1
|
Mulenga G, Alahmed TAA, Sami F, Majeed S, Ali MS, Le JLJ, Rhu CLQ, Nair RS, Hasan N, Ansari MT. QbD Assisted Systematic Review for Optimizing the Selection of PVP as a Ternary Substance in Enhancing the Complexation Efficiency of Cyclodextrins: a Pilot Study. AAPS PharmSciTech 2024; 25:134. [PMID: 38862663 DOI: 10.1208/s12249-024-02845-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/22/2024] [Indexed: 06/13/2024] Open
Abstract
Inclusion complexes require higher concentration of Beta cyclodextrins (βCD) resulting in increased formulation bulk, toxicity, and production costs. This systematic review offers a comprehensive analysis using Quality by design (QbD) as a tool to predict potential applications of Polyvinylpyrrolidone (PVP) as a ternary substance to address issues of inclusion complexes. We reviewed 623 documents from 2013 to 2023 and Eighteen (18) research papers were selected for statistical and meta-analysis using the QbD concept to identify the most critical factors for selecting drugs and effect of PVP on inclusion complexes. The QbD analysis revealed that Molecular weight (MW), Partition coefficient (Log P), and the auxiliary substance ratio directly affected complexation efficiency (CE), thermodynamic stability in terms of Gibbs free energy (ΔG), and percent drug release. However, Stability constant (Ks) remained unaffected by any of these parameters. The results showed that low MW (250), median Log P (6), and a βCD: PVP ratio of 2:3 would result in higher CE, lower G, and improved drug release. PVP improves drug solubility, enhances delivery and therapeutic outcomes, and counteracts increased drug ionization due to decreased pH. In certain cases, its bulky nature and hydrogen bonding with CD molecules can form non-inclusion complexes. The findings of the study shows that there is potential molecular interaction between PVP and β-cyclodextrins, which possibly enhances the stability of inclusion complexes for drug with low MW and log P values less than 9. The systematic review shows a comprehensive methodology based on QbD offers a replicable template for future investigations into drug formulation research.
Collapse
Affiliation(s)
- Glovanna Mulenga
- School of Pharmacy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Teejan Ameer Abed Alahmed
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Farheen Sami
- School of Pharmaceutical Sciences, CT University, Ferozepur Road, Sidhwan Khurd, 142024, India
| | - Shahnaz Majeed
- Department of Basic Science, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, 30450, Ipoh, Malaysia
| | - Md Sajid Ali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Janice Lo Jia Le
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Carol Lee Qhai Rhu
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia
| | - Nadeem Hasan
- Department of Pharmaceutics, MAM College of Pharmacy, P&T Colony, Kalaburgi, 585102, India
| | - Mohammed Tahir Ansari
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor, Malaysia.
| |
Collapse
|
2
|
Kar S, Das SS, Kundu S, Sahu BD, Kumar KJ, Kesari KK, Singh SK. Intranasal Delivery of Carvedilol- and Quercetin-Encapsulated Cationic Nanoliposomes for Cardiovascular Targeting: Formulation and In Vitro and Ex Vivo Studies. ACS APPLIED BIO MATERIALS 2024; 7:3061-3085. [PMID: 38581388 PMCID: PMC11530090 DOI: 10.1021/acsabm.4c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
Carvedilol (CVD), an adrenoreceptor blocker, is a hydrophobic Biopharmaceutics Classification System class II drug with poor oral bioavailability due to which frequent dosing is essential to attain pharmacological effects. Quercetin (QC), a polyphenolic compound, is a potent natural antioxidant, but its oral dosing is restricted due to poor aqueous solubility and low oral bioavailability. To overcome the common limitations of both drugs and to attain synergistic cardioprotective effects, we formulated CVD- and QC-encapsulated cationic nanoliposomes (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. We designed CVD- and QC-loaded cationic nanoliposomal (NLPs) in situ gel (CVD/QC-L.O.F.) for intranasal administration. In vitro drug release studies of CVD/QC-L.O.F. (16.25%) exhibited 18.78 ± 0.57% of QC release and 91.38 ± 0.93% of CVD release for 120 h. Ex vivo nasal permeation studies of CVD/QC-L.O.F. demonstrated better permeation of QC (within 96 h), i.e., 75.09% compared to in vitro drug release, whereas CVD permeates within 48 h, indicating the better interaction between cationic NLPs and the negatively charged biological membrane. The developed nasal gel showed a sufficient mucoadhesive property, good spreadability, higher firmness, consistency, and cohesiveness, indicating suitability for membrane application and intranasal administration. CVD-NLPs, QC-NLPs, and CVD/QC-NLPs were evaluated for in vitro cytotoxicity, in vitro ROS-induced cell viability assessment, and a cellular uptake study using H9c2 rat cardiomyocytes. The highest in vitro cellular uptake of CVD/QC-cationic NLPs by H9c2 cells implies the benefit of QC loading within the CVD nanoliposomal carrier system and gives evidence for better interaction of NLPs carrying positive charges with the negatively charged biological cells. The in vitro H2O2-induced oxidative stress cell viability assessment of H9c2 cells established the intracellular antioxidant activity and cardioprotective effect of CVD/QC-cationic NLPs with low cytotoxicity. These findings suggest the potential of cationic NLPs as a suitable drug delivery carrier for CVD and QC combination for the intranasal route in the treatment of various cardiovascular diseases like hypertension, angina pectoris, etc. and for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Sweta Kar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Sabya Sachi Das
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Sourav Kundu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - Bidya Dhar Sahu
- Department
of Pharmacology and Toxicology, National
Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Changsari 781101, Assam, India
| | - K. Jayaram Kumar
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, 00076 Espoo, Finland
| | - Sandeep Kumar Singh
- Department
of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
3
|
Karami Z, Zanjani MS, Andalib S, Babaie H, Aminoroaia P. Influence of Poloxamer 188 on Anti-Inflammatory and Analgesic Effects of Diclofenac-Loaded Nanoemulsion: Formulation, Optimization and in Vitro/in Vivo Evaluation. J Pharm Sci 2023; 112:3197-3208. [PMID: 37777011 DOI: 10.1016/j.xphs.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
In this study, a polymer-stabilized nanoemulsion (PNE) was developed to improve the inflammatory and analgesic activities of diclofenac (DA). DA-PNEs were prepared from sesame oil and poloxamer 188 (P188), polysorbate 80, and span 80 as emulsifiers and optimized by a systematic multi-objective optimization method. The developed DA-PNEs exhibited thermodynamical stability with low viscosity. The mean diameter, PDI, surface charge, and entrapment efficiency of DA-PNEs were 122.49±3.42 nm, 0.226±0.08, -47.3 ± 3.6 mV, and 93.57±3.4 %, respectively. The cumulative in vitro release profile of DA-PNEs was significantly higher than the neat drug in simulated gastrointestinal fluids. The anti-inflammatory activities of DA-PNEs were evaluated in the λ-carrageenan-induced paw edema model. To investigate the effect of P188 on analgesic and anti-inflammatory activities, a formulation without P188 was also prepared and named DA-NEs. Following oral administration, DA-PNEs showed a significantly higher (p<0.05) effect in reducing pain and inflammation symptoms as compared to free diclofenac and DA-NEs. Moreover, histopathological examination confirmed that DA-PNEs meaningfully reduced the extent of paw edema, comparable to that of DA. Taken together, the findings of the in vitro and in vivo studies suggest that diclofenac-loaded P188-stabilized nanoemulsion can be considered a potential drug delivery system for treating and controlling inflammatory disorders and alleviating pains.
Collapse
Affiliation(s)
- Zahra Karami
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Mohammadreza Saghatchi Zanjani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sina Andalib
- Department of Toxicology and Pharmacology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Babaie
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Paria Aminoroaia
- Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Chemistry, School of Art and Science, Lehigh University, Bethlehem, PA, United States
| |
Collapse
|
4
|
Halder J, Mahanty R, Rajwar TK, Rai VK, Kar B, Ghosh G, Rath G. Nanofibers of Glycyrrhizin/Hydroxypropyl-β-Cyclodextrin Inclusion Complex: Enhanced Solubility Profile and Anti-inflammatory Effect of Glycyrrhizin. AAPS PharmSciTech 2023; 24:196. [PMID: 37783948 DOI: 10.1208/s12249-023-02662-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023] Open
Abstract
Despite having a wide range of therapeutic advantages, glycyrrhizin (GL) has few commercial applications due to its poor aqueous solubility. In this study, we combined the benefits of hydroxypropyl β-cyclodextrin (HP-βCD) supramolecular inclusion complexes and electrospun nanofibers to improve the solubility and therapeutic potential of GL. A molecular inclusion complex containing GL and HP-βCD was prepared by lyophilization at a 1:2 molar ratio. GL and hydroxypropyl β-cyclodextrin inclusion complexes were also incorporated into hyaluronic acid (HA) nanofibers. Prepared NF was analyzed for physical, chemical, thermal, and pharmaceutical properties. Additionally, a rat model of carrageenan-induced hind paw edema and macrophage cell lines was used to evaluate the anti-inflammatory activity of GL-HP-βCD NF. The DSC and XRD analyses clearly showed the amorphous state of GL in nanofibers. In comparison to pure GL, GL-HP-βCD NF displayed improved release (46.6 ± 2.16% in 5 min) and dissolution profiles (water dissolvability ≤ 6 s). Phase solubility results showed a four-fold increase in GL solubility in GL-HP-βCD NF. In vitro experiments on cell lines showed that inflammatory markers like IL-1β, TNF-α, and IL-6 were significantly lower in GL-HP-βCD NF compared to pure GL (p < 0.01 and p < 0.05). According to in vivo results, the prepared nanofiber exhibits a better anti-inflammatory effect than pure GL (63.4% inhibition vs 53.7% inhibition). The findings presented here suggested that GL-HP-βCD NF could serve as a useful strategy for improving the therapeutic effects of GL.
Collapse
Affiliation(s)
- Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Ritu Mahanty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Sykuła A, Bodzioch A, Nowak A, Maniukiewicz W, Ścieszka S, Piekarska-Radzik L, Klewicka E, Batory D, Łodyga-Chruścińska E. Encapsulation and Biological Activity of Hesperetin Derivatives with HP-β-CD. Molecules 2023; 28:6893. [PMID: 37836736 PMCID: PMC10574185 DOI: 10.3390/molecules28196893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The encapsulation of insoluble compounds can help improve their solubility and activity. The effects of cyclodextrin encapsulation on hesperetin's derivatives (HHSB, HIN, and HTSC) and the physicochemical properties of the formed complexes were determined using various analytical techniques. The antioxidant (DPPH•, ABTS•+ scavenging, and Fe2+-chelating ability), cytotoxic, and antibacterial activities were also investigated. The inclusion systems were prepared using mechanical and co-evaporation methods using a molar ratio compound: HP-β-CD = 1:1. The identification of solid systems confirmed the formation of two inclusion complexes at hesperetin (CV) and HHSB (mech). The identification of systems of hesperetin and its derivatives with HP-β-CD in solutions at pHs 3.6, 6.5, and 8.5 and at various temperatures (25, 37 and 60 °C) confirmed the effect of cyclodextrin on their solubility. In the DPPH• and ABTS•+ assay, pure compounds were characterized by higher antioxidant activity than the complexes. In the FRAP study, all hesperetin and HHSB complexes and HTSC-HP-β-CD (mech) were characterized by higher values of antioxidant activity than pure compounds. The results obtained from cytotoxic activity tests show that for most of the systems tested, cytotoxicity increased with the concentration of the chemical, with the exception of HP-β-CD. All systems inhibited Escherichia coli and Staphylococcus aureus.
Collapse
Affiliation(s)
- Anna Sykuła
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| | - Agnieszka Bodzioch
- Centre of Molecular and Macromolecular Studies Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland;
| | - Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland;
| | - Waldemar Maniukiewicz
- Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland;
| | - Sylwia Ścieszka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Lidia Piekarska-Radzik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Elżbieta Klewicka
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland; (S.Ś.); (L.P.-R.); (E.K.)
| | - Damian Batory
- Department of Vehicles and Fundamentals of Machine Design, Lodz University of Technology, 90-924 Lodz, Poland;
| | - Elżbieta Łodyga-Chruścińska
- Faculty of Biotechnology and Food Sciences, Institute of Natural Products and Cosmetics, Lodz University of Technology, Stefanowskiego 2/22, 90-537 Lodz, Poland;
| |
Collapse
|
6
|
Rao L, Bhardwaj BY, Chugh M, Sharma A, Shah R, Minocha N, Pandey P. Enhanced Efficacy of Carvedilol by Utilization of Solid Dispersion and Other Novel Strategies: A Review. Cardiovasc Hematol Disord Drug Targets 2023; 23:141-156. [PMID: 37953616 DOI: 10.2174/011871529x247622231101075854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/04/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
Carvedilol is classified as a second class drug of Biopharmaceutical classification system (BCS), and it is an excellent beta blocker and vasodilating agent. It is used in a diverse range of disease states. Despite having tremendous advantages, the drug cannot be used effectively and productively due to aquaphobicity and poor bioavailability. To overcome this limitation, numerous novel approaches and tactics have been introduced over the past few years, such as Selfmicro emulsifying drug delivery systems (SMEDDS), nanoparticles, solid dispersions and liposomal drug delivery. The present review aims to accentuate the role of solid dispersion in improving the dissolution profile and aqua solubility of carvedilol and also to emphasize other novel formulations of carvedilol proposed to prevail the limitations of carvedilol. Solid dispersion and other novel approaches were found to play a significant role in overcoming the drawbacks of carvedilol, among which solid dispersion is the most feasible and effective approach being used worldwide. Reduced particle size, more wettability, and large surface area are obtained by the implementation of solid dispersion technique, hence improving carvedilol solubility and bioavailability.
Collapse
Affiliation(s)
- Lakshita Rao
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Bigul Yogeshver Bhardwaj
- Institute of Pharmaceutical Sciences, Shoolini University, Solan - 173229, Himachal Pradesh, India
| | - Mahek Chugh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Ashish Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| | - Rashmi Shah
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak - 124001, Haryana, India
| | - Neha Minocha
- Chitkara School of Pharmacy, Chitkara University, Baddi - 174103, Himachal Pradesh, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram - 122018, Haryana, India
| |
Collapse
|
7
|
Sayad T, Poturcu K, Moradi M, Rahimpour E, Zhao H, Jouyban A. Solubility study of carvedilol in the aqueous mixtures of a choline chloride/propylene glycol deep eutectic solvent. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Boakye‐Yiadom KO, Kesse S, Aquib M, Filli MS, Farooq MA, Wang B. Solid dispersion systems engineered from
hydroxypropyl‐β‐cyclodextrin
and
water‐soluble
polymers for enhanced oral bioavailability of nimodipine. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kofi Oti Boakye‐Yiadom
- School of PharmacyShanghai Jiao Tong University Shanghai China
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Samuel Kesse
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Md Aquib
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| | - Bo Wang
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical University Nanjing China
| |
Collapse
|
9
|
An overview of techniques for multifold enhancement in solubility of poorly soluble drugs. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Poor water solubility of newly discovered compounds has become the most common challenge in the drug development process. Indeed, poor solubility is considered as the root cause of failure of drug during drug development phases. Moreover, it has also been reported to be the main reason for bioavailability issues such as poor, inconsistent, incomplete and highly variable bioavailability of the marketed products. As per an estimate, approximately 90% of drug molecules suffer with poor water solubility at early stage and approximately 40% of the marketed drugs have bioavailability problems mainly due to poor water solubility. Solubility enhancement of the newly discovered compounds is primary research area for the pharmaceutical industries and research institutions. The conventional techniques to improve aqueous solubility of drugs employ salt formation, prodrug formation, co-crystallization, complexation, amorphous solid dispersion and use of co-solvent, surfactants or hydrotropic agents. Current advancement in the science and technology has enabled the use of relatively new techniques under the umbrella of nanotechnology. These include the development of nanocrystals, nanosuspensions, nanoemulsions, microemulsions, liposomes and nanoparticles to enhance the solubility. This review focuses on the conventional and current approaches of multifold enhancement in the solubility of poorly soluble marketed drugs, including newly discovered compounds.
Collapse
|
10
|
Shen H, Liu Y, Zhang H, Ding P, Zhang L, Zhang L, Ju J. Enhancing the oral bioavailability of baicalein via Solutol ® HS15 and Poloxamer 188 mixed micelles system. ACTA ACUST UNITED AC 2018; 71:765-773. [PMID: 30549042 DOI: 10.1111/jphp.13058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/18/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To increase the solubility of baicalein (BAI) by preparing BAI-micelles (BAI-M) with Solutol HS15 (HS15) and Poloxamer 188 (F68), thereby improving its oral bioavailability. METHODS Baicalein micelles were prepared with HS15 and F68 by thin-film dispersion method and optimized by central composite design (CCD) approach. Physicochemical, in vitro release, Caco-2 cell transport and pharmacokinetic studies of BAI-M were performed. KEY FINDINGS The optimal formulation showed spherical shape by characterization of the transmission electron microscope with average small size (23.14 ± 1.46 nm) and high entrapment efficiency (92.78±0.98%) and drug loading (6.45±1.54%). The in vitro release study of BAI-M showed a significantly sustained release pattern compared with free BAI. Caco-2 cell transport study demonstrated that high permeability of BAI was achieved after loading it into micelles. Meanwhile, pharmacokinetics study of BAI-M showed a 3.02-fold increase in relative oral bioavailability compared with free BAI. CONCLUSIONS Based on our findings, we concluded that HS15 can be used as a carrier in this drug delivery system that includes F68, and BAI-M has great potential in improving solubility and oral bioavailability.
Collapse
Affiliation(s)
- Hongxue Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China.,Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Yi Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Huanhuan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Pinggang Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Lan Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Liefeng Zhang
- Jiangsu Key Laboratory for Moleculer and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jianming Ju
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
11
|
Halder S, Tabata A, Seto Y, Sato H, Onoue S. Amorphous solid dispersions of carvedilol along with pH-modifiers improved pharmacokinetic properties under hypochlorhydoria. Biopharm Drug Dispos 2018; 39:232-242. [PMID: 29607517 DOI: 10.1002/bdd.2129] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022]
Abstract
Carvedilol (CAR) belongs to biopharmaceutics classification system class-II drugs, with poor aqueous solubility and pH-dependent solubility. The present study aimed to develop a novel amorphous solid dispersion (ASD) of CAR with acidic counter ions for pH modifications in microenvironment to improve the pharmacokinetic properties under hypochlorhydric conditions. CAR-ASD was prepared by freeze-drying in combination with counter ions and hydroxypropyl cellulose, and their physicochemical properties including dissolution behavior, storage stability, and photostability were characterized. Pharmacokinetic studies were carried out after oral administration of CAR samples in both normal and omeprazole-treated (30 mg/kg, p.o.) rats as a hypochlorhydria model. Among the tested six counter ions, citric acid (CA) was found to be a preferable pH-modifier of CAR with respect to the dissolution profile and photostability (both potency and colorimetric evaluation). In CAR-ASD formulation with 50% loading of CA (CAR-ASD/CA50), amorphization of CAR was observed during the preparation process. After the oral administration of crystalline CAR in rats under hypochlorhydric condition, there was a 34.4% reduction in the systemic exposure of CAR compared with that in normal rats. However, orally-dosed CAR-ASD/CA50 resulted in limited alterations of pharmacokinetic behavior between normal and omeprazole-treated rats. From these findings, addition of CA as pH-modifier in CAR-ASD might provide consistent pharmacokinetic behavior of CAR even under hypochlorhydric conditions.
Collapse
Affiliation(s)
- Shimul Halder
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Aiko Tabata
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yoshiki Seto
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hideyuki Sato
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Satomi Onoue
- Department of Pharmacokinetics and Pharmacodynamics, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
12
|
An Z, Yang G, Liu X, Zhang Z, Liu G. New Progress in Understanding the Cellular Mechanisms of Anti-arrhythmic Drugs. Open Life Sci 2018; 13:335-339. [PMID: 33817101 PMCID: PMC7874705 DOI: 10.1515/biol-2018-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/08/2018] [Indexed: 11/30/2022] Open
Abstract
Antiarrhythmic drugs are widely used, however, their efficacy is moderate and they can have serious side effects. Even if catheter ablation is effective for the treatment of atrial fibrillation and ventricular tachycardia, antiarrhythmic drugs are still important tools for the treatment of arrhythmia. Despite efforts, the development of antiarrhythmic drugs is still slow due to the limited understanding of the role of various ionic currents. This review summarizes the new targets and mechanisms of antiarrhythmic drugs.
Collapse
Affiliation(s)
- Zhe An
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Guang Yang
- Department of Molecular Biology, College of Basic Medical Science, Jilin University, Changchun 130033, Jilin, P.R. China
| | - Xuanxuan Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Zhongfan Zhang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| | - Guohui Liu
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun 130033, Jilin, P.R. China
| |
Collapse
|