1
|
Su X, Zhong H, Zeng Y, Zhang Y, Zhang B, Guo W, Huang Q, Ye Y. Dual-ligand-functionalized nanostructured lipid carriers as a novel dehydrocavidine delivery system for liver fibrosis therapy. Colloids Surf B Biointerfaces 2025; 246:114376. [PMID: 39551037 DOI: 10.1016/j.colsurfb.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
BACKGROUND Liver fibrosis is a common stage of various chronic liver diseases, often developing into liver cirrhosis, and even liver cancer. Activated hepatic stellate cells (aHSCs) have been shown to promote the development of liver fibrosis. Therefore, dual-targeted combination therapy for liver may be an effective strategy for the treatment of liver fibrosis. PURPOSE In this study, the novel nanostructured lipid carriers (GA&GalNH2-DC-NLCs) were prepared for Dehydrocavidine (DC), glycyrrhetinic acid (GA) and galactose-PEG2000-NH2 (GalNH2) were selected as targeted ligand-modified nanostructured lipid carriers (NLCs), which enables dual-targeting to the liver for the treatment of liver fibrosis. STUDY DESIGN To study the targeting effect of GA&GalNH2-DC-NLCs on liver and its therapeutic effect on liver fibrosis, we established aHSC-T6 cell model and rat model of liver fibrosis for study. RESULTS GA&GalNH2-DC-NLCs promoted drug liver targeting efficiency and apoptosis rate by upregulating the expression of Bax. It showed that compared with no and/or GA-modified NLCs and GalNH2-modified NLCs, GA&GalNH2-DC-NLCs exhibited less extracellular matrix (ECM) deposition, induced apoptosis of aHSCs, and stronger anti-fibrosis effects in vivo. This may be due the fact that GA or GalNH2-modifified NLCs simultaneously block HSCs activation and inhibit the IL-6/STAT3 pathway. CONCLUSION GA&GalNH2-DC-NLCs is thus a potential strategy for liver fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodan Su
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China.
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin 541199, China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning 530001, China.
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning 530021, China; Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning 530021, China; Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning 530021, China.
| |
Collapse
|
2
|
Ren SH, Shao B, Wang HD, Zhang JY, Qin H, Sun CL, Zhu YL, Wang ZB, Lan X, Gao YC, Wang H. Oxymatrine attenuates chronic allograft rejection by modulating immune responses and inhibiting fibrosis. Eur J Pharmacol 2024; 985:177082. [PMID: 39486768 DOI: 10.1016/j.ejphar.2024.177082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Chronic rejection (CR) is a significant obstacle to long-term allograft survival. Oxymatrine (OMT) is a prominent bioactive compound widely utilized in traditional Chinese medicine for the management of inflammatory disorders and it has considerable potential as a therapeutic candidate for the treatment of CR. METHODS Well-established major histocompatibility complex (MHC) class II mismatched B6 mice. C-H-2bm12-to-C57BL/6 mouse transplantation was used as a CR model. Hematoxylin and eosin (H&E) staining, immunohistochemistry, and Masson's trichrome staining were used to assess pathological changes in the grafts, and the percentages of immune cells were determined by flow cytometry. The effects of OMT on the regulation of CD4+ T cell differentiation and cytokine secretion were verified in vitro. RESULTS OMT effectively alleviated pathological graft damage, characterized by chronic changes in intimal lesions, vasculopathy, and fibrosis and significantly prolonged cardiac allograft survival. OMT exerted its immunomodulatory effects by inhibiting T helper 1 (Th1) and T helper 17 (Th17) cell differentiation while promoting Treg differentiation both in vivo and in vitro. Further studies revealed that OMT inhibited the phosphorylation of mammalian target of rapamycin (mTOR), which is a potential mechanism underlying its immunosuppressive effects. OMT also inhibited the activation of B cells and the production of donor-specific antibody (DSA). In addition, OMT effectively alleviated chronic changes in fibrosis in cardiac allografts, and these changes may be related to the inhibition of the transforming growth factor-β (TGF-β)-Smad 2/3 pathway. CONCLUSIONS OMT attenuated CR by modulating the immune response and inhibiting graft fibrosis. Further in-depth investigations of OMT may provide valuable insights into the development of novel therapeutic strategies for CR inhibition.
Collapse
Affiliation(s)
- Shao-Hua Ren
- Department of General Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China; Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing-Yi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Cheng-Lu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang-Lin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhao-Bo Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xu Lan
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yong-Chang Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, China; Tianjin Key Laboratory of Precise Vascular Reconstruction and Organ Function Repair, Tianjin, China.
| |
Collapse
|
3
|
Zhao Y, Wang YH, Tu WC, Wang DW, Lu MJ, Shao Y. Costunolide Inhibits Chronic Kidney Disease Development by Attenuating IKKβ/NF-κB Pathway. Drug Des Devel Ther 2024; 18:2693-2712. [PMID: 38974121 PMCID: PMC11227330 DOI: 10.2147/dddt.s466092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024] Open
Abstract
Background Chronic kidney disease (CKD) is a significant worldwide health concern that leads to high mortality rates. The bioactive substance costunolide (CTD) has demonstrated several pharmacological effects and holds promise as a CKD treatment. This study aims to investigate the impact of CTD on CKD and delve into its mechanisms of action. Methods Unilateral ureteral obstruction (UUO) methods and renal fibrosis mice models were created. Various concentrations of CTD were injected into UUO mice models to investigate the therapeutic effects of CTD on renal fibrosis of mice. Then, renal morphology, pathological changes, and the expression of genes related to fibrosis, inflammation and ferroptosis were analysed. RNA sequencing was utilized to identify the main biological processes and pathways involved in renal injury. Finally, both overexpression and inhibition of IKKβ were studied to examine their respective effects on fibrosis and inflammation in both in vitro and in vivo models. Results CTD treatment was found to significantly alleviate fibrosis, inflammation and ferroptosis in UUO-induced renal fibrosis mice models. The results of RNA sequencing suggested that the IKKβ acted as key regulatory factor in renal injury and the expression of IKKβ was increased in vitro and in vivo renal fibrosis model. Functionally, down-regulated IKKβ expression inhibits ferroptosis, inflammatory cytokine production and collagen deposition. Conversely, IKKβ overexpression exacerbates progressive renal fibrosis. Mechanistically, CTD alleviated renal fibrosis and inflammation by inhibiting the expression of IKKβ and attenuating IKKβ/NF-κB pathway. Conclusion This study demonstrates that CTD could mitigate renal fibrosis, ferroptosis and inflammation in CKD by modulating the IKKβ/NF-κB pathway, which indicates targeting IKKβ has an enormous potential for treating CKD.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, 201800, People’s Republic of China
| | - Yi-Han Wang
- Department of Urology, Sixth People’s Hospital South Campus Affiliated to Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wei-Chao Tu
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, 201800, People’s Republic of China
| | - Da-Wei Wang
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, 201800, People’s Republic of China
| | - Mu-Jun Lu
- Department of Urology and Andrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Shanghai Institute of Andrology, Shanghai, People’s Republic of China
| | - Yuan Shao
- Department of Urology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, Shanghai, 201800, People’s Republic of China
| |
Collapse
|
4
|
Lan X, Chen Y, Duan JJ, Xu J. Study on Oxymatrine-Based Research from 2001 to 2022: A Bibliometric Analysis. ACS OMEGA 2024; 9:9633-9643. [PMID: 38434884 PMCID: PMC10905712 DOI: 10.1021/acsomega.3c07880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 03/05/2024]
Abstract
Oxymatrine is a quinolizidine alkaloid mainly derived from Kushen; it possesses various therapeutic effects, such as organ- and tissue-protective, anticancer, and antiviral effects. The research directions for oxymatrine remain broad. In order to explore the overall status of oxymatrine-based research, we carried out a bibliometric analysis to summarize the oxymatrine-based, English-written studies published in the past 22 years. In total, 267 studies were included, most of which were original. The number of annual studies slowly increased with some fluctuations. Other than China, 11 different countries conducted studies on oxymatrine; the variety in the country of origin of these publications is presented as a recently increasing trend. Many affiliates and researchers have participated in oxymatrine-based research. Various treatment mechanisms involving different oxymatrine pathways have led to research in a wide range of fields, being published in numerous journals. Two particularly popular research fields related to oxymatrine involved anticancer and anti-inflammation. From this research, we concluded that with increasing and continuous in-depth studies, more therapeutic effects and mechanisms will be elucidated, and oxymatrine may present as a viable option for the treatment of additional diseases.
Collapse
Affiliation(s)
- Xu Lan
- Beijing
University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Yao Chen
- Xiyuan
Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jia-jia Duan
- Beijing
University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Jia Xu
- Beijing
University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| |
Collapse
|
5
|
Peng J, Wang Q, Guo M, Liu C, Chen X, Tao L, Zhang K, Shen X. Development of Inhalable Chitosan-Coated Oxymatrine Liposomes to Alleviate RSV-Infected Mice. Int J Mol Sci 2022; 23:ijms232415909. [PMID: 36555548 PMCID: PMC9786244 DOI: 10.3390/ijms232415909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Human respiratory syncytial virus (RSV) infection is the most important cause of acute lower respiratory tract infection in infants, neonates, and young children, even leading to hyperinflation and atelectasis. Oxymatrine (OMT), originating from natural herbs, possessed potential antivirus activity against influenza A virus, Coxsackie B3 virus, and RSV, whereas the absence of an in vivo study indicated the difficulties in overcoming the physiological obstacles. Since RSV basically replicated in lung tissue, in this study, we fabricated and characterized a chitosan (CS)-coated liposome with OMT loaded for the treatment of lethal RSV infection via inhalation. The results uncovered that OMT, as a hydrophilic drug, was liable to diffuse in the mucus layer and penetrate through the gas-blood barrier to enter systemic circulation quickly, which might restrict its inhibitory effect on RSV replication. The CS-coated liposome enhanced the distribution and retention of OMT in lung tissue without restriction from mucus, which contributed to the improved alleviative effect of OMT on lethal RSV-infected mice. Overall, this study provides a novel inhalation therapy for RSV infection, and the CS-coated liposome might be a potential inhalable nanocarrier for hydrophilic drugs to prevent pulmonary infections.
Collapse
Affiliation(s)
- Jianqing Peng
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Qin Wang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Mingyang Guo
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Chunyuan Liu
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Xuesheng Chen
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ling Tao
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Ke Zhang
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key and Characteristic Laboratory of Modern Pathogenicity Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| | - Xiangchun Shen
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
- Correspondence: (K.Z.); (X.S.); Tel.: +86-0851-884-16022 (K.Z.); +86-0851-881-74180 (X.S.)
| |
Collapse
|
6
|
Yan J, Fang X, Feng Y, Cui X, Li F, Luo W, Ma X, Liang J, Feng J. Identification of key genes associated with the progression of liver fibrosis to hepatocellular carcinoma based on iTRAQ proteomics and GEO database. Ann Hepatol 2022; 27:100681. [PMID: 35124283 DOI: 10.1016/j.aohep.2022.100681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVE Liver fibrosis (LF) often leads to cirrhosis and even hepatocellular carcinoma (HCC), but the molecular mechanism remains unclear. The aims of the present study were to identify potential biomarkers for the progression of LF to HCC and explore the associated molecular mechanisms. MATERIALS AND METHODS The isobaric tags for relative and absolute quantitation (iTRAQ) was used to detect changes in the protein expression profiles of liver tissues and to screen the differentially expressed proteins (DEPs). The differentially expressed genes (DEGs) of LF rats and patients were screened by Gene Expression Database (GEO). Subsequently, the clinicopathological analysis of the overlapping genes in different pathological stages in HCC patients based on GEPIA database was conducted. RESULTS iTRAQ proteomic analysis revealed 689, 749 and 585 DEPs in the 6W, 8W and 12W groups, respectively. ALDH2, SLC27A5 and ASNS were not only the DEPs found in rats with LF with different stages but were also the DEGs related to the pathological stages and survival in patients with HCC. CONCLUSIONS ALDH2, SLC27A5 and ASNS were the potential biomarkers associated with the progression of LF to HCC.
Collapse
Affiliation(s)
- Jiongyi Yan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xuewan Fang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yinyi Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaojuan Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Fang Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Weisheng Luo
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiaocong Ma
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jianqin Liang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Superior Proprietary Chinese Medicine and Ethnic Medicine Development Engineering Technology Research Centre, Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Jianfang Feng
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Superior Proprietary Chinese Medicine and Ethnic Medicine Development Engineering Technology Research Centre, Guangxi University of Chinese Medicine, Nanning 530200, China.
| |
Collapse
|
7
|
Zhang J, Li R, Liu Q, Zhou J, Huang H, Huang Y, Zhang Z, Wu T, Tang Q, Huang C, Zhao Y, Zhang G, Mo L, Li Y, He J. SB431542-Loaded Liposomes Alleviate Liver Fibrosis by Suppressing TGF-β Signaling. Mol Pharm 2020; 17:4152-4162. [PMID: 33089693 DOI: 10.1021/acs.molpharmaceut.0c00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jian Zhou
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hui Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ya Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Zijing Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Qin Tang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Cuiyuan Huang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yingnan Zhao
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Guorong Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Li Mo
- Center of Gerontology and Geriatrics, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Pharmacy, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
8
|
Tang Q, Zhang W, Zhang C, Guan Y, Ding J, Yuan C, Tan C, Gao X, Tan S. Oxymatrine loaded nitric oxide-releasing liposomes for the treatment of ulcerative colitis. Int J Pharm 2020; 586:119617. [DOI: 10.1016/j.ijpharm.2020.119617] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/18/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
9
|
Wang H, Ding Y, Zhang W, Wei K, Pei Y, Zou C, Zhang C, Ding J, Fang H, Tan S. Oxymatrine Liposomes for Intervertebral Disc Treatment: Formulation, in vitro and vivo Assessments. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:921-931. [PMID: 32184561 PMCID: PMC7053530 DOI: 10.2147/dddt.s242493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/17/2020] [Indexed: 12/29/2022]
Abstract
Purpose Intervertebral disc degeneration (IVDD) is the main cause of modern low back pain, leading to high societal economic costs. To find an effective medical treatment for this disease, oxymatrine liposomes (OMT-LIP) were prepared with the pH-gradient method. Materials and Methods Nucleus pulposus (NP) cells from Sprague–Dawley rats were used for the cell experiments. Kunming mice were used for in vivo imaging. LIP were employed to deliver OMT, and the particle size, ζ-potential, morphology, in vitro stability and in vitro release characteristics were evaluated. The OMT-LIP targeting effect was measured by in vivo imaging. Cell Counting Kit-8 assays were used to detect the cytotoxicity of OMT and OMT-LIP on NP cells. Therapeutic efficacy was measured by Western blot, real-time quantitative polymerase chain reaction, and apoptosis assays. Radiologic analysis was performed to evaluate the therapeutic effects in vivo. Results Orthogonal test results revealed that the mass ratio of egg yolk phosphatidylcholine to cholesterol was the key factor to effectively trap OMT in LIP. Optimal OMT-LIP showed multivesicular structure with entrapment efficiency of 73.4 ± 4.1%, particle size of 178.1 ± 2.9 nm, and ζ-potential of –13.30 ± 2.34 mV. OMT-LIP manifested excellent stability in vitro and presented significantly longer sustained release compared to OMT solution in phosphate-buffered saline (pH 7.4). OMT-LIP conspicuously increased OMT accumulation in the degenerative disc, attenuated NP cell apoptosis, reduced the expression of matrix metalloproteinases 3/9 and interleukin-6, and decreased degradation of type II collagen. In in vivo study, X-ray demonstrated that OMT-LIP inhibited IVDD. Conclusion OMT-LIP may be a useful treatment to alleviate disc inflammation and IVDD.
Collapse
Affiliation(s)
- Huan Wang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yifan Ding
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Kang Wei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yaping Pei
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenming Zou
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chong Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiahui Ding
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Huang Fang
- Department of Orthopaedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Songwei Tan
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
10
|
Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z, Bai C. Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112172. [PMID: 31442619 DOI: 10.1016/j.jep.2019.112172] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sophora alopecuroides L., which is called Kudouzi in China, is a medicinal plant distributed in Western and Central Asia, especially in China, and has been used for decades to treat fever, bacterial infection, heart disease, rheumatism, and gastrointestinal diseases. AIM OF THE REVIEW This review aims to provide up-to-date information on S. alopecuroides, including its botanical characterization, medicinal resources, traditional uses, phytochemistry, pharmacological research, and toxicology, in exploring future therapeutic and scientific potentials. MATERIALS AND METHODS The information related to this article was systematically collected from the scientific literature databases including PubMed, Google Scholar, Web of Science, Science Direct, Springer, China National Knowledge Infrastructure, published books, PhD and MS dissertations, and other web sources, such as the official website of Flora of China and Yao Zhi website (https://db.yaozh.com/). RESULTS A total of 128 compounds, such as alkaloids, flavonoids, steroids, and polysaccharides, were isolated from S. alopecuroides. Among these compounds, the effects of alkaloids, such as matrine and oxymatrine, were extensively studied and developed into new drugs. S. alopecuroides and its active components had a wide range of pharmacological activities, such as anticancer, antiviral, anti-inflammatory, antimicrobial, analgesic, and neuroprotective functions, as well as protective properties against pulmonary fibrosis and cardiac fibroblast proliferation. CONCLUSIONS As an important traditional Chinese medicine, modern pharmacological studies have demonstrated that S. alopecuroides has prominent bioactivities, especially on gynecological inflammation and hepatitis B, and anticancer activities. These activities provide prospects for novel drug development for cancer and some chronic diseases. Nevertheless, the comprehensive evaluation, quality control, understanding of the multitarget network pharmacology, long-term in vivo toxicity, and clinical efficacy of S. alopecuroides require further detailed research.
Collapse
Affiliation(s)
- Ruizhou Wang
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xinxin Deng
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Qixia Gao
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China
| | - Xiuli Wu
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Lu Han
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Xiaojuan Gao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Shipeng Zhao
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China
| | - Weibin Chen
- Ningxia Doushun Biological Technology Co., Ltd., Yanchi, 751500, PR China
| | - Rongrong Zhou
- School of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, 030600, PR China
| | - Zhiyong Li
- College of Pharmacy, Minzu University of China, Beijing, 100081, PR China.
| | - Changcai Bai
- Key Laboratory of Hui Medicine Modernization, Ningxia Medical University Pharmacy College, Yinchuan 750004, PR China.
| |
Collapse
|
11
|
Li Y, Zhang T, Liu Q, Zhang J, Li R, Pu S, Wu T, Ma L, He J. Mixed micelles loaded with the 5-benzylidenethiazolidine-2,4-dione derivative SKLB023 for efficient treatment of non-alcoholic steatohepatitis. Int J Nanomedicine 2019; 14:3943-3953. [PMID: 31239664 PMCID: PMC6551597 DOI: 10.2147/ijn.s202821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Background: SKLB023, a novel 5-benzylidenethiazolidine-2,4-dione based-derivative, specifically inhibits inducible nitric oxide synthase and shows promise for treating non-alcoholic steatohepatitis (NASH). However, its poor water solubility and low bioavailability limits its clinical use. Here the drug was loaded into phosphatidylcholine-bile salt-mixed micelles (PBMM/SKLB023) to overcome these limitations. Methods: PBMM/SKLB023 was developed using a simple co-precipitation method, and formulation parameters were optimized. The pharmacokinetics of PBMM/SKLB023 were investigated in Wistar rats, and therapeutic efficacy was assessed in a mouse model of NASH induced by a diet deficient in methionine- and choline. Results: PBMM/SKLB023 particles were 11.36±2.08 nm based on dynamic light scattering, and loading the drug into micelles improved its water solubility 300-fold. PBMM/SKLB023 inhibited proliferation and activation of HSC-T6 cells more strongly than free SKLB023. PBMM/SKLB023 showed longer mean retention time and higher bioavailability than the free drug after intravenous injection in Wistar rats. In the mouse model of NASH, PBMM/SKLB023 alleviated hepatic lipid accumulation, inflammation, and fibrosis to a significantly greater extent than free SKLB023. Conclusion: PBMM/SKLB023 shows therapeutic potential for treating NASH and liver fibrosis.
Collapse
Affiliation(s)
- Yanping Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | | | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Jinhang Zhang
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Rui Li
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Shiyun Pu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Tong Wu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| | - Liang Ma
- Division of Nephrology, Kidney Research Institute, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu610041, People’s Republic of China
| | - Jinhan He
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction
| |
Collapse
|
12
|
Yu J, He JQ, Chen DY, Pan QL, Yang JF, Cao HC, Li LJ. Dynamic changes of key metabolites during liver fibrosis in rats. World J Gastroenterol 2019; 25:941-954. [PMID: 30833800 PMCID: PMC6397726 DOI: 10.3748/wjg.v25.i8.941] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/10/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Fibrosis is the single most important predictor of significant morbidity and mortality in patients with chronic liver disease. Established non-invasive tests for monitoring fibrosis are lacking, and new biomarkers of liver fibrosis and function are needed.
AIM To depict the process of liver fibrosis and look for novel biomarkers for diagnosis and monitoring fibrosis progression.
METHODS CCl4 was used to establish the rat liver fibrosis model. Liver fibrosis process was measured by liver chemical tests, liver histopathology, and Masson’s trichrome staining. The expression levels of two fibrotic markers including α-smooth muscle actin and transforming growth factor β1 were assessed using immunohistochemistry and real-time polymerase chain reaction. Dynamic changes in metabolic profiles and biomarker concentrations in rat serum during liver fibrosis progression were investigated using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry. The discriminatory capability of potential biomarkers was evaluated by receiver operating characteristic (ROC) curve analysis.
RESULTS To investigate the dynamic changes of metabolites during the process of liver fibrosis, sera from control and fibrosis model rats based on pathological results were analyzed at five different time points. We investigated the association of liver fibrosis with 21 metabolites including hydroxyethyl glycine, L-threonine, indoleacrylic acid, β-muricholic acid (β-MCA), cervonoyl ethanolamide (CEA), phosphatidylcholines, and lysophosphatidylcholines. Two metabolites, CEA and β-MCA, differed significantly in the fibrosis model rats compared to controls (P < 0.05) and showed prognostic value for fibrosis. ROC curve analyses performed to calculate the area under the curve (AUC) revealed that CEA and β-MCA differed significantly in the fibrosis group compared to controls with AUC values exceeding 0.8, and can clearly differentiate early stage from late stage fibrosis or cirrhosis.
CONCLUSION This study identified two novel biomarkers of fibrosis, CEA and β-MCA, which were effective for diagnosing fibrosis in an animal model.
Collapse
Affiliation(s)
- Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Qin He
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - De-Ying Chen
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Qiao-Ling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Jin-Feng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Hong-Cui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
13
|
Huang Y, Zhang J, Wang G, Chen X, Zhang R, Liu H, Zhu J. Oxymatrine exhibits anti-tumor activity in gastric cancer through inhibition of IL-21R-mediated JAK2/STAT3 pathway. Int J Immunopathol Pharmacol 2018; 32:2058738418781634. [PMID: 30103640 PMCID: PMC6096673 DOI: 10.1177/2058738418781634] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oxymatrine (OMT) as a type of alkaloids collected from Sophora flavescens Ait exerts some biological functions including anticancer properties. Here, we investigated the therapeutic effects of OMT in gastric cancer cells (HGC 27 and AGS). As a result, the exposure of gastric cancer (GC) cells to OMT contributed to the suppression of cell proliferation and invasion. Interleukin 21 receptor (IL-21R) was identified to be differentially expressed between OMT treatment group (4 mg/mL) and control group (0 mg/mL), and knockdown of IL-21R repressed cell proliferation and invasion via inactivation of the JAK2/STAT3 pathway. The rescue experiment showed that IL-21R overexpression attenuated the anti-tumor effects of OMT through activation of the JAK2/STAT3 pathway. Moreover, the expression of IL-21R was significantly upregulated in GC samples compared with the adjacent normal tissues and associated with overall survival (OS) and tumor recurrence of GC patients. Taken together, in this study, we evaluated the anti-tumor effects of OMT on GC by investigating proliferation and invasion ability changes, and our findings show that OMT exhibits effects via regulation of JAK/STAT signaling pathway. Through the mechanism study, we may enlighten the potential therapeutic target for treatment of GC.
Collapse
Affiliation(s)
- Yanxia Huang
- 1 Department of Traditional Chinese Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ge Wang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Chen
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rui Zhang
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hui Liu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinshui Zhu
- 2 Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
14
|
Gu LL, Shen ZL, Li YL, Bao YQ, Lu H. Oxymatrine Causes Hepatotoxicity by Promoting the Phosphorylation of JNK and Induction of Endoplasmic Reticulum Stress Mediated by ROS in LO2 Cells. Mol Cells 2018; 41:401-412. [PMID: 29754474 PMCID: PMC5974617 DOI: 10.14348/molcells.2018.2180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/23/2017] [Accepted: 01/16/2018] [Indexed: 12/11/2022] Open
Abstract
Oxymatrine (OMT) often used in treatment for chronic hepatitis B virus infection in clinic. However, OMT-induced liver injury has been reported. In this study, we aim to investigate the possible mechanism of OMT-induced hepatotoxicity in human normal liver cells (L02). Exposed cells to OMT, the cell viability was decreased and apoptosis rate increased, the intracellular markers of oxidative stress were changed. Simultaneously, OMT altered apoptotic related proteins levels, including Bcl-2, Bax and pro-caspase-8/-9/-3. In addition, OMT enhanced the protein levels of endoplasmic reticulum (ER) stress makers (GRP78/Bip, CHOP, and cleaved-Caspase-4) and phosphorylation of c-Jun N-terminal kinase (p-JNK), as well as the mRNA levels of GRP78/Bip, CHOP, caspase-4, and ER stress sensors (IREI, ATF6, and PERK). Pre-treatment with Z-VAD-fmk, JNK inhibitor SP600125 and N-acetyl-l-cysteine (NAC), a ROS scavenger, partly improved the survival rates and restored OMT-induced cellular damage, and reduced caspase-3 cleavage. SP600125 or NAC reduced OMT-induced p-JNK and NAC significantly lowered caspase-4. Furthermore, 4-PBA, the ER stress inhibitor, weakened inhibitory effect of OMT on cells, on the contrary, TM worsen. 4-PBA also reduced the levels of p-JNK and cleaved-caspase-3 proteins. Therefore, OMT-induced injury in L02 cells was related to ROS mediated p-JNK and ER stress induction. Antioxidant, by inhibition of p-JNK or ER stress, may be a feasible method to alleviate OMT-induced liver injury.
Collapse
Affiliation(s)
- Li-li Gu
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Zhe-lun Shen
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Yang-Lei Li
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Yi-Qi Bao
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| | - Hong Lu
- College of Pharmaceutical science, Zhejiang Chinese Medical University, Hangzhou 310053, Zhejiang Province,
China
| |
Collapse
|
15
|
Gao J, Qin XJ, Jiang H, Chen JF, Wang T, Zhang T, Xu SZ, Song JM. Detecting serum and urine metabolic profile changes of CCl 4-liver fibrosis in rats at 12 weeks based on gas chromatography-mass spectrometry. Exp Ther Med 2017; 14:1496-1504. [PMID: 28810615 PMCID: PMC5525970 DOI: 10.3892/etm.2017.4668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/18/2016] [Indexed: 12/13/2022] Open
Abstract
Liver fibrosis is caused by liver injury induced by a number of chronic liver diseases, including schistosome infection, hepatitis infection, metabolic disease, alcoholism and cholestasis. The tissue damage occurring after injury or inflammation of the liver is a reversible lesion; however, liver fibrosis has become a worldwide problem and poses a threat to human health. The development of an effective drug for the prevention and treatment of liver fibrosis is ongoing and uses information from different occurrences of liver fibrosis. In the present study, carbon tetrachloride (CCl4)-induced metabonomic changes in serum and urine at 12 weeks were analyzed using gas chromatography-mass spectrometry (GC/MS) to investigate potential biomarkers. Liver fibrosis was induced in rats by subcutaneous injections of CCl4 twice a week for 12 consecutive weeks. Histopathological changes were used to assess the successful production of a CCl4-induced liver fibrosis model. Serum and urine samples from the two groups were collected at 12 weeks. The metabolic profile changes were analyzed by GC/MS alongside principal component analysis and orthogonal projections to latent structures. Metabolic profile studies indicated that the clustering of the two groups could be separated and seven metabolites in serum and five metabolites in urine were identified. In serum, the metabolites identified included isoleucine, L-malic acid, α-copper, carnitine, hippuric acid, glutaric acid and glucose. In urine 2-hydroxy butyric acid, isoleucine, N-acetyl-β-alanine, cytidine and corticoid were identified. The present study demonstrated that the pathogenesis of liver fibrosis may be associated with the dysfunction of a number of metabolic pathways, including glucose, amino acid, P450, fatty acid, nucleic acid, water-electrolyte and glutathione biosynthesis. Assessing potential biomarkers may therefore provide novel targets and theories for the innovation of novel drugs to prevent and cure liver fibrosis.
Collapse
Affiliation(s)
- Jiarong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Xiu-Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Hui Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jin-Feng Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ting Wang
- College of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Ting Zhang
- College of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Shuang-Zhi Xu
- College of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| | - Jun-Mei Song
- College of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
16
|
Liu M, Jin S, Yan H, Du S. Effect of oxymatrine HSPC liposomes on improving bioavailability, liver target distribution and hepatoprotective activity of oxymatrine. Eur J Pharm Sci 2017; 104:212-220. [PMID: 28389275 DOI: 10.1016/j.ejps.2017.03.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 02/07/2023]
Abstract
Oxymatrine (OMT) and matrine (MT) are two naturally occurring alkaloids, both of them provide anti-hepatitis effects. However OMT effect was heavily limited due to its low bioavailability, short half-life and whole body distribution. Herein, we investigated hydrogenated soybean phosphatidylcholine (HSPC) liposomes made by pH gradient active loading to understand the improved hepatoprotective effect mechanisms. Pharmacokinetics researches demonstrated the half-life time of OMT HSPC liposomes was 17.10h in mice. Compared with OMT solution, AUC (0-8) of OMT and MRT (0-8) of MT had been increased 11.8 fold and 14.3 fold in HSPC liposomes. Moreover, tissue distribution revealed the relative AUCs of total alkaloids in liver of OMT HSPC liposomes was as 4.18 times as that of OMT solution. Our data suggested that pathological topical necrosis and mild vacuolar degeneration of liver progressively returned to normal, and serum level of alanine-aminotransferase (ALT) and aspartate-aminotransferase (AST) were significantly reduced after treating with OMT HSPC liposomes in acute liver injury mice induced by CCl4. Pharmacokinetics, biodistribution and pathological researches manifested that HSPC liposomes served as an ideal and potential oxymatrine liver target carrier to prolong OMT retention time and maintain high therapeutically level in liver.
Collapse
Affiliation(s)
- Meifeng Liu
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 51640, China.
| | - Sha Jin
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 51640, China
| | - Hao Yan
- School of Chemistry and Chemical Engineering, Key Laboratory of Functional Molecular Engineering of Guangdong Province, South China University of Technology, Guangzhou 51640, China
| | - Song Du
- Guangdong Jiabo Pharmaceutical Co., Ltd., Qingyuan 511517, China.
| |
Collapse
|
17
|
Lu H, Zhang L, Gu LL, Hou BY, Du GH. Oxymatrine Induces Liver Injury through JNK Signalling Pathway Mediated by TNF-αIn Vivo. Basic Clin Pharmacol Toxicol 2016; 119:405-11. [DOI: 10.1111/bcpt.12608] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/04/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Hong Lu
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou China
| | - Li Zhang
- Institute of Materia Medica; Chinese Academy of Medical Sciences; Beijing China
| | - Li-Li Gu
- College of Pharmaceutical Science; Zhejiang Chinese Medical University; Hangzhou China
| | - Bi-Yu Hou
- Institute of Materia Medica; Chinese Academy of Medical Sciences; Beijing China
| | - Guan-Hua Du
- Institute of Materia Medica; Chinese Academy of Medical Sciences; Beijing China
| |
Collapse
|
18
|
Wang HW, Shi L, Xu YP, Qin XY, Wang QZ. Oxymatrine inhibits renal fibrosis of obstructive nephropathy by downregulating the TGF-β1-Smad3 pathway. Ren Fail 2016; 38:945-51. [PMID: 27050799 DOI: 10.3109/0886022x.2016.1164185] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This study investigated whether oxymatrine (OMT) treatment can ameliorate renal interstitial fibrosis in unilateral ureteral obstruction (UUO) mice model. Moreover, the potential mechanisms of such treatment were analyzed. Twenty-four C57/BL6 mice were randomly divided into three groups, namely sham group, vehicle plus unilateral ureteral obstruction (UUO)-treated group, and 100 mg/kg/d OMT plus UUO-treated group. All mice were euthanized seven days after surgery, and their kidneys were harvested. Renal injury, fibrosis, expression of proinflammatory cytokines, and the transforming growth factor-β1/Smads (TGF-β/Smads) and nuclear factor-kappa B (NF-κB)-signaling pathways were assessed. The results showed OMT significantly prevented kidney injury and fibrosis, as evidenced by decreased expression of collagen-1 and fibronectin. Furthermore, OMT administration inhibited the release of inflammatory factors including tumor necrosis factor-α, (TNF-α) interleukin-1β (IL-1β), and interleukin-6 (IL-6), as well as phosphorylated NF-κB p65. In addition, OMT blocked the activation of myofibroblasts by inhibiting the TGF-β/Smad3-signaling pathway. The findings indicate that OMT-attenuated renal fibrosis and inflammation, and this renoprotective effect may be ascribed to the inactivation of the TGF-β/Smad3 and NF-κB p65 pathways.
Collapse
Affiliation(s)
- Hong-Wei Wang
- a Department of Cardiology , People's Hospital of Xianfeng County , Xianfeng , China
| | - Lei Shi
- b Department of Oncology , Renmin Hospital of Wuhan University , Wuhan , China
| | - Yan-Ping Xu
- c Department of Scientific Research Office , Renmin Hospital of Wuhan University , Wuhan , China
| | - Xing-Ya Qin
- d Department of Orthopedics , People's Hospital of Xianfeng County , Xianfeng , China
| | - Qi-Zhi Wang
- e Department of Gastroenterology , People's Hospital of Xianfeng County , Xianfeng , China
| |
Collapse
|
19
|
Chen L, Lv D, Wang D, Chen X, Zhu Z, Cao Y, Chai Y. A novel strategy of profiling the mechanism of herbal medicines by combining network pharmacology with plasma concentration determination and affinity constant measurement. MOLECULAR BIOSYSTEMS 2016; 12:3347-3356. [DOI: 10.1039/c6mb00500d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herbal medicines have long been widely used in the treatment of various complex diseases in China.
Collapse
Affiliation(s)
- Langdong Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Diya Lv
- Center of Analysis and Testing
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Dongyao Wang
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Xiaofei Chen
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Zhenyu Zhu
- Center of Analysis and Testing
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Yan Cao
- Department of Biochemical Pharmacy
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| | - Yifeng Chai
- Department of Pharmaceutical Analysis
- School of Pharmacy
- Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|
20
|
Wang L, Hu X, Shen B, Xie Y, Shen C, Lu Y, Qi J, Yuan H, Wu W. Enhanced stability of liposomes against solidification stress during freeze-drying and spray-drying by coating with calcium alginate. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2015.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
21
|
Kumar V, Mondal G, Dutta R, Mahato RI. Co-delivery of small molecule hedgehog inhibitor and miRNA for treating liver fibrosis. Biomaterials 2015; 76:144-56. [PMID: 26524535 DOI: 10.1016/j.biomaterials.2015.10.047] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 01/18/2023]
Abstract
In liver fibrosis, secretion of growth factors and hedgehog (Hh) ligands by hepatic parenchyma upon repeated insults results in transdifferentiation of quiescent hepatic stellate cells (HSCs) into active myofibroblasts which secrete excessive amounts of extracellular matrix (ECM) proteins. An Hh inhibitor GDC-0449 and miR-29b1 can play an important role in treating liver fibrosis by inhibiting several pro-fibrotic genes. Our in-silico analysis indicate that miR-29b1 targets several profibrotic genes like collagen type I & IV, c-MYC, PDGF-β and PI3K/AKT which are upregulated in liver fibrosis. Common bile duct ligation (CBDL) resulted in an increase in Ptch-1, Shh and Gli-1 expression. miR-29b1 and GDC-0449 were co-formulated into micelles using methoxy poly(ethylene glycol)-block-poly(2-methyl-2-carboxyl-propylene carbonate-graft-dodecanol-graft-tetraethylenepentamine) (mPEG-b-PCC-g-DC-g-TEPA) copolymer, and injected systemically into CBDL mice. High concentrations of GDC-0449 and miR-29b1 were delivered to liver cells as determined by in situ liver perfusion at 30 min post systemic administration of their micelle formulation. There was a significant decrease in collagen deposition in the liver and serum injury markers, leading to improvement in liver morphology. Combination therapy was more effective in providing hepatoprotection, lowering liver injury related serum enzyme levels, reducing fibrotic protein markers such as collagen, α-SMA, FN-1 and p-AKT compared to monotherapy. In conclusion, inhibition of Hh pathway and restoration of miR-29b1 have the potential to act synergistically in treating CBDL-induced liver fibrosis in mice.
Collapse
Affiliation(s)
- Virender Kumar
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Goutam Mondal
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rinku Dutta
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|