1
|
Sartawi Z, Blackshields C, Ariamanesh A, Farag FF, Griffin B, Crean A, Devine K, Elkhashab M, Aldejohann AM, Kurzai O, Faisal W. Glass Microneedles: A Case Study for Regulatory Approval Using a Quality by Design Approach. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305834. [PMID: 37950607 DOI: 10.1002/adma.202305834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/25/2023] [Indexed: 11/12/2023]
Abstract
In this paper, a roadmap is provided for the regulatory approval of one of the exciting and dynamic drug delivery fields, microneedles, by using a Quality by Design approach to pharmaceutical product development. In this regard, a quality target product profile (QTPP) and the critical quality attributes (CQA) of microneedles are identified. A case study of the recently patented method of fabricating glass microneedles entirely from a therapeutic agent, thus eliminating the requirement for additional excipients is discussed. The glass microneedle, ArrayPatch, is a propriety wearable device with platform potential consisting of an array of sharp, but painless, dissolvable microneedles manufactured with 100% drug. The microneedles penetrate the skin on application and dissolve to deliver a locally effective dose. The in vitro characterization of the microneedle CQAs under WHO-guided stability conditions will be described to assess the manufacturing readiness of ArrayPatch. A live technical video is also provided, presenting a unique procedure of jugular vein cannulation through the ear vein of a pig animal model to study the in vivo pharmacokinetics of ArrayPatch compared to standard-of-care marketed products.
Collapse
Affiliation(s)
- Ziad Sartawi
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | | | - Arefe Ariamanesh
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Fatma Fawzy Farag
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
- Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Brendan Griffin
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Abina Crean
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Ken Devine
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Mohamed Elkhashab
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| | - Alexander Maximilian Aldejohann
- Institute for Hygiene and Microbiology, University of Wuerzburg, 97080, Wuerzburg, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Oliver Kurzai
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745, Jena, Germany
| | - Waleed Faisal
- School of Pharmacy, University College Cork, Cork, T12 K8AF, Ireland
| |
Collapse
|
2
|
Bhayani D, Mehta P, patel M, Naik H, Nathaniel TN, Khan S. Ground-based selected ionizing space radiation effects on stability of APIs and their formulations. J Pharm Biomed Anal 2022; 220:115019. [DOI: 10.1016/j.jpba.2022.115019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022]
|
3
|
Jacobs GP. Irradiation of pharmaceuticals: A literature review. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Wzgarda A, Dettlaff K, Rostalska M, Pabian E, Regulska K, Stanisz BJ. Thermo-, Radio- and Photostability of Perindopril Tert-butyloamine in The Solid State. Comparison to Other Angiotensin Converting Enzyme Inhibitors. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2017; 16:1007-1018. [PMID: 29201089 PMCID: PMC5610755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The main aim of this study was determination of thermo- radio- and photostability of perindopril tert-butyloamine (PER) therefore the efficiency and safety of the therapy could be maintained. A chromatographic method (RP-HPLC) had been validated before use to determine PER loss. The evaluation of stability properties of PER in solid state under the influence of isothermal condition, relative humidity - RH = 0% and 76.4%, exposure to 6 mln lux h and ionizing radiation generated by beam of electrons of 25-400 kGy was investigated. Studies pointed out that presence of moisture changes a kinetic model of PER degradation; lack of moisture in the air generates a first-order kinetic model of the reaction, increase humidity generates the autocatalytic model. PER proved to be resistant for ionizing radiation. It is possible to use radiation sterilization and decontamination (dose 25 kGy) with no significant loss of content. Investigation of PER photostability proved, that after exposure to 6 mln lux h physicochemical parameters are acceptable. Among all the ACE-I, PER has one of the shortest t0,5. PER should be stored in closed containers, protected from high temperature and moisture. PER is referred to be photostable and resistant for radiodegradation.
Collapse
Affiliation(s)
- Anna Wzgarda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan Unversity of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland. ,Corresponding author: E-mail:
| | - Katarzyna Dettlaff
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan Unversity of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland.
| | - Martyna Rostalska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan Unversity of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland.
| | - Ewa Pabian
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan Unversity of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland.
| | - Katarzyna Regulska
- The Oncology Center of Wielkopolska, 15 Garbary St., 61-866 Poznan, Poland.
| | - Beata Jadwiga Stanisz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan Unversity of Medical Sciences, 6 Grunwaldzka St., 60-780 Poznan, Poland.
| |
Collapse
|
5
|
Kryczyk A, Żmudzki P, Hubicka U. Determination of itraconazole and its photodegradation products with kinetic evaluation by ultra-performance liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 2016; 30:1733-1743. [PMID: 27116708 DOI: 10.1002/bmc.3747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 11/11/2022]
Abstract
A simple and reproducible UPLC-MS/MS method for the determination of itraconazole (ITZ) and its photodegradation products formed during exposure to UV-A radiation was developed. Chromatographic separations were carried out using an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm particle size). The column was maintained at 40°C, and eluted under gradient conditions from 100% to 50% of eluent A over 13 min, at a flow rate of 0.3 mL min-1 . Eluent A was 0.1% (v/v) formic acid in water; eluent B was 0.1% (v/v) formic acid in acetonitrile. The linear regression analysis for the calibration curve showed a good linear correlation over the concentration range 0.0066-0.15 mg mL-1 with determination coefficient > 0.99. The activities of some photocatalysts during degradation process of ITZ were compared. It was found that indirect photodegradation of ITZ was more effective than direct photolysis. Under our experimental conditions the photodegradation rate constant depended on the applied catalysts with catalytic activity decreasing in the following pattern: FeCl3 > TiO2 /FeCl3 > TiO2 . The kinetic analysis of the photodegradation data revealed that the degradation of the ITZ follows first-order kinetics. The photodegradation products of ITZ were identified, and their fragmentation pathways, derived from MS/MS data, were proposed. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Agata Kryczyk
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland.
| | - Paweł Żmudzki
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| | - Urszula Hubicka
- Department of Inorganic and Analytical Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, 9 Medyczna Street, 30-688, Kraków, Poland
| |
Collapse
|