1
|
Badruddoza AZM, Moseson DE, Lee HG, Esteghamatian A, Thipsay P. Role of rheology in formulation and process design of hot melt extruded amorphous solid dispersions. Int J Pharm 2024; 664:124651. [PMID: 39218326 DOI: 10.1016/j.ijpharm.2024.124651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Hot melt extrusion (HME) has been widely used as a continuous and highly flexible pharmaceutical manufacturing process for the production of a variety of dosage forms. In particular, HME enables preparation of amorphous solid dispersions (ASDs) which can improve bioavailability of poorly water-soluble drugs. The rheological properties of drug-polymer mixtures can significantly influence the processability of drug formulations via HME and eventually the end-use product properties such as physical stability and drug release. The objective of this review is to provide an overview of various rheological techniques and properties that can be used to evaluate the flow behavior and processability of the drug-polymer mixtures as well as formulation characteristics such as drug-polymer interactions, miscibility/solubility, and plasticization to improve the HME processability. An overview of the thermodynamics and kinetics of ASD processing by HME is also provided, as well as aspects of scale-up and process modeling, highlighting rheological properties on formulation design and process development. Overall, this review provides valuable insights into critical rheological properties which can be used as a predictive tool to optimize the HME processing conditions.
Collapse
Affiliation(s)
- Abu Zayed Md Badruddoza
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA.
| | - Dana E Moseson
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Hong-Guann Lee
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Amir Esteghamatian
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Priyanka Thipsay
- Pharmaceutical Sciences Small Molecule, Worldwide Research and Development, Pfizer Inc., Groton, CT 06340, USA
| |
Collapse
|
2
|
Lohmann CA, Bochmann E, Kyeremateng SO. Impact of surfactant raw material variability on extrudate clarity appearance (transparency) in HME continuous manufacturing. Pharm Dev Technol 2024; 29:684-690. [PMID: 38995216 DOI: 10.1080/10837450.2024.2378333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/09/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
The appearance of an extrudate formulation was monitored during hot-melt extrusion (HME) continuous manufacturing over 3 days. The formulation matrix consisted of a polymeric component, copovidone, and a low molecular weight surfactant, polysorbate 80. Based on studies prior to the continuous manufacturing, the desired appearance of the target extrudate is translucent. Although process parameters such as feed rate and screw speed were fixed during the continuous manufacturing, the extrudate appearance changed over time from turbid to translucent. For root-cause investigation, the extrudates were analyzed offline by differential scanning calorimetry (DSC) and advanced polymer chromatography (APC™). Although the polysorbate 80 content of both turbid and translucent extrudates was within target, the glass transition temperature of the turbid extrudate was 2 °C above expected value. The observed turbidity was traced to lot-to-lot variability of the polysorbate 80 used in the continuous manufacturing, where APC™ analysis revealed that the relative content of the low molecular weight component varied from 23% to 27% in correlation with the evolution from turbid to translucent extrudates. This work stresses the importance of taking feeding material variability into account during continuous manufacturing.
Collapse
|
3
|
Antipas GSE, Reul R, Voges K, Kyeremateng SO, Ntallis NA, Karalis KT, Miroslaw L. System-agnostic prediction of pharmaceutical excipient miscibility via computing-as-a-service and experimental validation. Sci Rep 2024; 14:15106. [PMID: 38956156 PMCID: PMC11219749 DOI: 10.1038/s41598-024-65978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024] Open
Abstract
We applied computing-as-a-service to the unattended system-agnostic miscibility prediction of the pharmaceutical surfactants, Vitamin E TPGS and Tween 80, with Copovidone VA64 polymer at temperature relevant for the pharmaceutical hot melt extrusion process. The computations were performed in lieu of running exhaustive hot melt extrusion experiments to identify surfactant-polymer miscibility limits. The computing scheme involved a massively parallelized architecture for molecular dynamics and free energy perturbation from which binodal, spinodal, and mechanical mixture critical points were detected on molar Gibbs free energy profiles at 180 °C. We established tight agreement between the computed stability (miscibility) limits of 9.0 and 10.0 wt% vs. the experimental 7 and 9 wt% for the Vitamin E TPGS and Tween 80 systems, respectively, and identified different destabilizing mechanisms applicable to each system. This paradigm supports that computational stability prediction may serve as a physically meaningful, resource-efficient, and operationally sensible digital twin to experimental screening tests of pharmaceutical systems. This approach is also relevant to amorphous solid dispersion drug delivery systems, as it can identify critical stability points of active pharmaceutical ingredient/excipient mixtures.
Collapse
Affiliation(s)
| | - Regina Reul
- AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany
| | - Kristin Voges
- AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany
| | - Samuel O Kyeremateng
- AbbVie Deutschland GmbH & Co. KG, Development Sciences, 67061, Ludwigshafen, Germany.
| | | | | | - Lukasz Miroslaw
- Azure High Performance Computing and Artificial Intelligence, Microsoft Switzerland, The Circle 02, 8058, Zurich, Switzerland
| |
Collapse
|
4
|
Lalge R, Kumar NSK, Suryanarayanan R. Implications of Drug-Polymer Interactions on Time-Temperature-Transformation: A Tool to Assess the Crystallization Propensity in Amorphous Solid Dispersions. Mol Pharm 2023; 20:1806-1817. [PMID: 36744878 DOI: 10.1021/acs.molpharmaceut.2c01004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The critical cooling rate (CRcrit) to prevent drug crystallization during the preparation of nifedipine amorphous solid dispersions (ASDs) was determined through the time-temperature-transformation (TTT) diagram. ASDs were prepared with polyvinylpyrrolidone, hydroxypropylmethyl cellulose acetate succinate, and poly(acrylic acid). ASDs were subjected to isothermal crystallization over a wide temperature range, and the time and temperature dependence of nifedipine crystallization onset time (tC) was determined by differential scanning calorimetry (DSC) and synchrotron X-ray diffractometry. TTT diagrams were generated for ASDs, which provided the CRcrit for the dispersions prepared with each polymer. The observed differences in CRcrit could be explained in terms of differences in the strength of interactions. Stronger drug-polymer interactions led to longer tC and decreased CRcrit. The effect of polymer concentrations (4-20% w/w) was also influenced by the strength of the interaction. The CRcrit of amorphous NIF was ∼17.5 °C/min. Addition of 20% w/w polymer resulted in a CRcrit of ∼0.05, 0.2, and 11 °C/min for the dispersions prepared with PVP, HPMCAS, and PAA, respectively.
Collapse
Affiliation(s)
- Rahul Lalge
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - N S Krishna Kumar
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| | - Raj Suryanarayanan
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-177 WDH, 308 Harvard Street S.E., Minneapolis, Minnesota55455, United States
| |
Collapse
|
5
|
Amorphous characterization of pharmaceutical drug substances enabled by the elastic modulus mapping of atomic force microscope. Int J Pharm 2022; 621:121784. [DOI: 10.1016/j.ijpharm.2022.121784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/19/2022]
|
6
|
Thompson SA, Williams RO. Specific mechanical energy - An essential parameter in the processing of amorphous solid dispersions. Adv Drug Deliv Rev 2021; 173:374-393. [PMID: 33781785 DOI: 10.1016/j.addr.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
Specific mechanical energy (SME) is a frequently overlooked but essential parameter of hot-melt extrusion (HME). It can determine whether an amorphous solid dispersion (ASD) can be successfully processed. A minimum combination of thermal input and SME is required to convert a crystalline active pharmaceutical product (API) into its amorphous form. A maximum combination is allowed before it or the carrier polymer chemically degrades. This has important implications on design space. SME input during HME provides information on the totality of the effect of various independent processing parameters such as screw speed, feed rate, and complex viscosity. If only these independent processing parameters are considered separately instead of SME, then important information would be lost regarding the interaction of these parameters and their ability to affect ASD formulation. A complete understanding of the HME process requires an analysis of SME. This paper provides a review of SME use in the pharmaceutical processing of ASDs, the importance of SME in terms of a variety of formulation qualities, and novel future uses of SME. Theoretical background is discussed, along with the relative importance of thermal and mechanical input on various nonsolvent ASD processing methods.
Collapse
|
7
|
Timur SS, Gürsoy RN. Design and in vitro evaluation of solid SEDDS for breast cancer therapy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Duan P, Lamm MS, Yang F, Xu W, Skomski D, Su Y, Schmidt-Rohr K. Quantifying Molecular Mixing and Heterogeneity in Pharmaceutical Dispersions at Sub-100 nm Resolution by Spin Diffusion NMR. Mol Pharm 2020; 17:3567-3580. [DOI: 10.1021/acs.molpharmaceut.0c00592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Pu Duan
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Matthew S. Lamm
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Fengyuan Yang
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Daniel Skomski
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Klaus Schmidt-Rohr
- Department of Chemistry, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
9
|
|
10
|
Santiago D, Mendoza A, Morales Z, Santos J. Characterization of amorphous celecoxib mixed with plasticizing (TPGS) and anti-plasticizing (PVP) ingredients using Hot Melt Extrusion. J Pharm Innov 2019; 15:357-364. [PMID: 33343766 DOI: 10.1007/s12247-019-09377-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose Hot melt extrusion (HME) has demonstrated to be an adequate compounding method for poorly-soluble pharmaceutical drugs, as it increases its solubility by fixing its amorphous solid-state using polymers (plasticizing) and other ingredients (non- plasticizing). However, it's amorphous state of the drug and the stability of the amorphous state will greatly depend on its interactions with these (plasticizing or not). Methods In this study, we aimed at characterizing the impact of the combination of plasticizing (TPGS) and anti-plasticizing (PVP) ingredients in amorphous celecoxib prepared using HME in terms of chemical interactions between the components (FTIR, Raman and NMR), viscoelasticity (loss and storage modulus) and required energy for flow (activation energy). Different celecoxib/PVP/TPGS ratios were studied to understand the synergistic effect of PVP and TPGS in inhibiting the crystallization of celecoxib when preparing amorphous dispersions using HME. We aimed at linking the viscoelastic properties of the melt with the resulting amorphous state described by the chemical interactions upon extrusion. Results The amorphous state of celecoxib was evidenced by strengthening of H-bonding between celecoxib and PVP, lack of characteristic crystalline peaks of celecoxib, and deshielding of aromatic protons. The melt was also characterized in terms of viscoelastic temperature dependent behavior (liquid G"; elastic G'), where increasing amounts of TPGS and PVP showed opposites effects; TPGS reduced the viscoelastic response whereas PVP increased it. Calculated melt activation energies (Ea) from the temperature dependent viscosity revealed a threshold of TPGS concentration where samples with 1% w/w of TPGS showed higher flow activation energies (higher Ea) independent of the drug/polymer ratios, compared to samples with higher amounts of TPGS. Conclusions Low drug content combined with anti-plasticizing (PVP) amounts and relatively low plasticizing (TPGS) amounts yields an amorphous dispersion that is characterized with strong H-bonding due to efficient mixing using HME.
Collapse
Affiliation(s)
| | | | | | - Javier Santos
- Molecular Science Research Building, University of Puerto Rico
| |
Collapse
|
11
|
Liu Y, Sun C, Li W, Adu-Frimpong M, Wang Q, Yu J, Xu X. Preparation and Characterization of Syringic Acid-Loaded TPGS Liposome with Enhanced Oral Bioavailability and In Vivo Antioxidant Efficiency. AAPS PharmSciTech 2019; 20:98. [PMID: 30719694 DOI: 10.1208/s12249-019-1290-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, syringic acid-loaded TPGS liposome (SA-TPGS-Ls) was successfully prepared to improve oral bioavailability of syringic acid (SA). SA is a natural and notable antioxidant activity compound with its limited bioavailability ascribable to its poor aqueous solubility and fast elimination. Recently, TPGS has become a perfect molecular biomaterial in developing several carrier systems with sustained, controlled, and targeted the drug delivery. SA-TPGS-Ls was prepared via thin-film dispersion method and characterized in terms of particle size, stability, morphology, and encapsulation efficiency (EE). The results showed that SA-TPGS-Ls had regular spherical-shaped nanoparticles with EE of 96.48 ± 0.76%. The pharmacokinetic studies demonstrated a delayed MRT and prolonged t1/2, while relative oral bioavailability increased by 2.8 times. Tissue distribution showed that SA-TPGS-Ls maintained liver drug concentration while delayed elimination was also observed in the kidney. In CCl4-induced hepatotoxicity study, the activities of hepatic T-AOC, GSH-Px, CAT, GSH, and SOD were greatly elevated, while serum biological markers ALT, AST, and AKP were reduced after treatment of mice with SA-TPGS-Ls. Histopathological studies confirmed that SA-TPGS-Ls could remarkably improve the status of hepatic tissues. Collectively, SA-TPGS-Ls significantly improved the drug encapsulation efficiency, stability coupled with bioavailability of SA, hence increasing in vivo antioxidant activity of the drug.
Collapse
|
12
|
Meng F, Ferreira R, Zhang F. Effect of surfactant level on properties of celecoxib amorphous solid dispersions. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.11.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Moseson DE, Taylor LS. The application of temperature-composition phase diagrams for hot melt extrusion processing of amorphous solid dispersions to prevent residual crystallinity. Int J Pharm 2018; 553:454-466. [PMID: 30393199 DOI: 10.1016/j.ijpharm.2018.10.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/26/2022]
Abstract
Hot melt extrusion (HME) can be used to produce amorphous solid dispersions (ASDs) at temperatures below the drug's melting point if the drug and polymer exhibit melting point depression. However, the risk of residual crystallinity becomes significant. The purpose of this study was to apply the temperature-composition phase diagram to the HME process, correlating process conditions to ASD residual crystallinity, and identifying the formulation critical temperature, which defines the theoretical minimum processing temperature. The phase diagram of indomethacin (IDM) and polyvinylpyrrolidone/vinyl acetate copolymer (PVPVA) was generated using melting point depression measurements coupled with Flory-Huggins theory. Extrudates were manufactured above, at, and below the formulation critical temperature (Tc) as identified from the phase diagram, with a range of residence times, and characterized for crystallinity. Below the Tc, a fully amorphous sample could not be prepared. Above Tc, sufficient residence time led to amorphous samples. A processing operating design space diagram with three regimes was generated to correlate temperature and residence time factors with process outcome. In conclusion, phase diagrams provide a rational basis for designing hot melt extrusion processes of amorphous solid dispersions to minimize residual crystalline content, delineating the minimum processing temperature based on thermodynamic considerations.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
14
|
Censi R, Gigliobianco MR, Casadidio C, Di Martino P. Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018; 10:E89. [PMID: 29997332 PMCID: PMC6160992 DOI: 10.3390/pharmaceutics10030089] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/22/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
Hot-melt extrusion (HME) is a well-accepted and extensively studied method for preparing numerous types of drug delivery systems and dosage forms. It offers several advantages: no solvents are required, it is easy to scale up and employ on the industrial level, and, in particular, it offers the possibility of improving drug bioavailability. HME involves the mixing of a drug with one or more excipients, in general polymers and even plasticizers, which can melt, often forming a solid dispersion of the drug in the polymer. The molten mass is extruded and cooled, giving rise to a solid material with designed properties. This process, which can be realized using different kinds of special equipment, may involve modifications in the drug physicochemical properties, such as chemical, thermal and mechanical characteristics thus affecting the drug physicochemical stability and bioavailability. During process optimization, the evaluation of the drug solid state and stability is thus of paramount importance to guarantee stable drug properties for the duration of the drug product shelf life. This manuscript reviews the most important physicochemical factors that should be investigated while designing and optimizing a hot melt extrusion process, and by extension, during the different pre-formulation, formulation and process, and post-formulation phases. It offers a comprehensive evaluation of the chemical and thermal stability of extrudates, the solid physical state of extrudates, possible drug-polymer interactions, the miscibility/solubility of the drug-polymer system, the rheological properties of extrudates, the physicomechanical properties of films produced by hot melt extrusion, and drug particle dissolution from extrudates. It draws upon the last ten years of research, extending inquiry as broadly as possible.
Collapse
Affiliation(s)
- Roberta Censi
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | | | - Cristina Casadidio
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Via S. Agostino, 62032 Camerino, Italy.
| |
Collapse
|
15
|
A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion. Pharmaceutics 2018; 10:pharmaceutics10020058. [PMID: 29783755 PMCID: PMC6027370 DOI: 10.3390/pharmaceutics10020058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/18/2023] Open
Abstract
Hot-melt extrusion is an option to fabricate amorphous solid dispersions and to enhance oral bioavailability of poorly soluble compounds. The selection of suitable polymer carriers and processing aids determines the dissolution, homogeneity and stability performance of this solid dosage form. A miniaturized extrusion device (MinEx) was developed and Hypromellose acetate succinate type L (HPMCAS-L) based extrudates containing the model drugs neurokinin-1 (NK1) and cholesterylester transfer protein (CETP) were manufactured, plasticizers were added and their impact on dissolution and solid-state properties were assessed. Similar mixtures were manufactured with a lab-scale extruder, for face to face comparison. The properties of MinEx extrudates widely translated to those manufactured with a lab-scale extruder. Plasticizers, Polyethyleneglycol 4000 (PEG4000) and Poloxamer 188, were homogenously distributed but decreased the storage stability of the extrudates. Stearic acid was found condensed in ultrathin nanoplatelets which did not impact the storage stability of the system. Depending on their distribution and physicochemical properties, plasticizers can modulate storage stability and dissolution performance of extrudates. MinEx is a valuable prototyping-screening method and enables rational selection of plasticizers in a time and material sparing manner. In eight out of eight cases the properties of the extrudates translated to products manufactured in lab-scale extrusion trials.
Collapse
|
16
|
Active freeze drying for production of nanocrystal-based powder: A pilot study. Int J Pharm 2018; 536:222-230. [DOI: 10.1016/j.ijpharm.2017.11.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/06/2017] [Accepted: 11/22/2017] [Indexed: 11/20/2022]
|
17
|
Melt extrusion with poorly soluble drugs - An integrated review. Int J Pharm 2017; 535:68-85. [PMID: 29102700 DOI: 10.1016/j.ijpharm.2017.10.056] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 10/29/2017] [Accepted: 10/31/2017] [Indexed: 11/20/2022]
Abstract
Over the last few decades, hot melt extrusion (HME) has emerged as a successful technology for a broad spectrum of applications in the pharmaceutical industry. As indicated by multiple publications and patents, HME is mainly used for the enhancement of solubility and bioavailability of poorly soluble drugs. This review is focused on the recent reports on the solubility enhancement via HME and provides an update for the manufacturing/scaling up aspects of melt extrusion. In addition, drug characterization methods and dissolution studies are discussed. The application of process analytical technology (PAT) tools and use of HME as a continuous manufacturing process may shorten the drug development process; as a result, the latter is becoming the most widely utilized technique in the pharmaceutical industry. The advantages, disadvantages, and practical applications of various PAT tools such as near and mid-infrared, ultraviolet/visible, fluorescence, and Raman spectroscopies are summarized, and the characteristics of other techniques are briefly discussed. Overall, this review also provides an outline for the currently marketed products and analyzes the strengths, weaknesses, opportunities and threats of HME application in the pharmaceutical industry.
Collapse
|
18
|
|
19
|
Zhang F, Repka MA. Pharmaceutical Thermal Processing. AAPS PharmSciTech 2016; 17:1-2. [PMID: 26860744 DOI: 10.1208/s12249-016-0486-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/30/2022] Open
|
20
|
Page S, Maurer R, Wyttenbach N. Structured Development Approach for Amorphous Systems. FORMULATING POORLY WATER SOLUBLE DRUGS 2016. [DOI: 10.1007/978-3-319-42609-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
|