regular, glargine or detemir insulin, the hAmy-PEG5k analog is stable at these conditions as shown by Thioflavin T (ThT) binding assay. When hAmy-PEG5k (100 or 500 µg/mL) was added to the commercial formulations of either insulin glargine or detemir (95 IU/mL), the combinations remained stable after 6 months stored at 4 °C, as probed by ThT, dynamic light scattering (DLS) measurements and high performance liquid chromatography (HPLC) analyses, confirming the absence of amyloid fibers, minor aggregation products or loss of material. These results suggest hAmy-PEG5k and the insulin analogs glargine and detemir are physicochemically compatible and are candidate ready-to-use fixed-dose combinations.
Collapse
Affiliation(s)
- Celimar Sinésia
- a Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil.,b National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT) , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil
| | | | - Paulo G S Lacativa
- c Endocrine Division, BioZeus Biopharmaceutical SA , Rio de Janeiro , Brazil
| | - Luís Maurício T R Lima
- a Faculty of Pharmacy, Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil.,b National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT) , Federal University of Rio de Janeiro , Rio de Janeiro , Brazil.,d Laboratory for Macromolecules (LAMAC), Life Science Division (DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro, RJ , Brazil
| |
Collapse
|
12
|
Nascimento CVMF, Sinezia C, Sisnande T, Lima LMTR, Lacativa PGS. BZ043, a novel long-acting amylin analog, reduces gastric emptying, food intake, glycemia and insulin requirement in streptozotocin-induced diabetic rats. Peptides 2019; 114:44-49. [PMID: 30995454 DOI: 10.1016/j.peptides.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/23/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023]
Abstract
Amylin analogs are important adjunctive drugs in the treatment of diabetes mellitus. However, a dual therapy with insulin involves inconvenient multiple injections. Here we describe a novel n-terminal PEGylated human amylin analog - BZ043 - and its potential to improve the control of glycemia using lower doses of insulin. The effect of BZ043 over the insulin-mediated control of fed-glycemia was investigated in rats with streptozotocin-induced diabetes treated with the basal analog glargine (GLAR). Fasted rats (3 h) received a single treatment of BZ043 (16, 64 or 128 nmol/kg), GLAR (1.5 IU or 6.0 IU) or BZ043 plus GLAR low dose (1.5 IU) in separate injections, and had free access to 5% glucose rich chow and water. BZ043 dose-proportionally prevented the meal-related increase of glycemia, and the co-treatment (64 or 128 nmol/kg) with GLAR restored normoglycemia without abrupt variations of glycemia. BZ043 showed a prolonged anti-hyperglycemic effect and, together with GLAR, promoted a long-lasting normoglycemia, in vivo. We conceive that combining BZ043 and GLAR in a fixed-ratio co-formulation might conveniently improve the control of diabetes mellitus.
Collapse
Affiliation(s)
- Caio Victor M F Nascimento
- Biozeus Biopharmaceutical SA, Rua Visconde de Pirajá, 623, 9th floor, Rio de Janeiro, RJ, 22.410-003, Brazil
| | - Celimar Sinezia
- Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Thayna Sisnande
- Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | - Luís Maurício T R Lima
- Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; Laboratory for Macromolecules, (LAMAC-DIMAV)), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Rio de Janeiro, Brazil.
| | - Paulo G S Lacativa
- National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
13
|
PEGylated prodrugs of antidiabetic peptides amylin and GLP-1. J Control Release 2018; 292:58-66. [DOI: 10.1016/j.jconrel.2018.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/21/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
|
14
|
Boyle CN, Lutz TA, Le Foll C. Amylin - Its role in the homeostatic and hedonic control of eating and recent developments of amylin analogs to treat obesity. Mol Metab 2017; 8:203-210. [PMID: 29203236 PMCID: PMC5985014 DOI: 10.1016/j.molmet.2017.11.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/13/2017] [Accepted: 11/17/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. One of its best-characterized effects is the reduction in eating and body weight seen in preclinical and clinical studies. Amylin activates specific receptors, a portion of which it shares with calcitonin gene-related peptide (CGRP). Amylin's role in the control of energy metabolism relates to its satiating effect, but recent data indicate that amylin may also affect hedonic aspects in the control of eating, including a reduction of the rewarding value of food. Recently, several amylin-based peptides have been characterized. Pramlintide (Symlin®) is currently the only one being used clinically to treat type 1 and type 2 diabetes. However other amylin analogs with improved pharmacokinetic properties are being considered as anti-obesity treatment strategies. Several other studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents. SCOPE OF REVIEW This review will briefly summarize amylin physiology and pharmacology and then focus on amylin's role in food reward and the effects of amylin analogs in pre-clinical testing for anti-obesity drugs. CONCLUSION We propose here that the effects of amylin may be homeostatic and hedonic in nature.
Collapse
Affiliation(s)
- Christina Neuner Boyle
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| | - Thomas Alexander Lutz
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland.
| | - Christelle Le Foll
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology, University of Zurich, Switzerland
| |
Collapse
|
15
|
Erthal LCS, Marques AF, Almeida FCL, Melo GLM, Carvalho CM, Palmieri LC, Cabral KMS, Fontes GN, Lima LMTR. Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 2016; 218:58-70. [PMID: 27693831 DOI: 10.1016/j.bpc.2016.09.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/10/2016] [Accepted: 09/17/2016] [Indexed: 11/17/2022]
Abstract
The secretory granule of the pancreatic β-cells is a zinc-rich environment copopulated with the hormones amylin and insulin. The human amylin is shown to interact with zinc ions with major contribution from the single histidine residue, which is absent in amylin from other species such as cat, rhesus and rodents. We report here the interaction of murine amylin with zinc ions in vitro. The self-assembly of murine amylin is tightly regulated by zinc and pH. Ion mobility mass spectrometry revealed zinc interaction with monomers and oligomers. Nuclear magnetic resonance confirms the binding of zinc to murine amylin. The aggregation process of murine amylin into amyloid fibrils is accelerated by zinc. Collectively these data suggest a general role of zinc in the modulation of amylin variants oligomerization and amyloid fibril formation.
Collapse
Affiliation(s)
- Luiza C S Erthal
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Adriana F Marques
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Fábio C L Almeida
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Gustavo L M Melo
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Camila M Carvalho
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Leonardo C Palmieri
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Katia M S Cabral
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil
| | - Giselle N Fontes
- Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil
| | - Luís Maurício T R Lima
- School of Pharmacy, Federal University of Rio de Janeiro - UFRJ, CCS, Bss24, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil; Laboratory for Macromolecules (LAMAC-DIMAV), Brazilian National Institute of Metrology, Quality and Technology - INMETRO, Av. N. Sa. das Graças, 50 - Xerém, Duque de Caxias-RJ, 25250-020 Rio de Janeiro, Brazil; National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
16
|
Bower RL, Hay DL. Amylin structure-function relationships and receptor pharmacology: implications for amylin mimetic drug development. Br J Pharmacol 2016; 173:1883-98. [PMID: 27061187 DOI: 10.1111/bph.13496] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/15/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
Amylin is an important, but poorly understood, 37 amino acid glucoregulatory hormone with great potential to target metabolic diseases. A working example that the amylin system is one worth developing is the FDA-approved drug used in insulin-requiring diabetic patients, pramlintide. However, certain characteristics of pramlintide pharmacokinetics and formulation leave considerable room for further development of amylin-mimetic compounds. Given that amylin-mimetic drug design and development is an active area of research, surprisingly little is known about the structure/function relationships of amylin. This is largely due to the unfavourable aggregative and solubility properties of the native peptide sequence, which are further complicated by the composition of amylin receptors. These are complexes of the calcitonin receptor with receptor activity-modifying proteins. This review explores what is known of the structure-function relationships of amylin and provides insights that can be drawn from the closely related peptide, CGRP. We also describe how this information is aiding the development of more potent and stable amylin mimetics, including peptide hybrids.
Collapse
Affiliation(s)
- Rebekah L Bower
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Debbie L Hay
- School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Hay DL, Chen S, Lutz TA, Parkes DG, Roth JD. Amylin: Pharmacology, Physiology, and Clinical Potential. Pharmacol Rev 2016; 67:564-600. [PMID: 26071095 DOI: 10.1124/pr.115.010629] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amylin is a pancreatic β-cell hormone that produces effects in several different organ systems. Here, we review the literature in rodents and in humans on amylin research since its discovery as a hormone about 25 years ago. Amylin is a 37-amino-acid peptide that activates its specific receptors, which are multisubunit G protein-coupled receptors resulting from the coexpression of a core receptor protein with receptor activity-modifying proteins, resulting in multiple receptor subtypes. Amylin's major role is as a glucoregulatory hormone, and it is an important regulator of energy metabolism in health and disease. Other amylin actions have also been reported, such as on the cardiovascular system or on bone. Amylin acts principally in the circumventricular organs of the central nervous system and functionally interacts with other metabolically active hormones such as cholecystokinin, leptin, and estradiol. The amylin-based peptide, pramlintide, is used clinically to treat type 1 and type 2 diabetes. Clinical studies in obesity have shown that amylin agonists could also be useful for weight loss, especially in combination with other agents.
Collapse
Affiliation(s)
- Debbie L Hay
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Steve Chen
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Thomas A Lutz
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - David G Parkes
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| | - Jonathan D Roth
- School of Biological Sciences, Maurice Wilkins Centre for Molecular Biodiscovery and Centre for Brain Research, University of Auckland, Auckland, New Zealand (D.L.H.); Amylin Pharmaceuticals LLC, San Diego, California (S.C., D.G.P.); Institute of Veterinary Physiology, Institute of Laboratory Animal Sciences and Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland (T.A.L.); and Intercept Pharmaceuticals, Inc., San Diego, California (J.D.R.)
| |
Collapse
|
18
|
Monoconjugation of Human Amylin with Methylpolyethyleneglycol. PLoS One 2015; 10:e0138803. [PMID: 26448437 PMCID: PMC4598023 DOI: 10.1371/journal.pone.0138803] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023] Open
Abstract
Amylin is a pancreatic hormone cosecreted with insulin that exerts unique roles in metabolism and glucose homeostasis. The therapeutic restoration of postprandial and basal amylin levels is highly desirable in diabetes mellitus. Protein conjugation with the biocompatible polymer polyethylene glycol (PEG) has been shown to extend the biological effects of biopharmaceuticals. We have designed a PEGylated human amylin by using the aminoreactive compound methoxylpolyethylene glycol succinimidyl carbonate (mPEGsc). The synthesis in organic solvent resulted in high yields of monoPEGylated human amylin, which showed large stability against aggregation, an 8 times increase in half-life in vivo compared to the non-conjugated amylin, and pharmacological activity as shown by modulation of cAMP production in MCF–7 cell line, decrease in glucagon and modulation of glycemia following subcutaneous administration in mice. Altogether these data reveal the potential use of PEGylated human amylin for the restoration of fasting amylin levels.
Collapse
|
19
|
Braga RR, Almeida L, Guerreiro LH, Tinoco P, Miranda KR, Braga CA, Gadelha AP, Garcia S, Lima LMTR. Molecular confinement of human amylin in lipidic nanoparticles. J Liposome Res 2015; 26:188-98. [PMID: 26340033 DOI: 10.3109/08982104.2015.1076462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amylin is a pancreatic hormone involved in the regulation of glucose metabolism and homeostasis. Restoration of the post-prandial and basal levels of human amylin in diabetic individuals is a key in controlling glycemia, controlling glucagon, reducing the insulin dose and increasing satiety, among other physiologic functions. Human amylin has a high propensity to aggregate. We have addressed this issue by designing a liposomal human amylin formulation. Nanoparticles of multilamellar liposomes comprising human amylin were obtained with 53% encapsulation efficiency. The in vitro kinetic release assay shows a biphasic profile. The stabilization of the lipidic nanoparticle against freeze-drying was achieved by using mannitol as a cryoprotectant, as evidenced by morphological characterization. The effectiveness of the human amylin entrapped in lipidic nanoparticles was tested by the measurement of its pharmacological effect in vivo after subcutaneous administration in mice. Collectively these results demonstrate the compatibility of human amylin with the lipidic interface as an effective pharmaceutical delivery system.
Collapse
Affiliation(s)
- Raquel Rennó Braga
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,b Federal Institute of Science and Technology of Rio de Janeiro - IFRJ , Rio de Janeiro , RJ , Brazil
| | - Luciana Almeida
- b Federal Institute of Science and Technology of Rio de Janeiro - IFRJ , Rio de Janeiro , RJ , Brazil
| | - Luiz Henrique Guerreiro
- c Department of Chemistry , Institute of Exact Sciences, Rural Federal University of Rio de Janeiro - UFRRJ , Seropédica , RJ , Brazil
| | - Priscilla Tinoco
- c Department of Chemistry , Institute of Exact Sciences, Rural Federal University of Rio de Janeiro - UFRRJ , Seropédica , RJ , Brazil
| | - Kildare R Miranda
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and
| | - Carolina A Braga
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil
| | - Ana Paula Gadelha
- d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and
| | - Sheila Garcia
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil
| | - Luis Mauricio T R Lima
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and.,e National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
20
|
Holm LS, Mcumber A, Rasmussen JE, Obiols‐Rabasa M, Thulstrup PW, Kasimova MR, Randolph TW, van de Weert M. The Effect of Protein PEGylation on Physical Stability in Liquid Formulation. J Pharm Sci 2014; 103:3043-54. [DOI: 10.1002/jps.24094] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 05/21/2014] [Accepted: 06/30/2014] [Indexed: 12/22/2022]
|